
Eclipse Scout
Technical Guide

Scout Team

Version 7.1

Table of Contents
Introduction . Ê1

1. Overview . Ê2

2. Scout Platform . Ê3

2.1. Application Lifecycle . Ê3

2.2. Class Inventory . Ê4

2.3. Bean Manager . Ê5

2.4. Configuration Management . Ê12

2.5. Testing . Ê14

3. Client Model . Ê15

3.1. Desktop . Ê15

3.2. Outlines . Ê16

3.3. Pages . Ê16

3.4. Forms . Ê16

3.5. Form Fields . Ê16

3.6. Actions . Ê16

3.7. Multiple Dimensions Support . Ê16

4. Texts . Ê18

4.1. Text properties files . Ê18

4.2. Text Provider Service . Ê18

5. Icons . Ê21

6. Lookup Call . Ê22

6.1. Description . Ê22

6.2. Input . Ê22

6.3. Members . Ê22

6.4. Type of lookup calls . Ê24

7. Code Type. Ê27

7.1. Description . Ê27

7.2. Using a CodeType . Ê28

7.3. Static CodeType . Ê28

7.4. Dynamic CodeType . Ê29

8. Working with exceptions . Ê31

8.1. Scout Throwables . Ê31

8.2. Exception handling . Ê33

8.3. Exception translation . Ê33

8.4. Exception Logging . Ê34

9. JobManager . Ê36

9.1. Functionality . Ê36

9.2. Job. Ê36

9.3. Scheduling a Job . Ê37

9.4. JobInput . Ê38

9.5. IFuture . Ê42

9.6. Job states. Ê42

9.7. Future filter . Ê43

9.8. Event filter . Ê44

9.9. Job cancellation . Ê45

9.10. Subscribe for job lifecycle events . Ê45

9.11. Awaiting job completion . Ê47

9.12. Uncaught job exceptions . Ê50

9.13. Blocking condition . Ê51

9.14. ExecutionSemaphore . Ê52

9.15. ExecutionTrigger . Ê52

9.16. Stopping the platform . Ê53

9.17. ModelJobs . Ê53

9.18. Configuration . Ê54

9.19. Extending job manager . Ê55

9.20. Scheduling examples . Ê55

10. RunContext . Ê61

10.1. Factory methods to create a RunContext . Ê61

10.2. Properties of a RunContext . Ê62

10.3. Properties of a ServerRunContext . Ê63

10.4. Properties of a ClientRunContext . Ê64

11. RunMonitor . Ê66

12. Client Notifications . Ê67

12.1. Examples . Ê67

12.2. Data Flow . Ê67

12.3. Push Technology . Ê67

12.4. Components . Ê68

12.5. Publishing . Ê70

12.6. Handling . Ê71

13. Extensibility . Ê73

13.1. Overview . Ê73

13.2. Extensions . Ê73

13.3. Contributions . Ê75

13.4. Move elements . Ê79

13.5. Migration . Ê79

14. Mobile Support . Ê80

14.1. Responsive and Touch Capable Widgets . Ê80

14.2. Device Transformation . Ê81

14.3. Adapt specific Components . Ê82

14.4. User Agent . Ê83

14.5. Best Practices . Ê83

15. Security . Ê85

15.1. Default HTTP Response Headers . Ê85

15.2. Session Cookie (JSESSIONID Cookie) Configuration Validation . Ê86

15.3. Secure Output . Ê88

16. Webservices with JAX-WS . Ê91

16.1. Functionality . Ê91

16.2. JAX-WS implementor and deployment . Ê91

16.3. Modularization . Ê95

16.4. Build webservice stubs and artifacts . Ê96

16.5. Provide a webservice . Ê103

16.6. Consume a webservice . Ê115

16.7. XML adapters to work with java.util.Date and java.util.Calendar . Ê121

16.8. JAX-WS Appendix . Ê123

17. HTML UI . Ê130

17.1. Browser Support . Ê130

18. Scout JS. Ê132

18.1. Widget . Ê132

18.2. Object Factory . Ê139

18.3. Form . Ê140

18.4. Form Field . Ê141

18.5. Value Field . Ê142

18.6. Extensibility . Ê144

Appendix A: Licence and Copyright . Ê147

A.1. Licence Summary . Ê147

A.2. Contributing Individuals . Ê147

A.3. Full Licence Text . Ê148

Introduction
This technical guide documents the Scout architecture and describes important concepts used in
Scout.

!
This document is not complete. Contributions are welcome!
If you like to help, please create a pull request. Thanks!

Repository:
https://github.com/BSI-Business-Systems-Integration-AG/org.eclipse.scout.docs

1

https://github.com/BSI-Business-Systems-Integration-AG/org.eclipse.scout.docs

Chapter 1. Overview
Scout is a framework for creating modern business applications. Such applications are typically
separated into multiple tiers where each tier is responsible for a specific part of the application like
presenting information to the user or processing business logic and persisting data. Scout solves
these requirements by providing a separation of such tiers out of the box.

A typical Scout application consists of the following parts:

¥ A server layer responsible for persisting data on a database and possibly providing and
consuming webservices. The scout server layer provides utilities to simplify the most common
tasks.

¥ A client layer responsible for handling the java UI code. It consists of a model represented by
plain java classes as well as services and utilities to implement behaviour associeted with client
code. The scout client layer provides utilities to simplify the most common tasks. For simplicity,
the client model is processed in a single threaded way to avoid synchronization. Callbacks, e.g.
for validating a field or calling services when opening a form run inside a model job .

¥ A UI layer responsible for rendering the client model in the browser. Since the scout UI layer
already provides javascript/html/css code for many common UIs, the project specific code in this
layer is typically quite small. Examples are specific css styling or a new custom input field for
special purposes.

Server and client both run in a servlet container, such as Apache Tomcat . They are usually
deployed as separate war files in order to be able to scale them differently. However, it is also
possible to create a single war file.

2

http://tomcat.apache.org

Chapter 2. Scout Platform
Scout contains a platform which provides basic functionality required by many software
applications. The following list gives some examples for which tasks the platform is responsible for:

¥ Application Lifecycle Management

¥ Object Instance Management (Bean Management)

¥ Configuration Management

¥ Application Inventory

2.1. Application Lifecycle
The lifecycle of a Scout application is controlled by implementations of
org.eclipse.scout.rt.platform.IPlatform . This interface contains methods to start and stop the
application and to retrieve the Bean Manager associated with this application. The class
org.eclipse.scout.rt.platform.Platform provides access to the current platform instance. On first
access the platform is automatically created and started.

During its startup, the platform transitions through several states. Depending on the state of the
platform some components may already be initialized and ready to use while others are not
available yet.

See enum org.eclipse.scout.rt.platform.IPlatform.State for a description of each state and what
may be used in a certain state.

2.1.1. Platform Listener

To participate in the application startup or shutdown a platform listener can be created. For this a
class implementing org.eclipse.scout.rt.platform.IPlatformListener must be created. The listener
is automatically a bean and must therefore not be registered anywhere. See Section 2.3 to learn
more about bean management in Scout and how the listener becomes a bean. As soon as the state
of the platform changes the listener will be notified.

3

Listing 1. A listener that will do some work as soon as the platform has been started.

public class MyListener implements IPlatformListener {
Ê @Override
Ê public void stateChanged(PlatformEvent event) {
Ê if (event. getState () == IPlatform . State . PlatformStarted) {
Ê // do some work as soon as the platform has been started completely
Ê }
Ê }
}

"
As platform listeners may run as part of the startup or shutdown not the full Scout
platform may be available. Depending on the state some tasks cannot be
performed or some platform models are not available yet!

2.2. Class Inventory
Scout applications use an inventory containing the classes available together with some meta data
about them. This allows finding classes available on the classpath by certain criteria:

¥ All subclasses of a certain base class (also known as type hierarchy)

¥ All classes having a specific annotation.

This class inventory can be accessed as described in listing Listing 2 .

Listing 2. Access the Scout class inventory.

IClassInventory classInventory = ClassInventory . get () ;

// get all classes below IService
Set<IClassInfo > services = classInventory . getAllKnownSubClasses(IService . class) ;

// get all classes having a Bean annotation (directly on them self).
Set<IClassInfo > classesHavingBeanAnnot = classInventory . getKnownAnnotatedTypes(Bean
. class) ;

2.2.1. scout.xml

In its static initializer, the ClassInventory collects classes in projects containing a resource called
META-INF/scout.xml.

Scanning all classes would be unnecessarily slow and consume too much memory. The file
scout.xml is just an empty xml file. Scout itself also includes scout.xml files in all its projects.

The format XML was chosen to allow adding exclusions in large projects, but this feature is not
implemented right now.

4

" It is recommended to add an emtpy scout.xml file into the META-INF folder of your
projects, such that the classes are available in the 'ClassInventory'.

Scout uses Jandex [1: https://github.com/wildfly/jandex] to build the class inventory. The meta data
to find classes can be pre-computed during build time into an index file describing the contents of
the jar file. See the jandex project for details.

2.3. Bean Manager
The Scout bean manager is a dynamic registry for beans. Beans are normal Java classes usually
having some meta data describing the characteristics of the class.

The bean manager can be changed at any time. This means beans can be registered or unregistered
while the application is running. For this the bean manager contains methods to register and
unregister beans. Furthermore methods to retrieve beans are provided.

The next sections describe how beans are registered, the different meta data of beans, how
instances are created, how they can be retrieved and finally how the bean decoration works.

2.3.1. Bean registration

Usually beans are registered during application startup. The application startup can be intercepted
using platform listeners as described in Section 2.1.1.

Listing 3. A listener that registers a bean (direct class or with meta data).

public class RegisterBeansListener implements IPlatformListener {
Ê @Override
Ê public void stateChanged(PlatformEvent event) {
Ê if (event. getState () == IPlatform . State . BeanManagerPrepared) {
Ê // register the class directly
Ê BEANS. getBeanManager() . registerClass (BeanSingletonClass. class) ;

Ê // Or register with meta information
Ê BeanMetaData beanData = new BeanMetaData(BeanClass. class) . withApplicationScoped
(true) ;
Ê BEANS. getBeanManager() . registerBean (beanData) ;
Ê }
Ê }
}

There is also a predefined bean registration built into the Scout runtime. This automatically
registers all classes having an org.eclipse.scout.rt.platform.@Bean annotation. Therefore it is
usually sufficient to only annotate a class with @Bean to have it available in the bean manager as
shown in listing Listing 4 .

5

https://github.com/wildfly/jandex

Listing 4. An normal bean

@Bean
public class BeanClass {
}

"
As the @Bean annotation is an java.lang.annotation.@Inherited annotation, this
automatically registers all child classes too. This means that also interfaces may be
@Bean annotated making all implementations automatically available in the bean
manager! Furthermore other annotations may be @Bean annotated making all
classes holding these annotations automatically to beans as well.

"
If you inherit a @Bean annotation from one of you super types but donÕt want to be
automatically registered into the bean manger you can use the
org.eclipse.scout.rt.platform.@IgnoreBean annotation. Those classes will then be
skipped.

@TunnelToServer

There is a built in annotation org.eclipse.scout.rt.shared.@TunnelToServer . Interfaces marked with
this annotation are called on the server. The server itself ignores this annotation.

To achieve this a bean is registered on client side for each of those interfaces. Because the platform
cannot directly create an instance for these beans a specific producer is registered which creates a
proxy that delegates the call to the server. Please note that this annotation is not inherited.
Therefore if an interface extends a tunnel-to-server interface and the new methods of this interface
should be called on the server as well the new child interface has to repeat the annotation!

The proxy is created only once for a specific interface bean.

2.3.2. Bean Scopes

The most important meta data of a bean is the scope. It describes how many instances of a bean can
exist in a single application. There are two different possibilities:

¥ Unlimited instances: Each bean retrieval results in a new instance of the bean. This is the
default.

¥ Only one instance: There can only be one instance by Scout platform. From an application point
of view this can be seen as singleton. The instance is created on first use and each subsequent
retrieval of the bean results in this same cached instance.

As like all bean meta data this characteristic can be provided in two different ways:

1. With a Java annotation on the bean class as shown in the listing Listing 5 .

2. With bean meta data as shown in listing Listing 3 .

6

Listing 5. An application scoped bean using annotations

@ApplicationScoped
public class BeanSingletonClass {
}

So the Java annotation org.eclipse.scout.rt.platform.@ApplicationScoped describes a bean having
singleton characteristics.

" Also @ApplicationScoped is an @Inherited annotation. Therefore all child classes
automatically inherit this characteristic like with the @Bean annotation.

2.3.3. Bean Creation

It is not only possible to influence the number of instances to be created (see Section 2.3.2), but also
to create beans eagerly, execute methods after creation (like constructors) or to delegate the bean
creation completely. These topics are described in the next sections.

Eager Beans

By default beans are created on each request. An exception are the beans marked to be application
scoped (as shown in Section 2.3.2). Those beans are only created on first request (lazy). This means
if a bean is never requested while the application is running, there will never be an instance of this
class.

But sometimes it is necessary to create beans already at the application startup (eager). This can be
done by marking the bean as org.eclipse.scout.rt.platform.@CreateImmediately . All classes holding
this annotation must also be marked as @ApplicationScoped! These beans will then be created as
part of the application startup.

Constructors

Beans must have empty constructors so that the bean manager can create instances. But
furthermore it is possible to mark methods with the javax.annotation.@PostConstruct annotation.
Those methods must have no parameters and will be called after instances have been created.

"
When querying the bean manager for an application scoped bean, it will always
return the same instance. However, the constructor of an application scoped bean
may run more than once, whereas a method annotated with @PostConstruct in an
application scoped been is guaranteed to run exactly once.

2.3.4. Bean Retrieval

To retrieve a bean the class org.eclipse.scout.rt.platform.BEANS should be used. This class
provides (amongst others) the following methods:

7

Listing 6. How to get beans.

BeanSingletonClass bean = BEANS. get(BeanSingletonClass. class) ;
BeanClass beanOrNull = BEANS. opt(BeanClass. class) ;

¥ The get() method throws an exception if there is not a single bean result. So if no bean can be
found or if multiple equivalent bean candidates are available this method fails!

¥ The opt() method requires a single or no bean result. It fails if multiple equivalent bean
candidates are available and returns null if no one can be found.

¥ The all() method returns all beans in the correct order. The list may also contain no beans at
all.

There are now two more annotations that have an effect on which beans are returned if multiple
beans match a certain class. Consider the following example bean hierarchy:

Figure 1. A sample bean hierarchy.

In this situation 4 bean candidates are available: MyServiceImpl, MyServiceMod, MySpecialVersion
and AnotherVersion. But which one is returned by BEANS.get(IMyService.class) ? Or by
BEANS.get(MySpecialVersion.class) ? This can be influenced with the
org.eclipse.scout.rt.platform.@Order and org.eclipse.scout.rt.platform.@Replace annotations.
The next sections describe the idea behind these annotations and gives some examples.

@Order

This annotation works exactly the same as in the Scout user interface where it brings classes into
an order. It allows to assign a double value to a class. All beans of a certain type are sorted
according to this value in ascending order. This means a low order value is equivalent with a low
position in a list (come first).

Please note that the @Order annotation is not inherited so that each bean must declare its own value
where it fits in.

8

" The @Order annotation value may be inherited in case it replaces. See the next
section for details.

If a bean does not declare an order value, the default of 5000 is used. Scout itself uses orders from
4001 to 5999. So for user applications the value 4000 and below can be used to declare more
important beans. For testing bean mocks the value -10'000 can be used which then usually comes
before each normal Scout or application bean.

@Replace

The @Replace annotation can be set to beans having another bean as super class. This means that
the original bean (the super class) is no longer available in the Scout bean manager and only the
new child class is returned.

If the replacing bean (the child class) has no own @Order annotation defined but the replaced bean
(the super class) has an @Order value, this order is inherited to the child. This is the only special case
in which the @Order annotation value is inherited!

2.3.5. Examples

The next examples use the bean situation as shown in figure Figure 1 . In this situation the bean
manager actually contains 3 beans:

1. AnotherVersion with @Order of 4000. This bean has no own order and would therefore get the
default order of 5000. But because it is replacing another bean it inherits its order.

2. MyServiceMod with @Order of 4500. This bean declares its own order.

3. MyServiceImpl with @Order of 5000. This bean gets the default order of 5000 because it does not
declare an order.

The bean MySpecialVersion is not part of the bean manager because it has been replaced by
AnotherVersion .

¥ BEANS.get(IMyService.class) : Returns AnotherVersion instance. The result cannot be an exact
match because the requested type is an interface. Therefore of all candidates there is one single
candidate with lowest order (comes first).

¥ BEANS.get(MyServiceImpl.class) : Returns MyServiceImpl because there is an exact match
available.

¥ BEANS.get(MySpecialVersion.class) : Returns AnotherVersion . The result cannot be an exact match

9

because there is no exact bean with this class in the bean manager (MySpecialVersion has been
replaced). Therefore only AnotherVersion remains as candidate in the hierarchy below
MySpecialVersion.

¥ BEANS.get(MyServiceMod.class): Returns MyServiceMod because there is no other candidate.

¥ BEANS.all(IMyService.class) : Returns a list with all beans sorted by @Order. This results in:
AnotherVersion , MyServiceMod, MyServiceImpl.

"
If MyServiceMod would have no @Order annotation, there would be two bean
candidates available with the same default order of 5000: MyServiceImpl and
MyServiceMod. In this case a call to BEANS.get(IMyService.class) would fail because
there are several equivalent candidates. Equivalent candidates means they have
the same @Order value and the system cannot decide which one is the right one.

2.3.6. Bean Decoration

Bean decorations allow to wrap interfaces with a proxy to intercept each method call to the
interface of a bean and apply some custom logic. For this a IBeanDecorationFactory has to be
implemented. This is one single factory instance for the entire application. It decides which
decorators are created for a bean request. The factory is asked for decorators on every bean
retrieval. This allows to write bean decoration factories depending on dynamic conditions.

As bean decoration factories are beans themselves, it is sufficient to create an implementation of
org.eclipse.scout.rt.platform.IBeanDecorationFactory and to ensure this implementation is used
(see Section 2.3.4). This factory receives the bean to be decorated and the originally requested bean
class to decide which decorators it should create. In case no decoration is required the factory may
return null . Then the original bean is used without decorations.

" Decorations are only supported if the class obtained by the bean manager (e.g. by
using BEANS.get()) is an interface!

"
It is best practice to mark all annotations that are interpreted in the bean
decoration factory with the annotation
org.eclipse.scout.rt.platform.@BeanInvocationHint . However this annotation has
no effect at runtime and is only for documentation reasons.

The sample in listing Listing 7 wraps each call to the server with a profiler decorator that measures
how long a server call takes.

10

Listing 7. Bean decoration example.

@Replace
public class ProfilerDecorationFactory extends SimpleBeanDecorationFactory {
Ê @Override
Ê public <T> IBeanDecorator<T> decorate(IBean<T> bean, Class<? extends T> queryType) {
Ê return new BackendCallProfilerDecorator <>(super. decorate(bean, queryType)) ;
Ê }
}

public class BackendCallProfilerDecorator <T> implements IBeanDecorator<T> {

Ê private final IBeanDecorator<T> m_inner;

Ê public BackendCallProfilerDecorator (IBeanDecorator<T> inner) {
Ê m_inner = inner ;
Ê }

Ê @Override
Ê public Object invoke(IBeanInvocationContext <T> context) {
Ê final String className;
Ê if (context . getTargetObject () == null) {
Ê className = context . getTargetMethod() . getDeclaringClass () . getSimpleName() ;
Ê }
Ê else {
Ê className = context . getTargetObject () . getClass() . getSimpleName() ;
Ê }

Ê String timerName = className + ' . ' + context . getTargetMethod() . getName() ;
Ê TuningUtility . startTimer () ;
Ê try {
Ê if (m_inner != null) {
Ê // delegate to the next decorator in the chain
Ê return m_inner. invoke(context) ;
Ê }
Ê // forward to real bean
Ê return context . proceed() ;
Ê }
Ê finally {
Ê TuningUtility . stopTimer(timerName) ;
Ê }
Ê }
}

2.3.7. Destroy Beans

Application scoped beans can declare methods annotated with javax.annotation.@PreDestroy . These
methods will be called when the Scout platform is stopping. The methods may have any visibility
modifier but must not be static and must not declare any parameters. If such a pre-destroy method
throws an exception, the platform will continue to call all other pre-destroy methods (even methods

11

on the same bean).

Please note that pre-destroy methods are only called for application-scoped beans that already have
created their instance.

Pre-destroy methods inherited from super classes are always called after the ones from the class
itself. Methods that are overridden are only called on the leaf class. Private methods are always
called (because they cannot be overridden). The order in which multiple methods in the same
declaring class are called is undefined.

2.4. Configuration Management
Applications usually require some kind of configuration mechanism to use the same binaries in a
different environment or situation. Scout applications provide a configuration mechanism using
properties files [2: https://en.wikipedia.org/wiki/.properties].

For each property a class cares about default values and value validation. These classes share the
org.eclipse.scout.rt.platform.config.IConfigProperty interface and are normal application scoped
beans providing access to a specific configuration value as shown in listing Listing 8 . If the property
class is an inner class it has to be defined as a static class with the static modifier.

Listing 8. A configuration property of type Long.

import org.eclipse.scout.rt.platform.config.AbstractLongConfigProperty ;

/**
Ê* Property of data type {@link Long} with key 'my.custom.timeout' and default value
'3600L'.
Ê*/
public class MyCustomTimeoutProperty extends AbstractLongConfigProperty {

Ê @Override
Ê public String getKey() {
Ê return " my.custom.timeout" ; !
Ê }

Ê @Override
Ê protected Long getDefaultValue () {
Ê return 3600L; "
Ê }
}

! key

" default value

To read the configured value you can use the CONFIG class as demonstrated in Listing 9 .

12

https://en.wikipedia.org/wiki/.properties

Listing 9. Read the configured value in your code.

Long value = CONFIG. getPropertyValue (MyCustomTimeoutProperty. class) ;

The given property key is searched in the following environments:

1. In the system properties (java.lang.System.getProperty(String)).

2. In the properties file. The properties file can be

a. a file on the local filesystem where the system property with key config.properties holds an
absolute URL to the file or

b. a file on the classpath with path /config.properties (recommended).

3. In the environment variables of the system (java.lang.System.getenv(String)).

Supported formats are simple key-value pairs, list values and map values. For more details about
the format please refer to the JavaDoc of the
org.eclipse.scout.rt.platform.config.PropertiesHelper class.

A properties file may import other config files from the classpath or any other absolute URL. This is
done using the special key import . It can be a single value or a list:

¥ import[0]=classpath:myConfigs/other.properties

¥ import[1]=file:/C:/path/to/my/settings.properties

¥ import[2]=file:${catalina.base}/conf/db_connection.properties

2.4.1. Additional examples

Because the property classes are managed by the bean manager, you can use all the mechanisms to
change the behavior (@Replace in particular).

Listing 10 demonstrates how you can use the replace annotation to change the existing
ApplicationNameProperty class. The value is no longer fetched via the config mechanism, because the
getValue(String) method is overriden. In this case a fixed value is returned.

Listing 10. Property class providing a constant value.

import org.eclipse.scout.rt.platform.IgnoreBean ;
import org.eclipse.scout.rt.platform.Replace ;
import
org.eclipse.scout.rt.platform.config.PlatformConfigProperties.ApplicationNameProperty ;

@Replace
public class ApplicationNameConstant extends ApplicationNameProperty {
Ê @Override
Ê protected String readFromSource(String namespace) {
Ê return " Contacts Application " ;
Ê }
}

13

The next example presented in Listing 11 uses the same idea. In this case, the getKey() method is
overriden to read the value from an other key as demonstrated is the Listing 12 .

Listing 11. Property class reading the value from an other key.

import org.eclipse.scout.rt.platform.IgnoreBean ;
import org.eclipse.scout.rt.platform.Replace ;
import
org.eclipse.scout.rt.platform.config.PlatformConfigProperties.ApplicationNameProperty ;

@Replace
public class ApplicationNamePropertyRedirection extends ApplicationNameProperty {

Ê @Override
Ê public String getKey() {
Ê return " myproject.application.name " ;
Ê }
}

Listing 12. Read the configured value in your code.

Redirected Application Config
myproject.application.name=My Project Application

2.5. Testing
TODO [7.0] mvi

14

Chapter 3. Client Model

3.1. Desktop

3.1.1. Desktop Bench Layout

The Desktop Layout can be configured using the IDesktop.setBenchLayoutData method. This
property is observed and might be changed during the applications lifecycle. The desktop consists
out of 9 view stacks (see Figure 2). Each form can be assigned to a single view stack using the
property DisplayViewId (IForm.getConfiguredDisplayViewId). If multiple forms are assigned to the
same view stack the views will be displayed as tabs where the top form is visible and the
corresponding tab selected.

Tabs are only visible if the form does have a title, subtitle or an image.

Figure 2. Desktop Bench overview

The east, center and west columns are separated with splitters which can be moved according to
the layout data properties. Each column is split into a north, center and south part. Within a
column the north, center and south parts can not differ in their width.

The modifications (splitter movements) are cached when a cache key (
BenchLayoutData.withCacheKey) is set. In case the cache key is null the layout starts always with the
initial values.

An example of a bench layout data configuration with a fixed north (N) view stack and an south (S)
view stack with an minimal size. See

15

org.eclipse.scout.rt.client.ui.desktop.bench.layout.FlexboxLayoutData API for the documentation
of the properties.

Ê desktop. setBenchLayoutData(!
Ê new BenchLayoutData()
Ê . withCacheKey(" a-cache-key") "
Ê . withCenter (#
Ê new BenchColumnData()
Ê . withNorth (new FlexboxLayoutData() . withGrow(0) . withShrink (0)
. withInitial (280) . withRelative (false)) $
Ê . withCenter (new FlexboxLayoutData()) %
Ê . withSouth(new FlexboxLayoutData() . withShrink (0) . withInitial (- 1))
)) ; &
Ê }
}

! set the BenchLayoutData to the desktop.

" set a cache key to store the layout modifications (dragging splitters) to the session store. Aware
the settings are stored to the browsers session store they are not transfered over different
browsers nor systems.

configure the center column (N, C, S).

$ The north part is fixed in size so the splitter between north (N) and center © view stack is
disabled. The size is fixed to 280 pixel.

% Use default for the center © view stack.

& The south part is using the UI height as initial size and is growable but not shrinkable.

3.2. Outlines

3.3. Pages

3.4. Forms

3.5. Form Fields

3.6. Actions

3.7. Multiple Dimensions Support
Several components support multiple dimensions for visibility or enabled flags. This means the
component is only visible or enabled if all dimensions are set to true. This gives developers the
flexibility to e.g. use a dimension for granting and one for the business logic.

A total of 8 dimensions are available for a certain component type and attribute. This means you

16

e.g. have a total of 8 dimensions for Form Field visibility in your application. And 8 dimensions for
enabled-states of Actions. So the dimensions are not consumed by component instance but by
component type. This means you have to be careful in defining new dimensions as all components
of the same type share these dimensions.

#
Some of these dimensions are already used internally. Refer to the implementation
and JavaDoc of the component for details about how many dimensions are
available for custom use.

menu. setEnabled(false) ; !
menu. setEnabledGranted(false) ; "
menu. setVisible (false , IDimensions. VISIBLE_CUSTOM) ; #
formField . setVisible (true , false , true , " MyCustomDimension") ; $
formField2 . setVisible (true , true , true) ; %

formField3 . isEnabled(IDimensions. ENABLED_CUSTOM) ; &
formField3 . isEnabled(IDimensions. ENABLED) ; '
formField3 . isEnabled() ; (
formField3 . isEnabledIncludingParents () ;)

! Disables the menu using the internal default dimension

" Disables the menu using the internal granted dimension

Hides the menu with a third custom dimension

$ Form Fields also support the propagation of new values to children and parents. This sets the
custom dimension of this field and all of its children to true.

% This sets the internal default enabled dimension of this field and all of its parents and children
to true.

& Checks if the custom dimension is set to true

' Checks if the internal default dimension is set to true

(Checks if all dimensions of formField2 are true

) Checks if all dimensions of formField2 and all dimensions of all parent Form Fields are enabled.

#

In the example above the instance 'formField3' uses 4 dimensions for the enabled
attribute: ENABLED_CUSTOM because it is explicitly used and the 3 dimensions
that are used internally (ENABLED, ENABLED_GRANTED, ENABLED_SLAVE). Even
though the instance 'formField2' makes no use of the custom dimension it is
consumed for this instance as well because the dimensions do not exist by instance
but by attribute (as explained above).

17

Chapter 4. Texts
The TEXTS class is a convenience class to access the default Text Provider Service used for the
localization of the texts in the user interface.

Listing 13. Text lookup

TEXTS. get(" persons") ;

Its also possible to use some parameters:

Listing 14. Text lookup

String name = " Bob" ;
int age = 13;

TEXTS. get(" NameWithAge" , name, age) ;

In this case, some placeholders for the parameters are needed in the translated text:

Listing 15. Text lookup

ÊNameWithAge={ 0} is { 1} years old ;

4.1. Text properties files
Scout uses the java.util.ResourceBundle mechanism for native language support. So whatever
language files you have in your <project-prefix>.shared/resources/texts/*.properties are taken as
translation base.

Example setup:

¥ <project-prefix>.shared/resources/texts/Texts.properties

¥ <project-prefix>.shared/resources/texts/Texts_fr.properties

If your application starts with the -vmargs -Duser.language=fr or eclipse.exe -nl=fr the
translations in Texts_fr.properties are considered. In case of any other user language the
translations in Texts.properties are considered.

It is possible to edit these files in the Eclipse Scout SDK with the NLS Editor.

4.2. Text Provider Service
Text Provider Services are services responsible to provide localization for texts in the user
interface. A typical application contains a such service contributed by the Shared Project.

¥ implements: ITextProviderService

18

¥ extends: AbstractDynamicNlsTextProviderService (default, translations are stored in properties
files)

Using Text Provider Services developers can decide to store the translations in a custom container
like a database or XML files. Furthermore using TextProviderServices it is very easy to overwrite
any translated text in the application (also texts used in Scout itself) using the service ranking.

The mechanism is aligned with the icon retrieval which is also managed using Icon Provider
Services.

4.2.1. Localization using .properties files

By default the internationalization mechanism relies on .properties files using a reference
implementation of the TextProviderServices:

Service extending the AbstractDynamicNlsTextProviderService class.

A Text Provider Service working with the default implementation need to define where the
properties files are located. This is realized by overriding the getter getDynamicNlsBaseName().
Here an example:

Listing 16. Text lookup

Ê @Override
Ê protected String getDynamicNlsBaseName() {
Ê return " resources.texts.Texts " ;
Ê }

If configured like this, it means that the .properties files will be located in the same plug-in at the
location:

¥ /resources/texts/Texts.properties (default)

¥ /resources/texts/Texts_fr.properties (french)

¥ /resources/texts/Texts_de.properties (german)

¥ É (additional languages)

If you decide to store your translated texts in .properties files, you migth want to use the NLS Editor
to edit them.

You need to respect the format defined by the Java Properties class. In particular the encoding of a
.properties file is ISO-8859-1 (also known as Latin-1). All non-Latin-1 characters must be encoded.
Examples:

' à' => "\u00E0"
' ç' => "\u00E7"
' §' => "\u00DF"

The encoding is the "Unicode escape characters": \uHHHH where HHHH is a hexadecimal id of the

19

https://wiki.eclipse.org/index.php?title=Scout/Concepts/Icon_Provider_Service&action=edit&redlink=1
https://wiki.eclipse.org/index.php?title=Scout/Concepts/Icon_Provider_Service&action=edit&redlink=1
https://wiki.eclipse.org/Scout/SDK/NLS_Editor

character in the Unicode character table . Read more on the .properties File on wikipedia .

20

http://en.wikipedia.org/wiki/List_of_Unicode_characters
http://en.wikipedia.org/wiki/.properties

Chapter 5. Icons
Class that contains as static members the icons that are available.

Everywhere icons are needed, a String IconId is requested. (for example property IconId of a Code).

Static members mapping from the requested IconId String values to the name of the icon image
files.

public static final String UserHome =" home_red" ;

@Override
protected String getConfiguredIconId () {
Ê return Icons. UserHome;
Ê}

21

Chapter 6. Lookup Call
Lookup calls are mainly used by SmartFields and SmartColumns to look up single or multiple
LookupRows.

Class: LookupCall

6.1. Description
The Lookup call mechanism is used to lookup up a set of key-text pairs. Whereas the key can be of
any Java type the text must be of the type String. Each entry in this set is called LookupRow. In
addition to the key and the text a LookupRow can also define and icon, font, colors and a
tooltiptext.

This schema explains the role of a LookupCall in a SmartField:

6.2. Input
Lookup calls provide different method to compute the set of LookupRows :

¥ getDataByKey(): Retrieves a single lookup row for a specific key value. Used by SmartFields
and SmatColumns to get the display text for a given key value.

¥ getDataByText(): Retrieve multiple lookup rows which match a certain String. Used by
SmartFields when the user starts to enter some text in the field.

¥ getDataByAll(): Retrieves all available lookup rows. Used by SmartFields when the user clicks
on the browse icon.

¥ getDataByRec(): This can only be used for hierarchical lookup calls. It retrieves all available
sub-tree lookup rows for a given parent.

6.3. Members
The Lookup call contains attributes (accessible with getter and setter) that can be used to compute
the list of lookups rows. Out of the box you have:

¥ key: contains the key value when the lookup is queried by key.

22

¥ text: contains the text input in case of a text lookup (typically this is the text entered by the user
smart field).

¥ all: contains the browse hint in case of a lookup by all (typically when a user click on the button
to see all proposal in a smart field).

¥ rec: contains the key of the parent entry, in when the children of a node are loaded.

¥ master: contains the value of the master field (if a master field is associated to the field using
the lookup call).

It is possible to add you own additional attributes, for example validityFrom, validityTo as date
parameter. Just add them as field with getter and setter:

public class LanguageLookupCall extends LookupCall<String > implements ILookupCall
<String > {
Ê // other stuff like serialVersionUID, Lookup Service definition...

Ê private static final long serialVersionUID = 1L;

Ê private Date m_validityFrom ;
Ê private Date m_validityTo ;

Ê @Override
Ê protected Class<? extends ILookupService<String >> getConfiguredService () {
Ê return ILanguageLookupService. class ;
Ê }

Ê public Date getValidityFrom () {
Ê return m_validityFrom ;
Ê }

Ê public void setValidityFrom (Date validityFrom) {
Ê this . m_validityFrom = validityFrom ;
Ê }

Ê public Date getValidityTo () {
Ê return m_validityTo ;
Ê }

Ê public void setValidityTo (Date validityTo) {
Ê this . m_validityTo = validityTo ;
Ê }
}

In this case, you might want to set your properties bevor the lookupcall query is sent. This can be
done with the PrepareLookup event of the SmartField or the ListBox:

23

Ê @Override
Ê protected void execPrepareLookup(ILookupCall <String > call) {
Ê LanguageLookupCall c = (LanguageLookupCall) call ;
Ê c. setValidityFrom (DateUtility . parse(" 2012-02-26" , " yyyy-mm-dd")) ;
Ê c. setValidityTo (DateUtility . parse(" 2013-02-27" , " yyyy-mm-dd")) ;
Ê }

If you follow this pattern, you will consume the values in the server, by casting the call:

Ê @Override
Ê public List <? extends ILookupRow<String >> getDataByAll (ILookupCall <String > call) {
Ê LanguageLookupCall c = (LanguageLookupCall) call ;
Ê Date validityFrom = c. getValidityFrom () ;
Ê Date validityTo = c. getValidityTo () ;

Ê List <? extends ILookupRow<String >> result = new ArrayList <ILookupRow<String >>() ;
Ê //compute result: corresponding lookup rows (depending on validityFrom and
validityTo).
Ê return result ;
Ê }

6.4. Type of lookup calls

6.4.1. With a Lookup Service

Delegation to the Lookup Service on server side.

They are not necessarily restricted to a fix number of records. Instead they should be favoured if
the set of records is rather large.

6.4.2. Directy

Principe of the Local Lookup Calls

An example of this approach is when a SmartField or a SmartColumn is configured to be use with a
CodeType. A CodeLookupCall is instantiated for the CodeType. It creates the LookupRows
corresponding to the codes in the CodeType.

6.4.3. Overview

24

6.4.4. Properties

Defined with getConfiguredXxxxxx() methods.

¥ Service: Defines which service is used to retrieve lookup rows

¥ MasterRequired: Defines whether a master value must be set in order to query for multiple
lookup rows

6.4.5. Code examples

Using a LookupCall in a SmartField:

Ê @Override
Ê protected Class<? extends ILookupCall <String >> getConfiguredLookupCall () {
Ê return LanguageLookupCall. class ;
Ê }

Accessing a LookupRow directly:

It is possible to access a LookupRow direclty. In this example the input is a key (thisKey) and the
method getDataByKey() is used. Before accessing the text, we ensure that a LookupRow has been
retrived.

25

Ê //Execute the LookupCall (using DataByKey)
Ê LookupCall<String > call = new LanguageLookupCall() ;
Ê call . setKey(thisKey) ;
Ê List <? extends ILookupRow<String >> rows = call . getDataByKey() ;

Ê //Get the text (with a null check)
Ê String text = null ;
Ê if (rows != null && ! rows. isEmpty()) {
Ê text = rows. get (0) . getText () ;
Ê }

26

Chapter 7. Code Type
A CodeType is a structure to represent a tree key-code association. They are used in SmartField and
SmartColumn.

¥ implements: ICodeType<T>

¥ extends: AbstractCodeType<T>

7.1. Description
CodeTypes are used in SmartField to let the user choose between a finite list of values. The value
stored by the field corresponds to the key of the selected code.

A CodeType can be seen as a tree of Codes. Each code associates to the key (the Id) other properties:
among others a Text and an IconId.

In order to have the same resolving mechanism (getting the display text of a key), CodeTypes are
also used in SmartColumns . To choose multiple values in the list, the fields ListBox (flat CodeType)
and TreeBox (hierarchical CodeType) can be used.

7.1.1. Organisation of the codes

The codes are organized in a tree. Therefore a CodeType can have one or more child codes at the
root level, and each code can have other child codes. In a lot of cases a list of codes (meaning a tree
containing only leaves at the first level) is sufficient to cover most of the need.

Child codes are ordered in their parent code. This is realized with the order annotation .

7.1.2. Type of the key

The type of the key is defined by its generic parameter <T>. It is very common to use a type from the
java.lang.* package (like Integer or String), but any Java Object is suitable. It must:

¥ implement Serializable

¥ have correctly implemented equals() and hashCode() functions

27

https://wiki.eclipse.org/Scout/Concepts/SmartField
https://wiki.eclipse.org/Scout/Concepts/Code
https://wiki.eclipse.org/Scout/Concepts/SmartColumn
https://wiki.eclipse.org/Scout/Concepts/ListBox
https://wiki.eclipse.org/Scout/Concepts/TreeBox
https://wiki.eclipse.org/Scout/Concepts/Order_Annotation

¥ be present in the server and the client

There is no obligation to have the same type for the Id between the codes of a CodeType (meaning
the same generic type parameter for the codes inner-class). However it is a good practice to have
the same type between the codes of a CodeType, because the Id are used as value of SmartFields .
Therefore the generic parameter describing the type of value of a SmartField must be compatible
with the type of the codes contained in the CodeType.

7.2. Using a CodeType

7.2.1. SmartField or SmartColumn

CodeType in a SmartField (or SmartColumn).

public class YesOrNoSmartField extends AbstractSmartField <Boolean> {

Ê // other configuration of properties.

Ê @Override
Ê protected Class<? extends ICodeType<?, Boolean>> getConfiguredCodeType() {
Ê return YesOrNoCodeType. class ;
Ê }
}

If the SmartField (or SmartColumn) works with a CodeType, a specific LookupCall is instantiated to
get the LookupRows based on the Codes contained in a CodeType.

7.2.2. Accessing a code directly

Scout-runtime will handle the instantiation and the caching of CodeTypes.

This function returns the text corresponding to the key using a CodeType:

Ê public String getCodeText(boolean key) {
Ê ICode c = BEANS. get(YesOrNoCodeType. class) . getCode(key) ;
Ê if (c != null) {
Ê return c. getText () ;
Ê }
Ê return null ;
Ê }

7.3. Static CodeType

7.3.1. Java Code and structure

28

https://wiki.eclipse.org/Scout/Concepts/SmartField

The common way to define a CodeType is to extend AbstractCodeType. Each code is an inner-class
extending AbstractCode. Like usual the properties of Codes and CodeTypes can be set using the
getConfiguredXxxxxx() methods.

See the Java Code of a simple YesOrNoCodeType having just two codes:

¥ YesOrNoCodeType.YesCode

¥ YesOrNoCodeType.NoCode

7.3.2. With the SDK

The SDK provides some help to generate CodeTypes and Codes. Use File ! New ! Scout ! Scout
Code Type to generate a new code.

7.4. Dynamic CodeType
Code types are not necessarily hardcoded. It is possible to implement other mechanisms to load a
CodeType dynamically.

The description of the Codes can come from a database or from an XML files. If you want to do so,
you just need to implement the method corresponding to the event LoadCodes.

It is possible to use the static and the dynamic approach together. In this case, if there is a conflict (2
codes for the same id) the event OverwriteCode is triggered.

Note for advanced users:

Each CodeType is instantiated for

29

https://wiki.eclipse.org/Scout/Concepts/GetConfigured_Methods

¥ each language

¥ each partition

Note: A drawback is that the CodeType class is not aware of the language and the partition it is
instantiated for. Only the CodeTypeStore that manages the CodeType instances knows for which
language and which partition they have been instantiated.

30

Chapter 8. Working with exceptions
Exceptions can be logged via SLF4J Logger, or given to exception handler for centralized, consistent
exception handling, or translated into other exceptions. Scout provides some few exceptions/errors,
which are used by the framework.

8.1. Scout Throwables
All scout throwables are unchecked and typically implementing the IThrowableWithContextInfo
interface, which provides functionality for associating context information with the occurred error.

Most scout throwables are runtime exceptions, and typically inherit from PlatformException . See
Section 8.1.1 for more information.

Some scout throwables are instances of java.lang.Error by extending PlatformError . Those errors
usually provide functionality to interrupt Jobs, for example when a user is canceling a long running
operation.
Note: PlatformErrors should never be catched by business logic! See Section 8.1.2 for more
information.

8.1.1. Scout Runtime Exceptions

PlatformException

Base runtime exception of the Scout platform, which allows for message formatting anchors and
context information to be associated.

There is a single constructor which accepts the exceptionÕs message, and optionally a variable
number of arguments. Typically, a potential cause is given as its argument. The message allows
further the use of formatting anchors in the form of {} pairs. The respective formatting arguments
are provided via the constructorÕs varArg parameter. If the last argument is of the type Throwable
and not referenced as formatting anchor in the message, that Throwable is used as the exceptionÕs
cause. Internally, SLF4J MessageFormatter is used to provide substitution functionality. Hence, The
format is the very same as if using SLF4j Logger.

Further, PlatformException allows to associate context information, which are available in Log4j
diagnostic context map (MDC) upon logging the exception.

31

Listing 17. PlatformException examples

Exception cause = new Exception() ;

// Create a PlatformException with a message
new PlatformException (" Failed to persist data ") ;

// Create a PlatformException with a message and cause
new PlatformException (" Failed to persist data " , cause) ;

// Create a PlatformException with a message with formatting anchors
new PlatformException (" Failed to persist data [entity={}, id={}] " , " person" , 123) ;

// Create a PlatformException with a message containing formatting anchors and a cause
new PlatformException (" Failed to persist data [entity={}, id={}] " , " person" , 123,
cause) ;

// Create a PlatformException with context information associated
new PlatformException (" Failed to persist data " , cause)
Ê . withContextInfo (" entity " , " person")
Ê . withContextInfo (" id " , 123) ;

ProcessingException

Represents a PlatformException and is thrown in case of a processing failure, and which can be
associated with an exception error code and severity.

VetoException

Represents a ProcessingException with VETO character. If thrown server-side, exceptions of this
type are transported to the client and typically visualized in the form of a message box.

AssertionException

Represents a PlatformException and indicates an assertion error about the applicationÕs
assumptions about expected values.

TransactionRequiredException

Represents a PlatformException and is thrown if a ServerRunContext requires a transaction to be
available.

8.1.2. Scout Runtime Errors

Runtime Errors are used to indicate an error, that shouldnÕt be catched/treated by business logic
and therefore bubble up to the appropriate exception handler in the scout framework. Because
those errors are handled by the framework internals, they should never be catched on the server
(Services etc.) nor on the client side (Pages, Forms, etc.).

All Scout Runtime Errors extend PlatformError .

32

PlatformError

Like PlatformException , PlatformErrors implement IThrowableWithContextInfo for associating
context information with the occurred error. See PlatformException for usage and example code.

ThreadInterruptedError

Represents a PlatformError and indicates that a thread was interrupted while waiting for some
condition to become true, e.g. while waiting for a job to complete. Unlike
java.lang.InterruptedException , the threadÕs interrupted status is not cleared when catching this
exception.

FutureCancelledError

Represents a PlatformError and indicates that the result of a job cannot be retrieved, or the
IFutureÕs completion not be awaited because the job was cancelled.

TimedOutError

Represents a PlatformError and indicates that the maximal wait time elapsed while waiting for
some condition to become true, e.g. while waiting a job to complete.

8.2. Exception handling
An exception handler is the central point for exception handling. It provides a single method
'handle' which accepts a Throwable, and which never throws an exception. It is implemented as a
bean, meaning managed by the bean manager to allow easy replacement, e.g. to use a different
handler when running client or server side. By default, a ProcessingException is logged according
to its severity, a VetoException , ThreadInterruptedError or FutureCancelledError logged in DEBUG
level, and any other exception logged as an ERROR. If running client side, exceptions are
additionally visualized and showed to the user.

8.3. Exception translation
Exception translators are used to translate an exception into another exception.

Also, they unwrap the cause of wrapper exceptions, like UndeclaredThrowableException, or
InvocationTargetException , or ExecutionException . If the exception is of the type Error , it is normally
not translated, but re-thrown instead. That is because an Error indicates a serious problem due to
an abnormal condition.

8.3.1. DefaultExceptionTranslator

Use this translator to work with checked exceptions and runtime exceptions, but not with
Throwable.

If given an Exception , or a RuntimeException, or if being a subclass thereof, that exception is
returned as given. Otherwise, a PlatformException is returned which wraps the given Throwable.

33

8.3.2. DefaultRuntimeExceptionTranslator

Use this translator to work with runtime exceptions. When working with RunContext or IFuture ,
some methods optionally accept a translator. If not specified, this translator is used by default.

If given a RuntimeException, it is returned as given. For a checked exception, a PlatformException is
returned which wraps the given checked exception.

8.3.3. PlatformExceptionTranslator

Use this translator to work with PlatformExceptions .

If given a PlatformException , it is returned as given. For all other exceptions (checked or
unchecked), a PlatformException is returned which wraps the given exception.

Typically, this translator is used if you require to add some context information via
IThrowableWithContextInfo.withContextInfo(String, Object, Object) .

Listing 18. PlatformException examples

try {
Ê // do something
}
catch (Exception e) {
Ê throw BEANS. get(PlatformExceptionTranslator . class) . translate (e)
Ê . withContextInfo (" cid " , " 12345")
Ê . withContextInfo (" user" , Subject . getSubject (AccessController . getContext ()))
Ê . withContextInfo (" job " , IFuture . CURRENT. get()) ;
}

8.3.4. NullExceptionTranslator

Use this translator to work with Throwable as given.

Also, if given a wrapped exception like UndeclaredThrowableException, InvocationTargetException or
ExecutionException , that exception is returned as given without unwrapping its cause.

For instance, this translator can be used if working with the Job API, e.g. to distinguish between a
FutureCancelledError thrown by the jobÕs runnable, or because the job was effectively cancelled.

8.4. Exception Logging
Scout framework logs via SLF4J (Simple Logging Facade for Java). It serves as a simple facade or
abstraction for various logging frameworks (e.g. java.util.logging, logback, log4j) allowing the end
user to plug in the desired logging framework at deployment time.

SLF4J allows the use of formatting anchors in the form of {} pairs in the message which will be
replaced by the respective argument. If the last argument is of the type Throwable and not
referenced as formatting anchor in the message, that Throwable is used as the exception.

34

Listing 19. Logging examples

Exception e = new Exception() ;

org. slf4j . Logger logger = LoggerFactory. getLogger(getClass()) ;

// Log a message
logger . error (" Failed to persist data ") ;

// Log a message with exception
logger . error (" Failed to persist data " , e) ;

// Log a message with formatting anchors
logger . error (" Failed to persist data [entity={}, id={}] " , " person" , 123) ;

// Log a message and exception with a message containing formatting anchors
logger . error (" Failed to persist data [entity={}, id={}] " , " person" , 123, e) ;

35

Chapter 9. JobManager
Scout provides a job manager based on Java Executors framework to run tasks in parallel, and on
Quartz Trigger API to support for schedule plans and to compute firing times. A task (aka job) can
be scheduled to commence execution either immediately upon being scheduled, or delayed some
time in the future. A job can be single executing, or recurring based on some schedule plan. The job
manager itself is implemented as an application scoped bean, meaning that it is a singleton which
exists once in the web application.

9.1. Functionality
¥ immediate, delayed or timed execution

¥ single (one-shot) or repetitive execution (based on Quartz schedule plans)

¥ listen for job lifecycle events

¥ wait for job completion

¥ job cancellation

¥ limitation of the maximal concurrently level among jobs

¥ RunContext based execution

¥ configurable thread pool size (core pool size, max pool size)

¥ association of job execution hints to select jobs (e.g. to cancel or await jobÕs completion)

¥ named jobs and threads to ease debugging

9.2. Job
A job is defined as some work to be executed asynchronously and is associated with a JobInput to
describe how to run that work. The work is given to the job manager in the form of a Runnable or
Callable . The only difference is, that a Runnable represents a 'fire-and-forget' action, meaning that
the submitter of the job does not expect the job to return a result. On the other hand, a Callable
returns the computationÕs result, which the submitter can await for. Of course, a runnableÕs
completion can also be waited for.

Listing 20. Work that does not return a result

public class Work implements IRunnable {

Ê @Override
Ê public void run() throws Exception {
Ê // do some work
Ê }
}

36

Listing 21. Work that returns a computation result

public class WorkWithResult implements Callable <String > {

Ê @Override
Ê public String call () throws Exception {
Ê // do some work
Ê return " result " ;
Ê }
}

Upon scheduling a job, the job manager returns a IFuture to interact with the job, e.g. to cancel its
execution, or to await its completion. The job itself can also access its IFuture , namely via
IFuture.CURRENT() ThreadLocal.

Listing 22. Accessing the Future from within the job

public class Job implements IRunnable {

Ê @Override
Ê public void run() throws Exception {
Ê IFuture <?> myFuture = IFuture . CURRENT. get() ;
Ê }
}

9.3. Scheduling a Job
The job manager provides two scheduling methods, which only differ in the work they accept for
execution (callable or runnable).

IFuture <Void> schedule(IRunnable runnable, JobInput input) ; !

<RESULT> IFuture <RESULT> schedule(Callable <RESULT> callable , JobInput input) ; "

! Use to schedule a runnable which does not return a result to the submitter

" Use to schedule a callable which does return a result to the submitter

The second and mandatory argument to be provided is the JobInput , which tells the job manager
how to run the job. Learn more about JobInput .

The following snippet illustrates how a job is actually scheduled.

37

Listing 23. Schedule a job

IJobManager jobManager = BEANS. get(IJobManager. class) ; !

jobManager. schedule(new IRunnable() { "

Ê @Override
Ê public void run() throws Exception {
Ê // do something
Ê }
} , BEANS. get(JobInput . class)) ; #

! Obtain the job manager via bean manager (application scoped bean)

" Provide the work to be executed (either runnable or callable)

Provide the JobInput to instrument job execution

This looks a little bit clumsy, which is why Scout provides you with the Jobs class to simplify dealing
with the job manager, and to support you in the creation of job related artifacts like JobInput , filter
builders and more. Most importantly, it allows to schedule jobs in a shorter and more readable
form.

Listing 24. Schedule a job via Jobs helper class

Jobs. schedule(new IRunnable() {

Ê @Override
Ê public void run() throws Exception {
Ê // do something
Ê }
} , Jobs. newInput()) ;

9.4. JobInput
The job input tells the job manager how to run the job. It further names the job to ease debugging,
declares in which context to run the job, and how to deal with unhandled exceptions. The job input
itself is a bean, useful if adding some additional features to the job manager. The API of JobInput
supports for method chaining for reduced and more solid code.

38

Listing 25. Schedule a job and control execution via JobInput

Jobs. schedule(new IRunnable() {

Ê @Override
Ê public void run() throws Exception {
Ê // do something
Ê }
} , Jobs. newInput()
Ê . withName(" job name") !
Ê . withRunContext(ClientRunContexts . copyCurrent()) "
Ê . withExecutionTrigger (Jobs. newExecutionTrigger()
Ê . withStartIn (10, TimeUnit. SECONDS) #
Ê . withSchedule(FixedDelayScheduleBuilder . repeatForever (5, TimeUnit. SECONDS)))
$
Ê . withExceptionHandling (new ExceptionHandler() { %

Ê @Override
Ê public void handle(Throwable t) {
Ê System. err . println (t) ;
Ê }
Ê } , true)) ;

This snippet instructs the job manager to run the job as following:

! Give the job a name.

" Run the job in the current calling context, meaning in the very same context as the submitter is
running when giving this job to the job manager. By copying the current context, the job will
also be cancelled upon cancellation of the current RunContext.

Commence execution in 10 seconds (delayed execution).

$ Execute the job repeatedly, with a delay of 5 seconds between the termination of one and the
commencement of the next execution. Also, repeat the job infinitely, until being cancelled.

% Print any uncaught exception to the error console, and do not propagate the exception to the
submitter, nor cancel the job upon an uncaught exception.

The following paragraphs describe the functionality of JobInput in more detail.

9.4.1. JobInput.withName

To optionally specify the name of the job, which is used to name the worker thread (only in
development environment) and for logging purpose. Optionally, formatting anchors in the form of
{} pairs can be used in the name, which will be replaced by the respective argument.

Jobs. newInput()
Ê . withName(" Sending emails [from={}, to={}] " , " frank " , " john@eclipse.org,
jack@eclipse.org ") ;

39

9.4.2. JobInput.withRunContext

To optionally specify the RunContext to be installed during job execution. The RunMonitor associated
with the RunContext will be used as the jobÕs monitor, meaning that cancellation requests to the job
future or the contextÕs monitor are equivalent. If no context is given, the job manager ensures a
monitor to be installed, so that executing code can always query its cancellation status via
RunMonitor.CURRENT.get().isCancelled() .

9.4.3. JobInput.withExecutionTrigger

To optionally set the trigger to define the schedule upon which the job will commence execution. If
not set, the job will commence execution immediately after being scheduled, and will execute
exactly once.

The trigger mechanism is provided by Quartz Scheduler, meaning that you can profit from the
powerful Quartz schedule capabilities.

For more information, see http://www.quartz-scheduler.org .

Use the static factory method Jobs.newExecutionTrigger() to get an instance:

// Schedules a delayed single executing job
Jobs. newInput()
Ê . withName(" job ")
Ê . withExecutionTrigger (Jobs. newExecutionTrigger()
Ê . withStartIn (10, TimeUnit. SECONDS)) ;

// Schedules a repeatedly running job at a fixed rate (every hour), which ends in 24
hours
Jobs. newInput()
Ê . withName(" job ")
Ê . withExecutionTrigger (Jobs. newExecutionTrigger()
Ê . withEndIn(1, TimeUnit. DAYS)
Ê . withSchedule(SimpleScheduleBuilder . repeatHourlyForever ())) ;

// Schedules a job which runs at 10:15am every Monday, Tuesday, Wednesday, Thursday
and Friday
Jobs. newInput()
Ê . withName(" job ")
Ê . withExecutionTrigger (Jobs. newExecutionTrigger()
Ê . withSchedule(CronScheduleBuilder. cronSchedule(" 0 15 10 ? * MON-FRI"))) ;

Learn more about ExecutionTrigger .

9.4.4. JobInput.withExecutionSemaphore

To optionally control the maximal concurrently level among jobs assigned to the same semaphore.

With a semaphore in place, this job only commences execution, once a permit is free or gets

40

http://www.quartz-scheduler.org

available. If free, the job commences execution immediately at the next reasonable opportunity,
unless no worker thread is available.

A semaphore initialized to one allows to run jobs in a mutually exclusive manner, and a semaphore
initialized to zero to run no job at all. The number of total permits available can be changed at any
time, which allows to adapt the maximal concurrency level to some dynamic criteria like time of
day or system load. However, a semaphore can be sealed, meaning that the number of permits
cannot be changed anymore, and any attempts will be rejected.

A new semaphore instance can be obtained via Jobs class.

IExecutionSemaphore semaphore = Jobs. newExecutionSemaphore(5) ; !

for (int i = 0; i < 100; i ++) {
Ê Jobs. schedule(new IRunnable() { "

Ê @Override
Ê public void run() throws Exception {
Ê // doing something
Ê }
Ê } , Jobs. newInput()
Ê . withName(" job-{} " , i)
Ê . withExecutionSemaphore(semaphore)) ; #
}

! Create a new ExecutionSemaphore via Jobs class. The semaphore is initialized with 5 permits,
meaning that at any given time, there are no more than 5 jobs running concurrently.

" Schedule 100 jobs in a row.

Set the semaphore to limit the maximal concurrency level to 5 jobs.

Learn more about ExecutionSemaphore .

9.4.5. JobInput.withExecutionHint

To associate the job with an execution hint. An execution hint is simply a marker to mark a job, and
can be evaluated by filters to select jobs, e.g. to listen to job lifecycle events of some particular jobs,
or to wait for some particular jobs to complete, or to cancel some particular jobs. A job may have
multiple hints associated. Further, hints can be registered directly on the future via
IFuture.addExecutionHint(hint) , or removed via IFuture.removeExecutionHint(hint) .

9.4.6. JobInput.withExceptionHandling

To control how to deal with uncaught exceptions. By default, an uncaught exception is handled by
ExceptionHandler bean and then propagated to the submitter, unless the submitter is not waiting for
the job to complete via IFuture.awaitDoneAndGet() .

This method expects two arguments: an optional exception handler, and a boolean flag indicating
whether to swallow exceptions. 'Swallow' is independent of the specified exception handler, and

41

indicates whether an exception should be propagated to the submitter, or swallowed otherwise.

If running a repetitive job with swallowing set to true , the job will continue its repetitive execution
upon an uncaught exception. If set to false, the execution would exit.

9.4.7. JobInput.withThreadName

To set the thread name of the worker thread that will execute the job.

9.4.8. JobInput.withExpirationTime

To set the maximal expiration time upon which the job must commence execution. If elapsed, the
job is cancelled and does not commence execution. By default, a job never expires.

For a job that executes once, the expiration is evaluated just before it commences execution. For a
job with a repeating schedule, it is evaluated before every single execution.

In contrast, the triggerÕs end time specifies the time at which the trigger will no longer fire.
However, if fired, the job may not be executed immediately at this time, which depends on whether
having to compete for an execution permit first. So the end time may already have elapsed once
commencing execution. In contrast, the expiration time is evaluated just before starting execution.

9.5. IFuture
A future represents the result of an asynchronous computation, and is returned by the job manager
upon scheduling a job. The future provides functionality to await for the job to complete, or to get
its computation result or exception, or to cancel its execution, and more.

Learn more about job cancellation in Section 9.9.
Learn more about listening for job lifecycle events in Section 9.10.
Learn more about awaiting the jobÕs completion in Section 9.11.

9.6. Job states
Upon scheduling a job, the job transitions different states. The current state of a job can be queried
from its associated IFuture .

state description

SCHEDULED Indicates that a job was given to the job manager for execution.

REJECTED Indicates that a job was rejected for execution. This might happen if the
job manager has been shutdown, or if no more worker threads are
available.

PENDING Indicates that a jobÕs execution is pending, either because scheduled with
a delay, or because of being a repetitive job while waiting for the
commencement of the next execution.

RUNNING Indicates that a job is running.

42

state description

DONE Indicates that a job finished execution, either normally or because it was
cancelled. Use IFuture.isCancelled() to check for cancellation.

WAITING_FOR_PERMIT Indicates that a semaphore aware job is competing for a permit to
become available.

WAITING_FOR_BLOCKI
NG_CONDITION

Indicates that a job is blocked by a blocking condition, and is waiting for
it to fall.

"
The state 'done' does not necessarily imply that the job already finished execution.
That is because a job also enters 'done' state upon cancellation, but may still
continue execution.

9.7. Future filter
A future filter is a filter which can be passed to various methods of the job manager to select some
futures. The filter must implement IFilter interface, and has a single method to accept futures of
interest.

Listing 26. Example of a future filter

public class FutureFilter implements IFilter <IFuture <?>> {

Ê @Override
Ê public boolean accept(IFuture <?> future) {
Ê // Accept or reject the future
Ê return false ;
Ê }
}

Scout provides you with FutureFilterBuilder class to ease building filters which match multiple
criteria joined by logical 'AND' operation.

Listing 27. Usage of FutureFilterBuilder

IFilter <IFuture <?>> filter = Jobs. newFutureFilterBuilder () !
Ê . andMatchExecutionHint(" computation") "
Ê . andMatchNotState(JobState. PENDING) #
Ê . andAreSingleExecuting() $
Ê . andMatchNotFuture(IFuture . CURRENT. get()) %
Ê . andMatchRunContext(ClientRunContext . class) &
Ê . andMatch(new SessionFutureFilter (ISession . CURRENT. get())) '
Ê . toFilter () ; (

! Returns an instance of the future filter builder

" Specifies to match only futures associated with execution hint 'computation'

Specifies to match only jobs not in state pending

43

$ Specifies to match only single executing jobs, meaning no recurring jobs

% Specifies to exclude the current future (if any)

& Specifies to match only jobs running on behalf of a ClientRunContext

' Specifies to match only jobs of the current session

(Builds the filters to get a Filter instance

Fore more information, refer to the JavaDoc of FutureFilterBuilder .

9.8. Event filter
A job event filter is a filter which can be given to job manager to subscribe for job lifecycle events.
The filter must implement IFilter interface, and has a single method to accept events of interest.

Listing 28. Example of an event filter

public class EventFilter implements IFilter <JobEvent> {

Ê @Override
Ê public boolean accept(JobEvent event) {
Ê // Accept or reject the event
Ê return false ;
Ê }
}

Scout provides you with JobEventFilterBuilder class to ease building filters which match multiple
criteria joined by logical 'AND' operation.

Listing 29. Usage of JobEventFilterBuilder

IFilter <JobEvent> filter = Jobs. newEventFilterBuilder () !
Ê . andMatchEventType(JobEventType. JOB_STATE_CHANGED) "
Ê . andMatchState(JobState. RUNNING) #
Ê . andMatch(new SessionJobEventFilter (ISession . CURRENT. get())) $
Ê . andMatchExecutionHint(" computation") %
Ê . toFilter () ; &

! Returns an instance of the job event filter builder

" Specifies to match all events representing a job state change

Specifies to match only events for jobs which transitioned into running state

$ Specifies to match only events for jobs of the current session

% Specifies to match only events for jobs which are associated with the execution hint
'computation'

& Builds the filters to get a Filter instance

Fore more information, refer to the JavaDoc of JobEventFilterBuilder .

44

9.9. Job cancellation
A job can be cancelled in two ways, either directly via its IFuture , or via job manager. Both expect
you to provide a boolean flag indicating whether to interrupt the executing working thread. Upon
cancellation, the job immediately enters 'done' state. Learn more about Section 9.6. If cancelling via
job manager, a future filter must be given to select the jobs to be cancelled. Learn more about
Section 9.7

The cancellation attempt will be ignored if the job has already completed or was cancelled. If not
running yet, the job will never run. If the job has already started, then the interruptIfRunning
parameter determines whether the thread executing the job should be interrupted in an attempt to
stop the job.

In the following some examples:

Listing 30. Cancel a job via its future

// Schedule a job
IFuture <?> future = Jobs. schedule(new Work() , Jobs. newInput()) ;

// Cancel the job via its future
future . cancel (false) ;

Listing 31. Cancel multiple jobs via job manager

Jobs. getJobManager() . cancel (Jobs. newFutureFilterBuilder ()
Ê . andMatchFuture(future1 , future2 , future3)
Ê . toFilter () , false) ;

Listing 32. Cancel multiple jobs which match a specific execution hint and the current session

Jobs. getJobManager() . cancel (Jobs. newFutureFilterBuilder ()
Ê . andMatchExecutionHint(" computation")
Ê . andMatch(new SessionFutureFilter (ISession . CURRENT. get()))
Ê . toFilter () , false) ;

A job can query its current cancellation status via RunMonitor.CURRENT.get().isCancelled() . If doing
some long running operations, it is recommended for the job to regularly check for cancellation.

" A job which is scheduled to run on a copy of the submitting RunContext, it gets also
cancelled once the RunMonitor of that context gets cancelled.

9.10. Subscribe for job lifecycle events
Sometimes it is useful to register for some job lifecycle events. The following event types can be
subscribed for:

45

