Hello Scout JS with a CDN

Version 11.0



Table of Contents

Introduction
Preparation
Include Assets
Add your Code

Summary

N g W



o Looking for something else? Visit https://eclipsescout.github.io for all Scout related
documentation.


https://eclipsescout.github.io

Introduction

A typical approach to work with Scout JS is to use a package manager (e.g. pnpm) to download the
modules and a bundler (e.g. webpack) to build them. Thanks to the Scout CLI this task is
straightforward.

The main advantage is the simplified development process. You can use Less variables from Scout
(e.g. the color palette). Individual source files can be imported directly which facilitates code
completion. It also enables you to use modern code but still target older browsers by the usage of
Babel.

If you don’t need all that and just want to include Scout as a script in your html page (as in the early
days), you can do so, too! This article shows how to achieve this. A live demo of the app we’ll create
is published on CodePen.


http://eclipsescout.github.io/11.0/technical-guide-js.html#command-line-interface-cli
https://codepen.io/cguglielmo/pen/jOVxpMZ

Preparation

First, you need to get the prebuilt Scout assets like scripts, stylesheets, fonts etc. These assets are
part of the Scout npm modules and located in the dist folder.

To get them you can either install the Scout modules using a package manager and take the
necessary resources from the dist folder. Or you could use a CDN and download them manually
from there or even link to that CDN in your html files. In this example we are going to use a CDN
directly.

There are several CDNs out there that serve the content of all npm modules. A popular one is
jsDelivr. Using this CDN you can easily access all Scout assets: @eclipse-scout/core/dist.


https://www.jsdelivr.com/
https://www.jsdelivr.com/package/npm/@eclipse-scout/core?path=dist

Include Assets

Now let’s create a new html file called index.html and paste the following content:

<!DOCTYPE html>
<html lang="en">
<head>
<title>Hello Scout CDN</title>
<meta name="viewport" content="width=device-width, initial-scale=1.0" />
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/@eclipse-
scout/core@11.0.42/dist/eclipse-scout-core-theme.css" />®
</head>
<body>
<div class="scout"></div>®
<script src="https://code.jquery.com/jquery-3.5.1.js"></script>®@
<script src="https://cdn.jsdelivr.net/npm/sourcemapped-
stacktrace@1.1.11/dist/sourcemapped-stacktrace.js"></script>@
<script src="https://cdn.jsdelivr.net/npm/@eclipse-scout/core@11.0.42/dist/eclipse-
scout-core.js"></script>@
<script src="hello.js"></script>@
</body>
</html>

@ As you can see, we include the Scout assets, namely eclipse-scout-core-theme.css and eclipse-
scout-core.js

@ Additionally, we need to include all dependencies, which are jquery and sourcemapped-
stacktrace.js. These are the dependencies listed in the package.json of @eclipse-scout/core.

® Finally, we need to add an empty scout <div> where the html content generated by Scout will be
placed.

@ The script hello. js contains the code of our application.


https://cdn.jsdelivr.net/npm/@eclipse-scout/core@11.0.42/package.json

Add your Code

Now create a file called hello.js and paste the following code:

class Desktop extends scout.Desktop {

constructor() {
super();

}

_jsonModel() {
return {
objectType: 'Desktop',
navigationHandleVisible: false,
navigationVisible: false,
headerVisible: false,
views: [
{
objectType: 'Form',
displayHint: 'view',
modal: false,
rootGroupBox: {
objectType: 'GroupBox',
borderDecoration: scout.GroupBox.BorderDecoration.EMPTY,
fields: [
{
id: 'NameField',
objectType: 'StringField’',
label: 'Name'
¥

{
id: 'GreetButton',
objectType: 'Button',
label: 'Say Hello',
keyStroke: 'enter',
processButton: false

_init(model) {
super._init(model);
this.widget('GreetButton').on('click', event => {
let name = this.widget('NameField').value || 'stranger';
scout.MessageBoxes.openOk(this.session.desktop, ‘Hello ${name}!‘);

b



}
}

scout.addObjectFactories({
'Desktop’: () => new Desktop()
h))s

new scout.App().init({
bootstrap: {
textsUrl: 'https://unpkg.com/@eclipse-scout/core@11.0.42/dist/texts.json’
}
});

As you can see, there are no imports at the top. Instead, we are using the global variable scout, that
is automatically put on the window object, to reference Scout classes.

Furthermore, we have to include the texts.json. This file needs to be included to make sure the
texts used by Scout can be resolved for the language the user is using. In this case it is necessary for
the text Ok which is visible on the message box when you click the button.

If you like to present dates and numbers using the format the user is used to, you could also include
the locales.json. We do not need it for now so it is not included.

The rest of the code looks pretty similar to regular Scout JS code but be aware that some newer JS
features are used like class or the template syntax that may not be supported by every browser.



Summary

That’s it. This is all you need to do to use Scout in a plain html site without the need of build tools.

If you like you could adjust the example to use the dark theme by using eclipse-scout-core-theme-
dark.css instead of eclipse-scout-core-theme.css.

Or you could try to add a Chart by including the @eclipse-scout/chart module. The procedure is the
same: link to the @eclipse-scout/chart assets (script, stylesheet, texts) and include its dependencies,
that are referenced by its package. json.

The result could look like this: Eclipse Scout Chart on CodePen.

Have fun!

(r) Do you want to improve this document? Have a look at the sources on GitHub.
-


https://codepen.io/cguglielmo/pen/qBqYMvp
https://github.com/eclipse-scout/scout.docs/blob/releases/11.0/docs/build/helloscout_cdn/src/docs/helloscout-cdn.adoc

	Hello Scout JS with a CDN
	Table of Contents
	Introduction
	Preparation
	Include Assets
	Add your Code
	Summary

