
Eclipse Scout Beginners Guide
Matthias Zimmermann

Version 7.0

Table of Contents
Preface . Ê1

1. Introduction . Ê2

2. ÒHello WorldÓ Tutorial . Ê4

2.1. Installation and Setup . Ê4

2.2. Create a new Project . Ê4

2.3. Run the Initial Application . Ê7

2.4. Export the Application . Ê9

2.5. Deploy to Tomcat . Ê12

3. Scout Tooling . Ê15

3.1. Motivation for the Tooling . Ê15

3.2. Eclipse IDE tooling . Ê15

3.3. Scout SDK Overview . Ê19

3.4. Scout Wizards . Ê20

3.5. Scout Content Assistance . Ê28

3.6. Scout NLS Tooling . Ê30

4. A One Day Tutorial . Ê34

4.1. The ÒContactsÓ Application. Ê34

4.2. Tutorial Overview . Ê36

4.3. Setting up the Initial Project . Ê37

4.4. Adding the Person and Organization Page . Ê46

4.5. Creating and Accessing the Database . Ê57

4.6. Adding a Form to Create/Edit Persons . Ê72

4.7. Form Field Validation and Template Fields . Ê95

4.8. Adding the Company Form . Ê108

4.9. Linking Organizations and Persons . Ê114

4.10. Additional Concepts and Features . Ê125

Appendix A: Licence and Copyright . Ê127

A.1. Licence Summary . Ê127

A.2. Contributing Individuals . Ê127

A.3. Full Licence Text . Ê128

Appendix B: Scout Installation . Ê129

B.1. Overview . Ê129

B.2. Download and Install a JDK . Ê129

B.3. Download and Install Scout . Ê130

B.4. Add Scout to your Eclipse Installation . Ê135

B.5. Verifying the Installation . Ê137

Appendix C: Apache Tomcat Installation . Ê138

C.1. Platform Specific Instructions . Ê138

C.2. Directories and Files . Ê139

C.3. The Tomcat Manager Application . Ê140

Preface
The goal of this book is to get you familiar with the Scout framework in a short time. ScoutÕs core
features and concepts are introduced and explained by writing actual Scout applications. As Scout
applications are written in Java, we make the assumption that you are familiar with the Java
language and its core concepts.

We hope that this book helps you to get started quickly and would love to get your feedback. This
feedback is very valuable to us as it helps to improve both the bookÕs content and the quality for all
future readers.

To allow for contributions to this book, the technical setup and the bookÕs licence have been
selected to minimize restrictions. According to the terms of the Creative Commons (CC-BY) license,
you are allowed to freely use, share and adapt this book. All source files of the book including the
Scout projects described in the book are available on Github .

1

https://github.com/BSI-Business-Systems-Integration-AG/org.eclipse.scout.docs

Chapter 1. Introduction
Scout is an open source framework for implementing business applications. The framework is
based on Java and HTML5 and covers most recurring aspects of enterprise applications.

Scout defines an abstract application model that makes developing applications faster and helps to
decouple the business code as much as possible from any specific technologies. This is particularly
useful as the life span of todayÕs web technologies is substantially shorter then the life span of large
enterprise applications.

Scout comes with multi-device support. With a single code base Scout applications run on desktop,
tablet and mobile devices. The framework automatically adapts the rendering of the application to
the form factor of the used device. An example of a commercial application built with Scout is
provided in Figure 1 .

Figure 1. A commercial enterprise application built with Eclipse Scout.

Scout supports a modularization of applications into layers and slices. This helps to define a clean
architecture for large applications. The layering is driven by the fact the Scout applications have a
rendering part, a frontend part and a backend part. The modularization into slices is controlled by
different business needs such as front office, back office, reporting or the administraion of
application users, roles and permissions.

The goals of the Scout framework can be summarized as follows.

¥ Boost developer productivity

¥ Make the framework simple to learn

¥ Support building large applications with long life spans

Boosting developer productivity is of a very high importance and developers should be able to
focus on the business value of the application. This is why Scout provides abstractions for
areas/topics that are needed in most business applications again and again. Example areas/topics
that are abstracted by the Scout framework are user interface (UI) technologies, databases, client-

2

server communication or logging. For each of these abstractions Scout provides a default
implementation out of the box. Typically, the default implementation of such an abstraction
integrates a framework or technology that is commonly used.

Learning a new framework should be efficient and enjoyable. For developers that have a good
understanding of the Java language learning the Scout framework will be straight forward. The
required skill level roughly corresponds to the Oracle Certified Professional Java SE Programmer
for Java version 7 or higher. As the Scout framework takes care of the transformation of the user
interface from Java to HTML5, Scout developers only needs a minimal understanding of
HTML5/CSS3/JavaScript. In the case of writing project specific UI components a deeper
understanding of todayÕs web technologies might be required of course.

When needing a working prototype application by the end of the week, the developer just needs to
care about the desired functionality. The necessary default implementations are then automatically
included by the Scout tooling into the Scout project setup. The provided Scout SDK tooling also
helps to get started quickly with Scout. It also allows to efficiently implement application
components such as user interface components, server services or connections to databases.

In the case of applications with long life spans, the abstractions provided by Scout help the
developer to concentrate on the actual business functionality. As all the implemented business
functionality is written against abstractions only, no big rewrite of the application is necessary
when individual technologies reach their end of life. In such cases it is sufficient to exchange the
implementation of the adaptor for the legacy technology with a new one.

3

Chapter 2. ÒHello WorldÓ Tutorial
The ÒHello WorldÓ chapter walks you through the creation of an Eclipse Scout client server
application. When the user starts the client part of this application, the client connects to the server.
[1: The Scout server part of the ÒHello WorldÓ application will be running on a web server.] and
asks for some text content that is to be displayed to the user. Next, the server retrieves the desired
information and sends it back to the client. The client then copies the content obtained from the
server into a text field widget. Finally, the client displays the message obtained from the server in a
text field widget.

The goal of this chapter is to provide a first impression of working with the Scout framework using
the Scout SDK. We will start by building the application from scratch and then weÕll deploy the
complete application to a Tomcat web server.

2.1. Installation and Setup
Before you can start with the ÒHello WorldÓ example you need to have a complete and working
Scout installation. For this, see the step-by-step installation guide provided in Appendix B . Once you
have everything installed, you are ready to create your first Scout project.

2.2. Create a new Project

Start your Eclipse IDE and select an empty directory for your workspace as shown in Figure 2 . This
workspace directory will then hold all the project code for the Hello World application. Once the
Eclipse IDE is running it will show the Java perspective.

Figure 2. Select a new empty folder to hold your project workspace

To create a new Scout project select the menu File Ý New Ý ProjectÉ and type ÒScout ProjectÓ in the
wizard search field. Select the Scout Project wizard and press [!Next!] . The New Scout Project
wizard is then started as shown in Figure 3 .

4

Figure 3. The new Scout project wizard.

In the New Scout Project wizard you have to enter a group id , artifact id and a display name for
your Scout project. As the created project will make use of Apache Maven please refer to the Maven
naming conventions to choose group id and artifact id for your project. The artifact id will then
also be the project name in the Eclipse workspace. The display name is used as the application name
presented to the user (e.g. in the Browser title bar).

For the Hello World application just use the already prefilled values as sown in Figure 3 . Then, click
the [!Finish!] button to let the Scout SDK create the initial project code for you.

Depending on your Eclipse installation some Maven plugin connectors may be missing initially. In
that case a dialog as shown in Figure 4 may be shown. To continue click on [!Finish!] to resolve the
selected connectors. Afterwards confirm the installation, accept the license and the message that
some content has not been signed. Finally, the installation of the maven plugin connectors requires
a restart of the Eclipse IDE.

5

https://maven.apache.org/
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html

Figure 4. The Maven plugin connector installation dialog.

After the New Scout Project wizard has created the initial Maven modules for the Hello World
application these modules are compiled and built by the Eclipse IDE. In case of a successful Eclipse
Scout installation your Eclipse IDE should display all created Maven modules in the Package
Explorer and have an empty Problems view as shown in Figure 5 .

6

Figure 5. The inital set of Maven modules created for the Hello World application.

2.3. Run the Initial Application
After the initial project creation step we can start the Scout application for the first time. For this,
the following three steps are necessary

1. Start the Scout backend server

2. Start the Scout frontend server

3. Open the application in the browser

To start the Scout backend server we first select the [webapp] dev server.launch file in the Package
Explorer view of the Eclipse IDE and then use the Run As menu as shown in Figure 6 .

7

Figure 6. Starting the Hello World application.

Starting the Scout frontend server works exactely the same. But first select the [webapp] dev
ui.launch file in the Eclipse IDE. This launch file is located under module
helloworld.ui.html.app.dev in the Package Explorer.

During startup of the Scout applications you should see console output providing information about
the startup. After having successfully started the Scout backend and frontend servers the Hello
World application can then be accessed by navigating to http://localhost:8082/ in your favorite web
browser.

The running Hello World application should then be started in your browser as shown in Figure 7 .

Figure 7. The Hello World application in the browser.

8

http://localhost:8082/

2.4. Export the Application
At some point during the application development you will want to install your software on a
machine that is intended for productive use. This is the moment where you need to be able to build
and package your Scout application in a way that can be deployed to an application server.

As Scout applications just need a servlet container to run, Scout applications can be deployed to
almost any Java appliction server. For the purpose of this tutorial we will use Apache Tomcat .

2.4.1. Verify the Container Security Settings

First you need to decide if the users of your application should communicate via HTTPS with the
Scout frontend server. We strongly recommended this setup for any productive environment. This
is why even the Scout ÒHello WorldÓ example is configured to use HTTPS.

As a default Tomcat installation is configured to use HTTP only, we need to first verify if the
installtion is properly configured for HTTPS too. In case HTTPS support is already enabled for your
Tomcat installation, you may skip this section.

Otherwise, check out the configuration process described in the Tomcat Documentation to enable
SSL/TLS.

2.4.2. Create and Install a Self-Signed Certificate

This section describes the creation and usage of a self-signed certificat in a localhost setting.

1. Create a keystore file with a self-signed certificate

2. Uncomment/adapt the HTTPS connector port in TomcatÕs server.xml configuration

3. Export the self-signed certificate from the keystore

4. Import the self-signed certificate into the Java certificate store

The first step is to create a self-signed certificate using the keytool provided with the Java runtime.
The example command line below will create such a certificate using the alias tomcat_localhost and
place it into the keystore file tomcat_localhost.jks

keytool.exe -genkey -keyalg RSA -dname CN=localhost -alias tomcat_localhost -keystore
tomcat_localhost.jks -keypass changeit -storepass changeit

The second step is to uncomment the HTTPS connector element in the TomcatÕs server.xml
configuration file. Make sure that parameter keystoreFile points to your newly created keystore file
(if you are using a windows box, make sure not to use the backslash characters in the path to the
keystore). After a restart of Tomcat you should then be able to access Tomcat on
https://localhost:8443/manager/html

9

http://tomcat.apache.org/tomcat-8.0-doc/index.html
http://tomcat.apache.org/tomcat-8.0-doc/ssl-howto.html
https://localhost:8443/manager/html

<Connector port =" 8443" protocol =" org.apache.coyote.http11.Http11NioProtocol "
Ê maxThreads=" 150" SSLEnabled=" true " scheme=" https " secure=" true "
Ê clientAuth =" false " sslProtocol =" TLS"
Ê keystoreFile =" file:///c:/keystore/tomcat_localhost.jks " keystorePass=
" changeit "
/>

The third step is to export the newly created self-signed certificate from the tomcat_localhost.jks
keystore file into the tomcat_localhost.der certificate file.

keytool.exe -exportcert -alias tomcat_localhost -storepass changeit -keystore
tomcat_localhost.jks -file tomcat_localhost.der

In the fourth and last step we add the self-signed certificate to the known certificates of the Java
runtime. Make sure that you modify the cacerts file of the Java runtime that is used in your Tomcat
installation and modify the path to the cacerts file accordingly.

keytool.exe -import -alias tomcat_localhost -trustcacerts -storepass changeit
-keystore C:\java\jre8\lib\security\cacerts -file tomcat_localhost.der

Your Scout application should now properly communicate over HTTPS in your Tomcat installation
and after having installed the "Hello World" application to Tomcat it should become available on
https://localhost:8443/org.eclipse.scout.apps.helloworld.ui.html/ .

In case the Scout frontend server cannot access the Scout backend server your self-signed
certificate might be missing in the Java installation. To verify that the certificate has been included
in file cacerts file use the following command.

keytool.exe -list -storepass changeit -keystore C:\java\jre8\lib\security\cacerts |
find "localhost"

Once you no longer need the self-signed certificate file in your Java installation make sure to
remove the certificate again.

keytool.exe -delete -alias tomcat_localhost -storepass changeit -keystore
C:\java\jre8\lib\security\cacerts

2.4.3. Update the Scout Application to work with HTTP

If you should prefer to work with HTTP only, you need to modify the security settings of your Scout
application. This can be done in module helloworld.ui.html.app.war with the steps described below.

¥ In file config.properties (in folder src/main/resources):

! Add the property scout.auth.cookie.session.validate.secure=false to disable the check for

10

https://localhost:8443/org.eclipse.scout.apps.helloworld.ui.html

an encrypted channel (HTTPS).

! Change the scout.server.url property to use the HTTP port of your Tomcat, typically 8080.

¥ In file web.xml (in folder src/main/webapp/WEB-INF) delete the <secure>true</secure> flag in the
<cookie-config> element.

More on this topic can be found in the Scout Architecture Documentation.

2.4.4. Create WAR Files

We are now ready to move the Hello World application from our development environment to a
productive setup. The simplest option to move our application into the 'wild' is to build it using
Maven. This produces two WAR files [2: Web application ARchive (WAR): http://en.wikipedia.org/
wiki/WAR_file_format_%28Sun%29].

The first WAR file contains the Scout backend server with all business logic. The second WAR file
contains the Scout frontend server that is responsible for communicating with the web browser
part of the Scout application.

To start the build right click on the project helloworld and select the context menu Run As "

Maven buildÉ Ý] as shown in <<img-sdk_export_war Ý Ý . In the dialog that appears enter clean
verify into the Goals field and press [!Run! .

Figure 8. Starting the Maven build.

Afterwards the compilation starts, executes all test cases and bundles the result into two WAR files.

11

http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29
http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29

The output of the build is shown in the Console view within Eclipse. As soon as the build is
reporting success you can find the built WAR files:

¥ The Scout backend WAR file org.eclipse.scout.apps.helloworld.server.war in folder
workspace_root/helloworld.server.app.war/target

¥ The Scout frontend WAR file org.eclipse.scout.apps.helloworld.ui.html.war in folder
workspace_root/helloworld.ui.html.app.war/target

To see the new files within Eclipse you may need to refresh the target folder below each project
using the F5 keystroke.

2.5. Deploy to Tomcat
As the final step of this tutorial, we deploy the two WAR files representing our ÒHello WorldÓ
application to a Tomcat web server. For this, we first need a working Tomcat installation. If you do
not yet have such an installation you may want to read and follow the instructions provided in
Appendix C . To verify a running Tomcat instance, type http://localhost:8080/ into the address bar of
the web browser of your choice. You should then see the page shown in Figure 9 .

Figure 9. The Tomcat shown after a successful installation. After clicking on the ÒManager AppÓ button
(highlighted in red) the login box is shown in front. A successful login shows the ÒTomcat Web Application
ManagerÓ.

Once the web browser displays the successful running of your Tomcat instance, switch to its
ÒManager AppÓ by clicking on the button highlighted in Figure 9 . After entering user name and
password the browser will display the ÒTomcat Web Application ManagerÓ as shown in Figure 10 . If
you donÕt know the correct username or password you may look it up in the file tomcat-users.xml
as described in Section C.2.

12

http://localhost:8080/

Figure 10. The ÒTomcat Web Application ManagerÓ. The WAR files to be deployed can then be selected using
button ÒChoose FileÓ highlighted in red.

After logging into TomcatÕs manager application, you can select the WAR files to be deployed using
button ÒChoose FileÓ according to the right hand side of Figure 10 . After picking your just built
org.eclipse.scout.apps.helloworld.server.war and closing the file chooser, click on button ÒDeployÓ
(located below button ÒChoose FileÓ) to deploy the application to the Tomcat web server. Then we
repeat this step with the second WAR file org.eclipse.scout.apps.helloworld.ui.html.war .

This will copy the selected WAR files into Tomcats webapps directory and unpack its contents into
subdirectories with the same name. You can now connect to the application using the browser of
your choice and enter the following address:

Ê http://localhost:8080/org.eclipse.scout.apps.helloworld.ui.html/

13

Figure 11. The ÒHello WorldÓ login page.

Then you will see the login page as shown in Figure 11 . Two users have been pre defined: ÒadminÓ
with password ÒadminÓ and ÒscottÓ with password ÒtigerÓ. You can find this configuration in the
config.properties file of the application.

Please note: In a productive environment it is recommended to deploy the server and the user
interface into two different servlet containers running on dedicated machines. This is because
these two tiers have different requirements on resources, load balancing and access protection.
Furthermore, it is strongly recommended to use an encrypted connection (e.g. TLS 1.2 [3: TLS:
https://en.wikipedia.org/wiki/Transport_Layer_Security]) between client browsers and the Scout
frontend server AND between the Scout frontend and backend server!

14

https://en.wikipedia.org/wiki/Transport_Layer_Security

Chapter 3. Scout Tooling

This chapter presents the Scout SDK tooling that is included with the Eclipse Scout. The Scout SDK
provides wizards to create new project and application components, adds code assistance to the
Java Editor and comes with a NLS editor to manage all translated text entries of the application.

The chapter is organized as follows. Section 3.1 describes the goals and benefits of the tooling
included. Because the Scout Tooling is based on the Eclipse IDE, Section 3.2 provides a short
overview of frequently used Eclipse features. A high level description of the Scout tooling is
provided in Section 3.3. Section 3.4, Section 3.5 and Section 3.6 then provide detailed descriptions of
the functionality offered by the Scout SDK.

3.1. Motivation for the Tooling
Thanks to this tooling, developing Scout applications is made simpler, more productive and also
more robust. Initially, a solid understanding of the Java language is sufficient to start developing
Scout applications and only a rough understanding of the underlying Maven/JEE technologies is
required.

The Scout SDK also helps developers to become more productive. Many repetitive and error prone
tasks run automatically in the background or are taken care of by the component wizards of the
Scout SDK.

The application code created by the Scout SDK wizards helps to ensure that the resulting Scout
application has a consistent and robust code base and is well aligned with the application model
defined by the Scout runtime framework.

3.2. Eclipse IDE tooling
The Scout tooling is an extension of the Eclipse IDE. The goal of this section is not to provide a
complete overview on the features contained in the Eclipse IDE. It provides a short overview of the
important eclipse features, frequently used during the development of a Scout Application.
Experimented Eclipse IDE users might skip this section.

3.2.1. Start the New Wizard

To start the New Wizard wizard press Ctrl +N or use menu File Ý New Ý OtherÉ . In the first wizard
step type the name of the object you want to create into the Wizards field as shown in Figure 12 .

15

Figure 12. "New" Wizard

3.2.2. Create a new Java class

Start the New Wizard and type Class in the Wizards field. Select Class Click on [!Next!] to open the
New class wizard

16

