Eclipse Scout: Migration Guide

Table of Contents

About This Document
Service Releases
New Web Tool Stack
Automatic Migration
Build Stack Migration
Troubleshooting
Build / Continuous Integration
API Changes (Java)
StrictSimpleDateFormat
ObjectUtility
Data Objects
CacheBuilder
Move ICache and transactional Map
Remove SessionStore Properties
Authorization API

© © ©W ©OW 0 W 00 0 N N b DD N DN =

—
(e}

TestingUtility — BeanTestingHelper

—_
[

MailHelper.getCharacterEncodingOfPart(Part)

—_
—

API Changes (JavaScript)
WidgetTile
AjaxCall (since 10.0.10)
REST Service Changes

[S W
W N R R

Renamings in ErrorDo
Different HTTP status codes
Cookies disabled by default
StreamUtility.toMap

_ R
W W W

This document is referring to a past Scout release. Please click here for the recent

version.
A Looking for something else? Visit https://eclipsescout.github.io for all Scout related
documentation.

About This Document

This document describes all relevant changes from Eclipse Scout 9.0 to Eclipse Scout 10.0. If
existing code has to be migrated, instructions are provided here.

https://eclipsescout.github.io/stable/migration-guide.html
https://eclipsescout.github.io

Service Releases

Scout 10.0 will continue to be maintained for a while and a new build may be released from time to
time. Beside bugfixes, these service releases may even contain some minor features.

The following changes were made after the initial 10.0 release.

10.0.10

» AjaxCall (since 10.0.10)

New Web Tool Stack

Scout updated the web tool stack from a custom implementation to a standard Node.js, Webpack
and Babel based setup.

Thanks to the power of these tools it is now possible to write modern JavaScript code which will be
transpiled at build time so that old browsers can execute the code.

To run the JavaScript build a JavaScript runtime is required. This can be downloaded from Node.js.
It is recommended to use a Node.js version 12 because this is a LTS release. After downloading run
the installer and add the installation directory to the PATH environment variable. This allows to use
commands like node or npm from the command line. These commands will be required later.

Automatic Migration

In order to reduce the time needed for migrating your code to Scout 10 there is a migration
application available which will migrate most of the code automatically.

This application migrates a single Maven module. For a standard Scout application it has to be
executed for the .ui module. If your project contains more modules containing JavaScript, CSS or
HTML code, the migration application has to be executed for each of these (e.g. .app module). To
launch the migration application follow these steps:

1. Clone the following git repository and import it into an empty eclipse workspace:
https://github.com/bsi-software/scout-10-migration-template. The workspace and git repository
are only necessary temporarily and can be deleted again after the migration.

2. The migration app requires at least Java 8. Also make sure the migration project uses the same
encoding as your source code files (a regular scout project uses UTF-8 by default). If you use a
different encoding, adjust the property in the pom.xml and press Alt+F5 to reimport the
changes:

https://nodejs.org/
https://webpack.js.org/
https://babeljs.io/
https://nodejs.org/
https://github.com/bsi-software/scout-10-migration-template

10.

11.
12.
13.

<properties>
<maven.compiler.target>1.8</maven.compiler.target>
<maven.compiler.source>1.8</maven.compiler.source>
<project.build.sourceEncoding>UTF-8</project.build.sourceEncoding>
</properties>

The migration requires api files to properly generate the import statements. The api files for
Scout are already placed in the folder api of the project. If your JavaScript code depends on
other libraries built with Scout and not only org.eclipse.scout.rt.ui.html, then you need to
include the api files from these libraries as well.

Adjust the methods in the Config class to configure the migration application to your local setup.
Make sure to read the JavaDoc to understand what exactly you need to configure.

The migration application has some prerequisites that the code can be migrated. Ensure that
these are met before launching:

a. The source must be properly formatted.
b. One file must only contain one JavaScript class.

c. All files should be committed to VCS (not really a precondition but makes it easier to restart
again if the migration fails).

If the above conditions are fulfilled the migration can be started using the launch config
migrate.launch.

The migration is executed in two steps (which will result in two separate VCS commits):
a. First: all existing files are overwritten with the migrated content.
b. Second: the files are moved to theirs new locations.

Having two steps is necessary to preserve the VCS history. When the first step is finished, the
migration app asks you to commit the changes and confirm. Do NOT commit and confirm yet.

Have a look at the output. If there is an error you should revise your configuration (maybe you
didn’t copy all api files?) and your code (did you extract all JS classes into a separate file?, etc.).
To fix the errors abort the migration, reset all files (e.g. use git reset --hard), fix the configuration
and run the migration again.

If there are no errors anymore have a look at the the migrated files. You will notice that the files
are not properly formatted yet. You can do it now, if you like to have a clean git history, or do it
later after the migration.

If you are pleased with the files commit them. Make sure all files are committed.
Now it is time to proceed with the second step. Confirm the message.

The migrated files are now moved to theirs new location. When it’s done, commit all the files.

After the migration execution there are some manual post processing tasks that must be executed,
see next chapter.

Build Stack Migration

Dependencies to other JS modules are defined in a package.json file and can be
installed using NPM. You will notice that sometimes the tool PNPM will be

e mentioned. This is a different package manager also used by Scout itself to build
the Scout modules. This results in slightly different tasks. If you don’t know what
to use yet we suggest starting with npm, you can always upgrade to pnpm (or
maybe even Yarn) later.

Depending on the type of application, you either have a *ui.html module or a *ui
and an *app module. The ui module typically contains the]S code and the app

o module the static resources (WebContent folder). If you only have one module it
contains both. So if the guide tells you to do something in the .app module and you
don’t have one, do it in the .ui.html module instead.

1. Please do the Automatic Migration first even if you don’t have any JS or CSS files in your project
because it will also migrate your HTML files (e.g. index.html etc.).

2. In the pom.xml of your parent project change the version of the parent maven_rt_plugin_config-
master to 3.12.7. Ensure that the values of all relativePath attributes in the parent group do not
end with pom.xml. Additionally, update your Scout dependencies to the most recent Scout 10
version.

3. If you use Git, create a file (or open the existing one) named .gitignore in the .ui module and
the .app module (if available) and add the following content:

node_modules
dist
test-results

4. If you only have a .ui module without an .app module (typical Scout Classic app), follow these
steps. Otherwise skip this section and continue with the next step.

a. Copy the following file to the root of your .uihtml module (replace the placeholder
${simpleArtifactName} with your application name and ${version} with your application
version): package.json

b. Copy the following file to the root of the .ui.hml module: webpack.config.js

5. If you have a separate .app module you should have skipped the previous step. Instead do the
following steps.

a. Copy the following file to the root of the .ui module (replace the placeholders
${simpleArtifactName} with your application name and ${version} with your application
version): package.json

b. Copy the following file to the root of the .ui module: webpack.config.js

c. Copy the following file to the root of the .app module (replace the placeholders
${simpleArtifactName} with your application name, ${version} with your application
version and ${rootArtifactld} with the root module name): package.json

https://www.npmjs.com/
https://pnpm.js.org/
https://yarnpkg.com
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-helloworld-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.ui.html/package.json?h=releases/10.0
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-helloworld-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.ui.html/webpack.config.js?h=releases/10.0
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-hellojs-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.ui/package.json?h=releases/10.0
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-hellojs-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.ui/webpack.config.js?h=releases/10.0
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-hellojs-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.app/package.json?h=releases/10.0

10.

11.

12.

13.
14.

15.

If you use pnpm, referencing other npm modules in the same workspace is easier. In that
case you should replace "file:../${rootArtifactId}.ui/" with the version of your .ui module (e.g.
1.0.0-snapshot).

d. Copy the following file to the root of the .app module (replace the placeholder
${simpleArtifactName} with your application name): webpack.config.js. If you have
JavaScript tests, copy the following file to the root of the .ui module: karma.conf.js

Copy the following file to the directory src/test/js of the .ui module: test-index.js

The migrator should have renamed yourapp-module.js to index.js, yourapp-module.less to
index.less and migrated theirs contents. Check these files for TODOS and resolve them, maybe
you need to adjust an import. Also, if you have multiple themes, there should be an additional
index file for each theme (e.g. index-dark.less). Check these files too.

The migrator should also have renamed yourapp-macro.js to yourapp.js, yourapp-macro.less to
yourapp-theme.less and moved them to the src folder. The former index.js is now included into
yourapp.js. There should be a theme file for each theme (e.g. yourapp-theme-dark.less). If not,
create them manually. Make sure that the theme files properly import the according index files
(e.g. yourapp-theme-dark.less should include index-dark.less files if available).

Open your app file (the one that contains something like new App().init, e.g.
src/main/js/yourapp.js) and remove the modelsUrl, if present.

Check your html files. The migrator should have removed obsolete style and script tags and
added references to yourapp.js and yourapp-theme.js. If you had multiple custom *-macro.js or
*-macro.less files there may still be references to an old *-macro.less file » Use the new
matching *-theme.css file instead or maybe merge it with the regular yourapp-theme.css file.

If you have other html files than the migrated index.html, login.html etc. migrate them
manually in the same way index.html has been migrated (adjust script, style and include tags).

Move all files and folders in src/main/resources/WebContent/res one folder up directly into
WebContent and delete the empty res folder.

Search for all occurrences of /res within the .ui and .app modules and remove the res folder.

In the file src/main/webapp/WEB-INF/web.xml files of the .ui.html.app.dev and .ui.html.app.war
modules change the filter-exclude list of the AuthFilter declaration to the following and
replace ${simpleArtifactName} with your application name (if your application uses the Scout
LoginApp). The AuthFilter may also be called UiServletFilter or YourAppNameUiServletFilter.

/favicon/*

/fonts/*

/10go.png

/jquery*.js

/login*.js

/logout™®.js
/${simpleArtifactName}-theme*.css
/eclipse-scout*.js

If you have a Repositoryjs change the global object holding the repositories from
${yourAppNamespace}.repositories = {}; to static repositories = {}; and change all references

https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-hellojs-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.app/webpack.config.js?h=releases/10.0
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-hellojs-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.ui/karma.conf.js?h=releases/10.0
https://git.eclipse.org/c/scout/org.eclipse.scout.sdk.git/plain/scout-hellojs-app/src/main/resources/archetype-resources/%5F%5FrootArtifactId%5F%5F.ui/src/test/js/test-index.js?h=releases/10.0

in this file from ${yourAppNamespace}.repositories to Repository.repositories.

16. If you have Jasmine specs, follow these steps. Otherwise you can skip it and continue with the
next step.

a. Remove any Jasmine server test launch configurations (jasmine.launch files).
b. Remove any Spec runner HTML files (Spec*Runner*html files).

c. Remove all entries of the Maven plugins jasmine-maven-plugin and phantomjs-maven-plugin
from the pom.xml files.

d. In all pom.xml files remove the entries of the Maven plugin maven-dependency-plugin that
runs in phase generate-test-sources and unpacks files from org.eclipse.scout.rt.ui.html or
org.eclipse.scout.rt.ui.html.test.

e. Move all Specs from src/test/js/${yourAppNamespace} to src/test/js (one folder up)

17. If your .ui and .app modules are separated, in the pom.xml of the .ui module add the .following
properties:

a. master_skip_npm_build_dev=true
b. master_skip_npm_build_prod=true
c. master_skip_copy_webpack_build_output=true

18. Remove the following properties from all your config.properties files: scout.ui.prebuild,
scout.ui.prebuild.files, scout.dev.scriptfile.rebuild, scout.dev.scriptfile.persist.key.

19. If you use pnpm, create a file called pnpm-workspace.yaml in the parent folder of your modules
(which is most likely the root of your git repository) and include your npm modules (.ui, .app).

20. Open a terminal in the folder of the .ui module and run the command npm install (or pnpm
install, if you use pnpm). This installs all dependencies that are required by the .ui module.

21. Open a terminal in the folder of the .app module and run the command npm install (or pnpm
install, if you use pnpm). This installs all dependencies that are required by the .app module
(including the .ui module of your project).

22. In the terminal of the .app module run the following command: npm run build:dev. This triggers
the transpiler that creates the JavaScript build output in the dist folder of the .app module. Only
after this command has been executed the server can find the web resources to deliver them to
the browser.

23. If there are any build errors, fix them manually. The migration application might not fix every
possible code correctly.

24. In the terminal of the .ui module run the following command: npm run testserver:start. This
executes the Jasmine Specs in a Chrome browser (Chrome must be installed locally, the same
applies to ChromeHeadless if running the build in a CI environment, see Build / Continuous
Integration).

25. Now it is time to start your app!
Since you already ran npm run build:dev all the required JS and CSS files should be created and
you can start the Ul server using your existing launch file. If you now use Intelli] you need to
create a run configuration that uses JettyServer as main class (have a look at your Eclipse
launch file for details).

26. If you like, you can create a launch group that start the JS build and the UI server together. Have

a look at the Scout archetype for an example (the new Scout Project wizard in Eclipse uses the
archetype).

27. Test all your html files (index.html, login.html, logout.html etc.) and all your themes (dark,

custom). If everything looks fine, you are done. If not, have a look at the Troubleshooting
section.

Instead of npm run build:dev you can also use npm run build:dev:watch which will
(r) watch your JS and CSS files. This means you do not need to restart the task when
- you change JS or CSS files. This does not include the webpack.config.js, changing
that file requires running the npm task again.

Troubleshooting

1.

After starting the server the page in the browser stays blank.

This most likely happens when your created bundles don’t match the bundles required by the
HTML files. Check the Network tab in your browser’s DevTools. Which files are being loaded?
Are there 404 requests? Check your dist folder. What files are there? To fix it, adjust your HTML
files or the entrypoints and chunks in webpack.config.js.

I am not sure if I missed something.

You can always create a new Scout app based on the arche type and compare it with your code.
The easiest way is to use Eclipse and create a new Scout Project. Make sure you choose the
correct application type (Java for Scout Classic apps, JavaScript for Scout JS apps).

I don’t understand why I had to do this and what it is for.
Have a look at the Build Stack chapter in the Technical Guide.

I did everything you said but it still does not work.
Ask at Stack Overflow or the Forum, we are happy to help you out.

Build / Continuous Integration

With the new web tool stack the build of the JS and CSS code does not happen at runtime anymore
but during build time. In order to make your life easier most of the npm tasks are automatically
started by maven when running mvn install. But there are still a few adjustments you need to make
on your CI jobs in order to build your application.

1.

4.

Node is installed automatically during maven build when the module contains a package.json.
So there is no need to install node on the build server. Nothing to do here for you.

To run JavaScript specs Scout now uses ChromeHeadless instead of Phantom]S. If you have JS
specs you need to make sure there is a Chrome installed on your build server. The following
installation guide worked for our linux servers: https://gist.github.com/ipepe/
94389528e2263486e53645fa0e65578b#gistcomment-2379515.

In order to display the test results you need to add the new test-results dir in your job
configuration (e.g. */test-results/*/test-*.xml)

You only have to do this step if you want to share your npm packages between different

https://eclipsescout.github.io/10.0/technical-guide-js.html#build-stack
https://stackoverflow.com/tags/eclipse-scout
https://www.eclipse.org/forums/index.php?t=thread&frm_id=174
https://gist.github.com/ipepe/94389528e2263486e53645fa0e65578b#gistcomment-2379515
https://gist.github.com/ipepe/94389528e2263486e53645fa0e65578b#gistcomment-2379515

applications.

If you want to deploy npm artifacts to a custom npm repository (e.g. Artifactory), you need to
add .npmrc file to the home directory of your build user on the build server (similar to the
.settings.xml of maven). In order to deploy the artifacts you can use the official npm cli
interface (npm publish). If you want to publish snapshots you can use the following command.

cd your.app.ui
./target/node/node ./target/node/node_modules/npm/bin/npm-cli.js publish
--tag=snapshot

API Changes (Java)

StrictSimpleDateFormat

org.eclipse.scout.rt.jackson.dataobject.StrictSimpleDateFormat was removed. Use
org.eclipse.scout.rt.platform.util.date.StrictSimpleDateFormat instead.

ObjectUtility

nv10ptional() was renamed to nv10pt().

Data Objects

The Scout data object support was moved from the Scout platform to the module
org.eclipse.scout.rt.dataobject. The package imports of all data object related classes therefore
changed: From org.eclipse.scout.rt.platform.dataobject to org.eclipse.scout.rt.dataobject

IDoEntity raw list access

The following methods to access a raw list attribute where changed semantically. The getter now
always return a non-null value. If the attribute is not available, an empty list is added as attribute
value into the entity and the new created empty list is returned.

o List<Object> getList(String attributeName)

o <T> List<T> getlList(String attributeName, (lass<T> type)

o <T> List<T> getList(String attributeName, Function<Object, T> mapper)
Additionally two new methods were added, which allows to access an optionally available list
attribute, without adding a new attribute value to the entity, if the attribute is not available:

* Optional<List<Object>> optList(String attributeName)

* <T> Optional<List<T>> optlList(String attributeName, Class<T> type)

Renamings

org.eclipse.scout.rt.client.ui.desktop.datachange.DoChangeEvent -
org.eclipse.scout.rt.client.ui.desktop.datachange.ItemDataChangeEvent

Dependencies

All' modules which wuse data objects were extended with a dependency to
org.eclipse.scout.rt.dataobject

* org.eclipse.scout.rt.rest

* org.eclipse.scout.rt.mom.api

Renamings in ErrorDo

» org.eclipse.scout.rt.rest.error.ErrorDo#istatus -
org.eclipse.scout.rt.rest.error.ErrorDo#thttpStatus

» org.eclipse.scout.rt.rest.error.ErrorDo#icode -
org.eclipse.scout.rt.rest.error.ErrorDo#terrorCode

CacheBuilder

The following methods on CacheBuilder where removed, since they were unused and covered
unused, old functionality:

* Method org.eclipse.scout.rt.shared.cache.CacheBuilder.addCacheInstance(ICache<K, V>)

* Method org.eclipse.scout.rt.shared.cache.CacheBuilder.getCacheInstances()

Move ICache and transactional Map

AbstractTransactionalMap and its concrete implementations ConcurrentTransactionalMap and
CopyOnWriteTransactionalMap have been moved to org.eclipse.scout.rt.platform.util.collection.

ICache, its implementations and cache wrappers have been moved to
org.eclipse.scout.rt.platform.cache.

Remove SessionStore Properties

The following properties are no longer used and can be deleted without replacement: *
scout.ui.sessionStore.maxWaitForAl1Shutdown *

scout.ui.sessionStore.valueUnboundMaxWaitForWritelLock *
scout.ui.sessionstore.housekeepingMaxWaitForShutdown

Authorization API

The authorization API of scout was extended and moved from org.eclipse.scout.rt.shared into its
own module. You may check the technical guide for further details.

* Introduced IPermissionCollection and IPermission interfaces
* Let all current scout permission (e.g. CopyToClipboardPermission) implement IPermission
* All scout permission names are now prefixed with scout.

* RemoteServiceAccessPermission#fgetName returns a stable name instead of the service operation
pattern

* Deleted BasicHierarchyPermission. If required, you may copy from an older version of scout.

* org.eclipse.scout.rt.shared.services.common.security.IAccessControlService moved to
org.eclipse.scout.rt.security

* TAccessControlService#fgetPermissionLevel removed; use instead
ACCESS#getGrantedPermissionLevel

e TAccessControlServiceficheckPermission removed; use instead ACCESS#check

» TAccessControlService#igetPermissions must now never return null. Instead
NonePermissionCollection or Al1PermissionCollection may be returned.

* org.eclipse.scout.rt.shared.services.common.security.ACCESS moved to
org.eclipse.scout.rt.security.ACCESS

* ACCESS#check now fails if argument is null (before succeeds).

» org.eclipse.scout.rt.shared.services.common.security.AbstractAccessControlService moved to
org.eclipse.scout.rt.security

» AbstractAccessControlService#fgetUserIdOfCurrentUser moved to Sessions#igetCurrentUserId()

Load Permissions

With the new IPermissionCollection, loading of permissions in
AbstractAccessControlService#fexecLoadPermissions has changed.

* Create a new instance by calling BEANS.get(DefaultPermissionCollection.class) instead of new
java.security.Permissions().

* Add permissions with a permission level: permissions.add(new ReadUsersPermission(),
PermissionLevel.ALL);

* Do not forget to set permission collection as read only: permissions.setReadOnly();

There is also a Al1PermissionCollection which may be used instead of DefaultPermissionCollection.

TestingUtility -~ BeanTestingHelper

The following methods are deprecated. Use the corresponding methods on BeanTestingHelper via
BeanTestingHelper.get() instead:

* registerBeans

* registerBean

* unregisterBean

* unregisterBeans

mockConfigProperty

10

The following replacement regex can be applied on all Java files:
\bTestingUtility\.(registerBeans|registerBean|unregisterBean|unregisterBeans|mockConfigProperty
) to BeanTestingHelper.get().$1

The following methods are deprecated and will be removed in a future release without a
replacement:

* registerWithReplace
* registerWithTestingOrder

* clearHttpAuthenticationCache

MailHelper.getCharacterEncodingOfPart(Part)

MailHelper.getCharacterEncodingOfPart(Part) is deprecated, use
ObjectUtility.nv1(BEANS.get(MailHelper.class).getPartCharset(part),

StandardCharsets.UTF_8).name() instead if same behavior is required.

API Changes (JavaScript)

WidgetTile

The Widget’s main property tileWidget is now a fully fledged property. Up until now the property
could only be set on initialization and couldn’t be changed during runtime. Now the tileWidget
property can be set dynamically during runtime.

This required a change within the div-structure with which the widget is rendered. The tile and the
wrapped widget used to share the same container div. Now they both have their own container div
as shown in the example below:

Listing 1. Scout 9.0
<div class="form-field tile">

<div class="field"></div>
</div>

Listing 2. Scout 10.0
<div class="tile">
<div class="form-field">
<div class="field"></div>

</div>
</div>

AjaxCall (since 10.0.10)

Instances of AjaxCall now return a single object of type AjaxError when rejecting the promise.

11

For historical reasons, jQuery’s AJAX function rejects the promise with three arguments: jqXHR,
textStatus and errorThrown. The Promise specification only allows for one "reason" argument. To
bring AjaxCall in line with this definition and to make rethrowing the error easier, it now wraps the
three arguments into one object of type AjaxError. It provides the following properties:

jqXHR
HTTP request object (jQuery argument #1)

textStatus

A string describing the type of error that occurred (jQuery argument #2)

errorThrown

The textual portion of the HTTP status (jQuery argument #3)

requestOptions

The options object that was passed to the $.ajax call. Can be used to retrieve the original URL for
debugging or logging purposes.

Migration: Check your code for any uses of AjaxCall and change the signature of any fail() or
catch() function.

// 01d:
var ajaxCall = scout.create('AjaxCall', ajaxOptions);
ajaxCall.call()
.then(function(data) {
processData(data);
b
.catch(function(jqXHR, textStatus, errorThrown) {
handleError(jqXHR, textStatus, errorThrown);

1

// New:
var ajaxCall = scout.create('AjaxCall', ajaxOptions);
ajaxCall.call()
.then(function(data) {
processData(data);

}
.catch(function(ajaxError) {
handleError(ajaxError.jqXHR, ajaxError.textStatus, ajaxError.errorThrown);

1

REST Service Changes

Any changes which may change how REST consumer or provider behave.

12

https://tc39.es/ecma262/#sec-promise-reject-functions

Renamings in ErrorDo

org.eclipse.scout.rt.rest.error.ErrorDo used by
org.eclipse.scout.rt.rest.client.proxy.ErrorDoRestClientExceptionTransformer and some
org.eclipse.scout.rt.rest.exception.AbstractExceptionMapper<E> was slightly changed:

* ErrorDo#fstatus — ErrorDo#thttpStatus

e ErrorDo#ficode — ErrorDo#ferrorCode

Different HTTP status codes

A REST service client using ErrorDoRestClientExceptionTransformer will now transform

 any client request error (HTTP 4xx status codes) into a VetoException
* 403 - Forbiddeninto a org.eclipse.scout.rt.dataobject.exception.AccessForbiddenException

* 404 - Not Found into aorg.eclipse.scout.rt.dataobject.exception.ResourceNotFoundException

The org.eclipse.scout.rt.rest.exception.VetoExceptionMapper used by a REST service provide will
now create an error response with status 400 - Bad Request (this was formerly a 403).

Cookies disabled by default

By default, a REST service client will no longer use cookies.
If required, cookies can be enabled by using

clientBuilder.property(RestClientProperties.ENABLE_COOKIES, true);

in configureClientBuilder of AbstractRestClientHelper.

StreamUtility.toMap

The default re-map function for duplicated keys used by StreamUtility.toMap was changed from a
throwing merger to a replacing merger mapper. E.g. if a stream containing duplicated keys is
collected into a map, the value of the latest key within the stream is collected into the target map.

@ Do you want to improve this document? Have a look at the sources on GitHub.
w

13

https://github.com/bsi-software/org.eclipse.scout.docs/blob/releases/10.0/docs/build/scout_migration/src/docs/migration-guide.adoc

	Eclipse Scout: Migration Guide
	Table of Contents
	About This Document
	Service Releases

	New Web Tool Stack
	Automatic Migration
	Build Stack Migration
	Troubleshooting
	Build / Continuous Integration

	API Changes (Java)
	StrictSimpleDateFormat
	ObjectUtility
	Data Objects
	CacheBuilder
	Move ICache and transactional Map
	Remove SessionStore Properties
	Authorization API
	TestingUtility → BeanTestingHelper
	MailHelper.getCharacterEncodingOfPart(Part)

	API Changes (JavaScript)
	WidgetTile
	AjaxCall (since 10.0.10)

	REST Service Changes
	Renamings in ErrorDo
	Different HTTP status codes
	Cookies disabled by default
	StreamUtility.toMap

