
Eclipse Scout Technical Guide
Version 11.0

Table of Contents
Introduction. 2

1. Overview . 3

2. Scout Platform. 4

2.1. Application Lifecycle . 4

2.2. Class Inventory . 5

2.3. Bean Manager . 6

2.4. Configuration Management . 13

2.5. Scout Config Properties . 16

3. Client Model. 33

3.1. Desktop . 33

3.2. Multiple Dimensions Support . 34

4. Texts . 36

4.1. Text properties files . 36

4.2. Text Provider Service. 36

5. Icons . 39

5.1. Using a custom icon font. 39

5.2. How to create a custom icon font . 40

6. Lookup Call . 42

6.1. Description . 42

6.2. Input . 42

6.3. Members . 42

6.4. Type of lookup calls . 44

7. Code Type . 47

7.1. Description . 47

7.2. Using a CodeType . 48

7.3. Static CodeType . 48

7.4. Dynamic CodeType. 49

8. Working with exceptions . 51

8.1. Scout Throwables . 51

8.2. Exception handling . 53

8.3. Exception translation . 53

8.4. Exception Logging . 54

9. JobManager . 56

9.1. Functionality . 56

9.2. Job. 56

9.3. Scheduling a Job . 57

9.4. JobInput . 58

9.5. IFuture. 62

9.6. Job states . 62

9.7. Future filter . 63

9.8. Event filter . 64

9.9. Job cancellation. 64

9.10. Subscribe for job lifecycle events . 65

9.11. Awaiting job completion. 66

9.12. Uncaught job exceptions. 70

9.13. Blocking condition . 70

9.14. ExecutionSemaphore . 71

9.15. ExecutionTrigger . 71

9.16. Stopping the platform . 72

9.17. ModelJobs. 72

9.18. Configuration. 73

9.19. Extending job manager. 73

9.20. Scheduling examples . 73

10. RunContext . 78

10.1. Factory methods to create a RunContext . 78

10.2. Properties of a RunContext . 79

10.3. Properties of a ServerRunContext . 80

10.4. Properties of a ClientRunContext . 81

11. RunMonitor . 83

12. Client Notifications . 84

12.1. Examples . 84

12.2. Data Flow . 84

12.3. Push Technology. 84

12.4. Components . 85

12.5. Publishing. 87

12.6. Handling . 88

13. Extensibility. 90

13.1. Overview . 90

13.2. Extensions . 90

13.3. Contributions. 92

13.4. Move elements . 96

13.5. Migration . 96

14. Mobile Support . 97

14.1. Responsive and Touch Capable Widgets. 97

14.2. Device Transformation . 99

14.3. Adapt Specific Components . 106

14.4. User Agent . 108

14.5. Best Practices. 108

15. Security. 109

15.1. Default HTTP Response Headers . 109

15.2. Session Cookie (JSESSIONID Cookie) Configuration Validation . 110

15.3. Secure Output . 112

15.4. Authorization (Granting) . 114

16. Data Objects. 119

16.1. Data Object Definition. 119

16.2. Marshalling . 119

16.3. Ignoring an Attribute . 122

16.4. Handling of DoEntity Attributes . 122

16.5. Abstract Data Objects & Polymorphism . 123

16.6. Rename an attribute of a data object in a subclass . 125

16.7. Interfaces to Data Objects . 126

16.8. Equals and Hashcode . 126

16.9. Generic DoEntity . 126

16.10. Map of objects . 128

16.11. IDataObject Interface - Data Objects with unknown structure. 129

16.12. Ad-Hoc Data Objects . 129

16.13. Maven Dependencies . 130

16.14. Data Object Inventory. 130

16.15. Extending with custom serializer and deserializer . 130

16.16. Enumerations within Data Objects . 130

16.17. Typed IDs within Data Objects . 132

16.18. Unit Testing . 133

17. REST . 134

17.1. REST Resource Conventions . 134

17.2. REST Resource Provider . 135

17.3. Dependency Management . 138

17.4. REST Client. 138

17.5. REST Cancellation Support. 142

18. Webservices with JAX-WS . 145

18.1. Functionality . 145

18.2. JAX-WS implementor and deployment . 145

18.3. Modularization . 149

18.4. Build webservice stubs and artifacts. 150

18.5. Provide a webservice . 157

18.6. Consume a webservice . 169

18.7. XML adapters to work with java.util.Date and java.util.Calendar . 175

18.8. JAX-WS Appendix. 177

19. SmtpHelper . 184

19.1. SmtpServerConfig . 184

19.2. Sending messages. 186

19.3. SmtpHelper Configuration. 187

19.4. Connection Pooling . 187

19.5. SmtpConnectionPool Configuration . 188

20. Scout JS . 189

21. How-Tos . 190

21.1. SmartField: how to apply colors and styles from a lookup-row . 190

21.2. How to Create a Chart . 191

Looking for something else? Visit https://eclipsescout.github.io for all Scout related
documentation.

1

https://eclipsescout.github.io

Introduction
This technical guide documents the Scout architecture and describes important concepts used in
Scout.

2

Chapter 1. Overview
Scout is a framework for creating modern business applications. Such applications are typically
separated into multiple tiers where each tier is responsible for a specific part of the application like
presenting information to the user or processing business logic and persisting data. Scout solves
these requirements by providing a separation of such tiers out of the box.

A typical Scout application consists of the following parts:

• A server layer responsible for persisting data on a database and possibly providing and
consuming webservices. The scout server layer provides utilities to simplify the most common
tasks.

• A client layer responsible for handling the Java UI code. It consists of a model represented by
plain Java classes as well as services and utilities to implement behaviour associated with client
code. The scout client layer provides utilities to simplify the most common tasks. For simplicity,
the client model is processed in a single threaded way to avoid synchronization. Callbacks, e.g.
for validating a field or calling services when opening a form run inside a model job.

• A UI layer responsible for rendering the client model in the browser. Since the scout UI layer
already provides JavaScript/HTML/CSS code for many common UIs, the project specific code in
this layer is typically quite small. Examples are specific CSS styling or a new custom input field
for special purposes.

Server and client both run in a servlet container, such as Apache Tomcat. They are usually
deployed as separate war files in order to be able to scale them differently. However, it is also
possible to create a single war file.

3

http://tomcat.apache.org

Chapter 2. Scout Platform
Scout contains a platform which provides basic functionality required by many software
applications. The following list gives some examples for which tasks the platform is responsible for:

• Application Lifecycle Management

• Object Instance Management (Bean Management)

• Configuration Management

• Application Inventory

2.1. Application Lifecycle
The lifecycle of a Scout application is controlled by implementations of
org.eclipse.scout.rt.platform.IPlatform. This interface contains methods to start and stop the
application and to retrieve the Bean Manager associated with this application. The class
org.eclipse.scout.rt.platform.Platform provides access to the current platform instance. On first
access the platform is automatically created and started.

During its startup, the platform transitions through several states. Depending on the state of the
platform some components may already be initialized and ready to use while others are not
available yet.

See enum org.eclipse.scout.rt.platform.IPlatform.State for a description of each state and what
may be used in a certain state.

2.1.1. Platform Listener

To participate in the application startup or shutdown a platform listener can be created. For this a
class implementing org.eclipse.scout.rt.platform.IPlatformListener must be created. The listener
is automatically a bean and must therefore not be registered anywhere. See Section 2.3 to learn
more about bean management in Scout and how the listener becomes a bean. As soon as the state
of the platform changes the listener will be notified.

4

Listing 1. A listener that will do some work as soon as the platform has been started.

public class MyListener implements IPlatformListener {
 @Override
 public void stateChanged(PlatformEvent event) {
 if (event.getState() == State.PlatformStarted) {
 // do some work as soon as the platform has been started completely
 }
 }
}

As platform listeners may run as part of the startup or shutdown not the full Scout
platform may be available. Depending on the state some tasks cannot be
performed or some platform models are not available yet!

2.2. Class Inventory
Scout applications use an inventory containing the classes available together with some meta data
about them. This allows finding classes available on the classpath by certain criteria:

• All subclasses of a certain base class (also known as type hierarchy)

• All classes having a specific annotation.

This class inventory can be accessed as described in listing Listing 2.

Listing 2. Access the Scout class inventory.

IClassInventory classInventory = ClassInventory.get();

// get all classes below IService
Set<IClassInfo> services = classInventory.getAllKnownSubClasses(IService.class);

// get all classes having a Bean annotation (directly on them self).
Set<IClassInfo> classesHavingBeanAnnot = classInventory.getKnownAnnotatedTypes(Bean
.class);

2.2.1. scout.xml

In its static initializer, the ClassInventory collects classes in projects containing a resource called
META-INF/scout.xml.

Scanning all classes would be unnecessarily slow and consume too much memory. The file
scout.xml is just an empty xml file. Scout itself also includes scout.xml files in all its projects.

The format XML was chosen to allow adding exclusions in large projects, but this feature is not
implemented right now.

5

It is recommended to add an emtpy scout.xml file into the META-INF folder of your
projects, such that the classes are available in the 'ClassInventory'.

Scout uses Jandex [1] to build the class inventory. The meta data to find classes can be pre-computed
during build time into an index file describing the contents of the jar file. See the jandex project for
details.

2.3. Bean Manager
The Scout bean manager is a dynamic registry for beans. Beans are normal Java classes usually
having some meta data describing the characteristics of the class.

The bean manager can be changed at any time. This means beans can be registered or unregistered
while the application is running. For this the bean manager contains methods to register and
unregister beans. Furthermore methods to retrieve beans are provided.

The next sections describe how beans are registered, the different meta data of beans, how
instances are created, how they can be retrieved and finally how the bean decoration works.

2.3.1. Bean registration

Usually beans are registered during application startup. The application startup can be intercepted
using platform listeners as described in Section 2.1.1.

Listing 3. A listener that registers a bean (direct class or with meta data).

public class RegisterBeansListener implements IPlatformListener {
 @Override
 public void stateChanged(PlatformEvent event) {
 if (event.getState() == State.BeanManagerPrepared) {
 // register the class directly
 BEANS.getBeanManager().registerClass(BeanSingletonClass.class);

 // Or register with meta information
 BeanMetaData beanData = new BeanMetaData(BeanClass.class).withApplicationScoped
(true);
 BEANS.getBeanManager().registerBean(beanData);
 }
 }
}

There is also a predefined bean registration built into the Scout runtime. This automatically
registers all classes having an org.eclipse.scout.rt.platform.@Bean annotation. Therefore it is
usually sufficient to only annotate a class with @Bean to have it available in the bean manager as
shown in listing Listing 4.

6

Listing 4. A normal bean

@Bean
public class BeanClass {
}

As the @Bean annotation is an java.lang.annotation.@Inherited annotation, this
automatically registers all child classes too. This means that also interfaces may be
@Bean annotated making all implementations automatically available in the bean
manager! Furthermore other annotations may be @Bean annotated making all
classes holding these annotations automatically to beans as well.

If you inherit a @Bean annotation from one of you super types but don’t want to be
automatically registered into the bean manger you can use the
org.eclipse.scout.rt.platform.@IgnoreBean annotation. Those classes will then be
skipped.

@TunnelToServer

There is a built in annotation org.eclipse.scout.rt.shared.@TunnelToServer. Interfaces marked with
this annotation are called on the server. The server itself ignores this annotation.

To achieve this a bean is registered on client side for each of those interfaces. Because the platform
cannot directly create an instance for these beans a specific producer is registered which creates a
proxy that delegates the call to the server. Please note that this annotation is not inherited.
Therefore if an interface extends a tunnel-to-server interface and the new methods of this interface
should be called on the server as well the new child interface has to repeat the annotation!

The proxy is created only once for a specific interface bean.

2.3.2. Bean Scopes

The most important meta data of a bean is the scope. It describes how many instances of a bean can
exist in a single application. There are two different possibilities:

• Unlimited instances: Each bean retrieval results in a new instance of the bean. This is the
default.

• Only one instance: There can only be one instance by Scout platform. From an application point
of view this can be seen as singleton. The instance is created on first use and each subsequent
retrieval of the bean results in this same cached instance.

As like all bean meta data this characteristic can be provided in two different ways:

1. With a Java annotation on the bean class as shown in the listing Listing 5.

2. With bean meta data as shown in listing Listing 3.

7

Listing 5. An application scoped bean using annotations

@ApplicationScoped
public class BeanSingletonClass {
}

So the Java annotation org.eclipse.scout.rt.platform.@ApplicationScoped describes a bean having
singleton characteristics.

Also @ApplicationScoped is an @Inherited annotation. Therefore all child classes
automatically inherit this characteristic like with the @Bean annotation.

2.3.3. Bean Creation

It is not only possible to influence the number of instances to be created (see Section 2.3.2), but also
to create beans eagerly, execute methods after creation (like constructors) or to delegate the bean
creation completely. These topics are described in the next sections.

Eager Beans

By default beans are created on each request. An exception are the beans marked to be application
scoped (as shown in Section 2.3.2). Those beans are only created on first request (lazy). This means
if a bean is never requested while the application is running, there will never be an instance of this
class.

But sometimes it is necessary to create beans already at the application startup (eager). This can be
done by marking the bean as org.eclipse.scout.rt.platform.@CreateImmediately. All classes holding
this annotation must also be marked as @ApplicationScoped! These beans will then be created as
part of the application startup.

Constructors

Beans must have empty constructors so that the bean manager can create instances. But
furthermore it is possible to mark methods with the javax.annotation.@PostConstruct annotation.
Those methods must have no parameters and will be called after instances have been created.

When querying the bean manager for an application scoped bean, it will always
return the same instance. However, the constructor of an application scoped bean
may run more than once, whereas a method annotated with @PostConstruct in an
application scoped been is guaranteed to run exactly once.

2.3.4. Bean Retrieval

To retrieve a bean the class org.eclipse.scout.rt.platform.BEANS should be used. This class
provides (amongst others) the following methods:

8

Listing 6. How to get beans.

BeanSingletonClass bean = BEANS.get(BeanSingletonClass.class);
BeanClass beanOrNull = BEANS.opt(BeanClass.class);

• The get() method throws an exception if there is not a single bean result. So if no bean can be
found or if multiple equivalent bean candidates are available this method fails!

• The opt() method requires a single or no bean result. It fails if multiple equivalent bean
candidates are available and returns null if no one can be found.

• The all() method returns all beans in the correct order. The list may also contain no beans at
all.

There are now two more annotations that have an effect on which beans are returned if multiple
beans match a certain class. Consider the following example bean hierarchy:

Figure 1. A sample bean hierarchy.

In this situation 4 bean candidates are available: MyServiceImpl, MyServiceMod, MySpecialVersion
and AnotherVersion. But which one is returned by BEANS.get(IMyService.class)? Or by
BEANS.get(MySpecialVersion.class)? This can be influenced with the
org.eclipse.scout.rt.platform.@Order and org.eclipse.scout.rt.platform.@Replace annotations.
The next sections describe the idea behind these annotations and gives some examples.

@Order

This annotation works exactly the same as in the Scout user interface where it brings classes into
an order. It allows to assign a double value to a class. All beans of a certain type are sorted
according to this value in ascending order. This means a low order value is equivalent with a low
position in a list (come first).

Please note that the @Order annotation is not inherited so that each bean must declare its own value
where it fits in.

9

The @Order annotation value may be inherited in case it replaces. See the next
section for details.

If a bean does not declare an order value, the default of 5000 is used. Scout itself uses orders from
4001 to 5999. So for user applications the value 4000 and below can be used to declare more
important beans. For testing bean mocks the value -10'000 can be used which then usually comes
before each normal Scout or application bean.

@Replace

The @Replace annotation can be set to beans having another bean as super class. This means that
the original bean (the super class) is no longer available in the Scout bean manager and only the
new child class is returned.

If the replacing bean (the child class) has no own @Order annotation defined but the replaced bean
(the super class) has an @Order value, this order is inherited to the child. This is the only special case
in which the @Order annotation value is inherited!

2.3.5. Examples

The next examples use the bean situation as shown in figure Figure 1. In this situation the bean
manager actually contains 3 beans:

1. AnotherVersion with @Order of 4000. This bean has no own order and would therefore get the
default order of 5000. But because it is replacing another bean it inherits its order.

2. MyServiceMod with @Order of 4500. This bean declares its own order.

3. MyServiceImpl with @Order of 5000. This bean gets the default order of 5000 because it does not
declare an order.

The bean MySpecialVersion is not part of the bean manager because it has been replaced by
AnotherVersion.

• BEANS.get(IMyService.class): Returns AnotherVersion instance. The result cannot be an exact
match because the requested type is an interface. Therefore of all candidates there is one single
candidate with lowest order (comes first).

• BEANS.get(MyServiceImpl.class): Returns MyServiceImpl because there is an exact match
available.

• BEANS.get(MySpecialVersion.class): Returns AnotherVersion. The result cannot be an exact match

10

because there is no exact bean with this class in the bean manager (MySpecialVersion has been
replaced). Therefore only AnotherVersion remains as candidate in the hierarchy below
MySpecialVersion.

• BEANS.get(MyServiceMod.class): Returns MyServiceMod because there is no other candidate.

• BEANS.all(IMyService.class): Returns a list with all beans sorted by @Order. This results in:
AnotherVersion, MyServiceMod, MyServiceImpl.

If MyServiceMod would have no @Order annotation, there would be two bean
candidates available with the same default order of 5000: MyServiceImpl and
MyServiceMod. In this case a call to BEANS.get(IMyService.class) would fail because
there are several equivalent candidates. Equivalent candidates means they have
the same @Order value and the system cannot decide which one is the right one.

2.3.6. Bean Decoration

Bean decorations allow to wrap interfaces with a proxy to intercept each method call to the
interface of a bean and apply some custom logic. For this a IBeanDecorationFactory has to be
implemented. This is one single factory instance for the entire application. It decides which
decorators are created for a bean request. The factory is asked for decorators on every bean
retrieval. This allows to write bean decoration factories depending on dynamic conditions.

As bean decoration factories are beans themselves, it is sufficient to create an implementation of
org.eclipse.scout.rt.platform.IBeanDecorationFactory and to ensure this implementation is used
(see Section 2.3.4). This factory receives the bean to be decorated and the originally requested bean
class to decide which decorators it should create. In case no decoration is required the factory may
return null. Then the original bean is used without decorations.

Decorations are only supported if the class obtained by the bean manager (e.g. by
using BEANS.get()) is an interface!

It is best practice to mark all annotations that are interpreted in the bean
decoration factory with the annotation
org.eclipse.scout.rt.platform.@BeanInvocationHint. However this annotation has
no effect at runtime and is only for documentation reasons.

The sample in listing Listing 7 wraps each call to the server with a profiler decorator that measures
how long a server call takes.

11

Listing 7. Bean decoration example.

@Replace
public class ProfilerDecorationFactory extends SimpleBeanDecorationFactory {
 @Override
 public <T> IBeanDecorator<T> decorate(IBean<T> bean, Class<? extends T> queryType) {
 return new BackendCallProfilerDecorator<>(super.decorate(bean, queryType));
 }
}

public class BackendCallProfilerDecorator<T> implements IBeanDecorator<T> {

 private final IBeanDecorator<T> m_inner;

 public BackendCallProfilerDecorator(IBeanDecorator<T> inner) {
 m_inner = inner;
 }

 @Override
 public Object invoke(IBeanInvocationContext<T> context) {
 final String className;
 if (context.getTargetObject() == null) {
 className = context.getTargetMethod().getDeclaringClass().getSimpleName();
 }
 else {
 className = context.getTargetObject().getClass().getSimpleName();
 }

 String timerName = className + '.' + context.getTargetMethod().getName();
 TuningUtility.startTimer();
 try {
 if (m_inner != null) {
 // delegate to the next decorator in the chain
 return m_inner.invoke(context);
 }
 // forward to real bean
 return context.proceed();
 }
 finally {
 TuningUtility.stopTimer(timerName);
 }
 }
}

2.3.7. Destroy Beans

Application scoped beans can declare methods annotated with javax.annotation.@PreDestroy. These
methods will be called when the Scout platform is stopping. The methods may have any visibility
modifier but must not be static and must not declare any parameters. If such a pre-destroy method
throws an exception, the platform will continue to call all other pre-destroy methods (even methods

12

on the same bean).

Please note that pre-destroy methods are only called for application-scoped beans that already have
created their instance.

Pre-destroy methods inherited from super classes are always called after the ones from the class
itself. Methods that are overridden are only called on the leaf class. Private methods are always
called (because they cannot be overridden). The order in which multiple methods in the same
declaring class are called is undefined.

2.4. Configuration Management
Applications usually require some kind of configuration mechanism to use the same binaries in a
different environment or situation. Scout applications provide a configuration mechanism using
properties files [2].

For each property a class cares about default values and value validation. These classes share the
org.eclipse.scout.rt.platform.config.IConfigProperty interface and are normal application scoped
beans providing access to a specific configuration value as shown in listing Listing 8. If the property
class is an inner class it has to be defined as a static class with the static modifier.

Listing 8. A configuration property of type Long.

import org.eclipse.scout.rt.platform.config.AbstractLongConfigProperty;

/**
 * Property of data type {@link Long} with key 'my.custom.timeout' and default value
'3600L'.
 */
public class MyCustomTimeoutProperty extends AbstractLongConfigProperty {

 @Override
 public String getKey() {
 return "my.custom.timeout"; ①
 }

 @Override
 public String description() {
 return "Description of the custom timeout property. The default value is 3600.";
 }

 @Override
 public Long getDefaultValue() {
 return 3600L; ②
 }
}

① key

② default value

13

To read the configured value you can use the CONFIG class as demonstrated in Listing 9.

Listing 9. Read the configured value in your code.

Long value = CONFIG.getPropertyValue(MyCustomTimeoutProperty.class);

2.4.1. Property resolution

The given property key is searched in the following environments:

1. In the system properties (java.lang.System.getProperty(String)).

2. In the environment variables of the system (java.lang.System.getenv(String)).

3. In the properties file. The properties file can be

a. a file on the local filesystem where the system property with key config.properties holds an
absolute URL to the file or

b. a file on the classpath with path /config.properties (recommended).

4. If none of the above is found, the default value of the property is applied.

Supported formats are simple key-value pairs, list values and map values. For more details about
the format please refer to the JavaDoc of the
org.eclipse.scout.rt.platform.config.PropertiesHelper class.

Since the environment variable names are more restrictive in many shells and systems than the
property names in Java, overriding a property containing a dot/period (.) with an environment
variable would not be possible. To still allow overriding of such properties, the following lookup
rules are applied in-order to find a matching environment variable:

1. An exact match of your property key (my.property)

2. A match where periods are replaced by underscores (my_property)

3. An uppercase match of your property key (MY.PROPERTY)

4. An uppercase match where periods are replaced by underscores (MY_PROPERTY)

When it comes to working with mapped config properties (subclasses of
org.eclipse.scout.rt.platform.config.AbstractMapConfigProperty), there’s also some special
mechanic to consider in terms of providing or overriding property map values using environment
variables. Since it is not possible to reliably retrieve the original map key from an environment
variable (again, due to the restrictions mentioned above), property map values may be supplied
using environment variables whose value is a JSON object string:

my_map_property={"map-key-01": "value-01", "map-key-02": "value-02", "map-key-03":
null}

The following rules apply, when such environment variables are read: * property map key/value
pairs are added from the JSON object to the property map, overriding keys already being defined by
sources of lower precedence (e.g. config.properties file) * a JSON object attribute value of "null" will

14

remove a key potentially being defined by sources of lower precedence

The parsing of JSON object strings is abstracted away using the new
org.eclipse.scout.rt.platform.config.IJsonPropertyReader interface as parsing JSON strings is not
implemented in the platform itself. However, there is a default implementation of this interface
available in org.eclipse.scout.rt.dataobject which uses the
org.eclipse.scout.rt.platform.dataobject.IDataObjectMapper feature to deserialize the JSON string
into a Java Map. In order to use this, an implementation of the IDataObjectMapper interface is also
required (e.g. org.eclipse.scout.rt.jackson.dataobject.JacksonDataObjectMapper). So in case you
want to use this feature, you have to define * org.eclipse.scout.rt:org.eclipse.scout.rt.dataobject *
org.eclipse.scout.rt:org.eclipse.scout.rt.jackson as new dependencies of your application aggregator
module (if they are not already present).

A properties file may import other config files from the classpath or any other absolute URL. This is
done using the special key import. It can be a single value or a list or map (e.g. import[anyKey or
number]:

• import[0]=classpath:myConfigs/other.properties

• import[1]=file:/C:/path/to/my/settings.properties

• import[2]=file:${catalina.base}/conf/db_connection.properties

Scout already has some config properties. For a list and the corresponding documentation see
Section 2.5.

2.4.2. Additional examples

Because the property classes are managed by the bean manager, you can use all the mechanisms to
change the behavior (@Replace in particular).

Listing 10 demonstrates how you can use the replace annotation to change the existing
ApplicationNameProperty class. The value is no longer fetched via the config mechanism, because the
getValue(String) method is overridden. In this case a fixed value is returned.

Listing 10. Property class providing a constant value.

import org.eclipse.scout.rt.platform.IgnoreBean;
import org.eclipse.scout.rt.platform.Replace;
import
org.eclipse.scout.rt.platform.config.PlatformConfigProperties.ApplicationNameProperty;

@Replace
public class ApplicationNameConstant extends ApplicationNameProperty {
 @Override
 protected String readFromSource(String namespace) {
 return "Contacts Application";
 }
}

The next example presented in Listing 11 uses the same idea. In this case, the getKey() method is

15

overridden to read the value from an other key as demonstrated is the Listing 12.

Listing 11. Property class reading the value from an other key.

import org.eclipse.scout.rt.platform.IgnoreBean;
import org.eclipse.scout.rt.platform.Replace;
import
org.eclipse.scout.rt.platform.config.PlatformConfigProperties.ApplicationNameProperty;

@Replace
public class ApplicationNamePropertyRedirection extends ApplicationNameProperty {

 @Override
 public String getKey() {
 return "myproject.applicationName";
 }
}

Listing 12. Read the configured value in your code.

Redirected Application Config
myproject.applicationName=My Project Application

2.4.3. Configuration validation

During the Platform startup all classes implementing the interface
org.eclipse.scout.rt.platform.config.IConfigurationValidator are asked to validate configuration
provided in the config.properties files. If there is at least one IConfigurationValidator that accepts
a given key-value-pair the configuration is considered to be valid. Otherwise the platform will not
start.

The concrete implementation org.eclipse.scout.rt.platform.config.ConfigPropertyValidator will
also check if a configured value matches the default value. In case it does an info message (warn in
development mode) will be logged but the platform will still start. To minimize configuration files
such entries should be removed from config.properties files.

2.5. Scout Config Properties
Table 1. Config Properties

Key Description Data Type Kind

scout.application.name The display name of the application. Used e.g. in
the info form and the diagnostic views. The
default value is unknown.

String Config
Property

scout.application.vers
ion

The application version as displayed to the user.
Used e.g. in the info form and the diagnostic
views. The default value is 0.0.0.

String Config
Property

16

Key Description Data Type Kind

scout.auth.anonymousEn
abled

Specifies if the AnonymousAccessController is
enabled. Therefore if a security filter uses this
controller no login is required.

Boolean Config
Property

scout.auth.cookieEnabl
ed

Specifies if the CookieAccessController is
enabled.

Boolean Config
Property

scout.auth.cookieMaxAg
e

If the CookieAccessController is enabled,
specifies the maximum age in seconds for the
cookie.

A positive value indicates that the cookie will
expire after that many seconds have passed.

A negative value means that the cookie is not
stored persistently and will be deleted when the
Web browser exits. A zero value causes the
cookie to be deleted.

The default value is 10 hours.

Long Config
Property

scout.auth.cookieName If the CookieAccessController is enabled,
specifies the name for the cookie.

The name must conform to RFC 2109. However,
vendors may provide a configuration option that
allows cookie names conforming to the original
Netscape Cookie Specification to be accepted.

By default sso.user.id is used as cookie name.

String Config
Property

scout.auth.cookieSessi
onValidateSecure

Specifies if the UI server should ensure a secure
cookie configuration of the webapp.

If enabled the application validates that the
httpOnly and Secure flags are set in the cookie
configuration in the web.xml.

This property should be disabled if no secure
connection (https) is used to the client browser
(not recommended).

The default value is true.

Boolean Config
Property

17

Key Description Data Type Kind

scout.auth.credentials Specifies the known credentials (username &
passwords) of the
org.eclipse.scout.rt.platform.security.ConfigF
ileCredentialVerifier.

Credentials are separated by semicolon.
Username and password information are
separated by colon. Usernames are case-
insensitive and it is recommended that they
should only consist of ASCII characters. Plain
text passwords are case-sensitive.

By default the password information consists of
Base64 encoded salt followed by a dot followed
by the Base64 encoded SHA-512 hash of the
password (using UTF-16).

Example:
username1:base64EncodedSalt.base64EncodedP
asswordHash;username2:base64EncodedSalt.ba
se64EncodedPasswordHash

To create a salt and hash tuples based on a clear
text password use the
org.eclipse.scout.rt.platform.security.ConfigF
ileCredentialVerifier.main() method that can
be invoked from the command line.

If scout.auth.credentialsPlaintext is set to true
the password information just consists of the
cleartext password.

String Config
Property

scout.auth.credentials
Plaintext

Specifies if the passwords specified in property
scout.auth.credentials is plaintext (not
recommended) or hashed. A value of false
indicates hashed passwords which is the default.

Boolean Config
Property

18

Key Description Data Type Kind

scout.auth.privateKey Specifies the Base64 encoded private key for
signing requests from the UI server to the
backend server. By validating the signature the
server can ensure the request is trustworthy.

Furthermore the CookieAccessController uses
this private key to sign the cookie.

New public-private-key-pairs can be created by
invoking the class
org.eclipse.scout.rt.platform.security.Securit
yUtility on the command line.

Base64
encoded
String

Config
Property

scout.auth.publicKey Specifies the Base64 encoded public key used to
validate signed requests on the backend server.
The public key must match the private key
stored in the property scout.auth.privateKey on
the UI server.

New public-private-key-pairs can be created by
invoking the class
org.eclipse.scout.rt.platform.security.Securit
yUtility on the command line.

Base64
encoded
String

Config
Property

scout.auth.tokenTtl Number of milliseconds a signature on a request
from the UI server to the backend server is valid
(TTL for the authentication token). If a request is
not received within this time, it is rejected.

By default this property is set to 10 minutes.

Long >= 0 Config
Property

scout.backendUrl The URL of the scout backend server (without
any servlets). E.g.: http://localhost:8080

By default this property is null.

String Config
Property

scout.client.jobComple
tionDelayOnSessionShut
down

Specifies the maximal time (in seconds) to wait
until running jobs are cancelled on session
shutdown.

The default value is 10 seconds.

Long >= 0 Config
Property

scout.client.memoryPol
icy

Specifies how long the client keeps fetched data
before it is discarded. One of small, medium or
large. The default value is large.

String Config
Property

scout.client.notificat
ionSubject

Technical subject under which received client
notifications are executed.

By default notification-authenticator is used.

Subject
name as
String

Config
Property

19

http://localhost:8080

Key Description Data Type Kind

scout.client.testingSe
ssionTtl

Testing client session expiration in milliseconds.
The default value is 1 day.

Long >= 0 Config
Property

scout.client.userArea User data area (e.g. in the user home) to store
user preferences. If nothing is specified the user
home of the operating system is used. By default
no user home is set.

String Config
Property

scout.clientnotificati
on.chunkSize

The maximum number of client notifications
that are consumed at once. The default is 30.

Integer >=
0

Config
Property

scout.clientnotificati
on.maxNotificationBloc
kingTimeOut

The maximum amount of time in millisecons a
consumer blocks while waiting for new
notifications. The default is 10 seconds.

Integer >=
0

Config
Property

scout.clientnotificati
on.nodeQueueCapacity

Capacity of the client notification queue. If
maximum capacity is reached, notification
messages are dropped. The default value is 200.

Integer >=
0

Config
Property

scout.clientnotificati
on.notificationQueueEx
pireTime

If no message is consumed for the specified
number of milliseconds, client notification
queues (with possibly pending notifications) are
removed.

This avoids overflows and unnecessary memory
consumption. Old queues may exist if a node
does not properly unregister (e.g. due to a
crash).

The default value is 10 minutes.

Integer >=
0

Config
Property

scout.clustersync.user Technical subject under which received cluster
sync notifications are executed. The default
value is system.

String Config
Property

scout.createTunnelToSe
rverBeans

Specifies if the Scout platform should create
proxy beans for interfaces annotated with
TunnelToServer. Calls to beans of such types are
then tunneled to the Scout backend.

By default this property is enabled if the
property scout.servicetunnel.targetUrl is set.

Boolean Config
Property

20

Key Description Data Type Kind

scout.cspDirective Configures individual Content Security Policy
(CSP) directives.

See https://www.w3.org/TR/CSP2/ and the Bean
org.eclipse.scout.rt.server.commons.servlet.Co
ntentSecurityPolicy for more details.

The value must be provided as a Map.

Example: scout.cspDirective[img-src]=self data:
https: http://localhost:8086

Map Config
Property

scout.cspEnabled Enable or disable Content Security Policy (CSP)
headers. The headers can be modified by
replacing the bean
org.eclipse.scout.rt.server.commons.servlet.Co
ntentSecurityPolicy or using the property
scout.cspDirective.

Boolean Config
Property

scout.cspExclusions A list of regex strings. If the pathInfo of the
request matches one of these strings the csp
headers won`t be set. This property only has an
effect if csp is enabled, see scout.cspEnabled.

List Config
Property

scout.devMode Property to specify if the application is running
in development mode. Default is false.

Boolean Config
Property

scout.externalBaseUrl Absolute URL to the deployed http(s):// base of
the web-application. The URL should include
proxies, redirects, etc.

Example: https://www.my-company.com/my-
scout-application/.

This URL is used to replace <scout:base /> tags.

String Config
Property

scout.healthCheckRemot
eUrls

Comma separated list of URLs the
RemoteHealthChecker should access.

By default no URLs are set.

List Config
Property

scout.http.connectionT
tl

Specifies the maximum life time in milliseconds
for kept alive connections of the Apache HTTP
client. The default value is 1 hour.

Integer Config
Property

21

https://www.w3.org/TR/CSP2/
http://localhost:8086
https://www.my-company.com/my-scout-application/
https://www.my-company.com/my-scout-application/

Key Description Data Type Kind

scout.http.ignoreProxy
Patterns

Configure the proxy ignore list for the
ConfigurableProxySelector. If an URI matches
the pattern no proxy connection is used.

By default no proxy is configured.

Example:

scout.http.ignoreProxyPatterns[0]=https?://local
host(?::\d+)?(?:/.*)?

scout.http.ignoreProxyPatterns[1]=…

List Config
Property

scout.http.keepAlive Enable/disable HTTP keep-alive connections.

The default value is defined by the system
property http.keepAlive or true if the system
property is undefined.

Boolean Config
Property

scout.http.maxConnecti
onsPerRoute

Configuration property to define the default
maximum connections per route of the Apache
HTTP client. The default value is 32.

Integer Config
Property

scout.http.maxConnecti
onsTotal

Specifies the total maximum connections of the
Apache HTTP client. The default value is 128.

Integer Config
Property

scout.http.proxyPatter
ns

Configure proxies for the
ConfigurableProxySelector. If an URI matches a
pattern the corresponding proxy will be used.

By default no proxy is used.

The property value is of the format
REGEXP_FOR_URI=PROXY_HOST:PROXY_PORT

Example:

scout.http.proxyPatterns[0]=.\.example.com(:\d
+)?=127.0.0.1:8888

scout.http.proxyPatterns[1]=.\.example.org(:\d
+)?=proxy.company.com

List Config
Property

scout.http.redirectPos
t

Enable redirect of POST requests (includes non-
idempotent requests). The default value is true

Boolean Config
Property

22

Key Description Data Type Kind

scout.http.retryOnNoHt
tpResponseException

Enable retry of request (includes non-
idempotent requests) on
NoHttpResponseException

Assuming that the cause of the exception was
most probably a stale socket channel on the
server side.

For apache tomcat see http://hc.apache.org/
httpcomponents-client-ga/tutorial/html/
connmgmt.html#d5e659

The default value is true

Boolean Config
Property

scout.http.retryOnSock
etExceptionByConnectio
nReset

Enable retry of request (includes non-
idempotent requests) on {@link
SocketException} with message Connection reset

Assuming that the cause of the exception was
most probably a stale socket channel on the
server side.

For apache tomcat see http://hc.apache.org/
httpcomponents-client-ga/tutorial/html/
connmgmt.html#d5e659

The default value is true

Boolean Config
Property

scout.http.transportFa
ctory

Fully qualified class name of the HTTP transport
factory the application uses. The class must
implement
org.eclipse.scout.rt.shared.http.IHttpTranspor
tFactory.

By default
org.eclipse.scout.rt.shared.http.ApacheHttpTra
nsportFactory is used.

Fully
qualified
class name.
The class
must have
org.eclips
e.scout.rt
.shared.ht
tp.IHttpTr
ansportFac
tory in its
super
hierarchy.

Config
Property

scout.jandex.rebuild Specifies if Jandex indexes should be rebuilt. Is
only necessary to enable during development
when the class files change often. The default
value is false.

RebuildStr
ategy

Config
Property

23

http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e659
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e659
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e659
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e659
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e659
http://hc.apache.org/httpcomponents-client-ga/tutorial/html/connmgmt.html#d5e659

Key Description Data Type Kind

scout.jaxws.consumer.c
onnectTimeout

Connect timeout in milliseconds to abort a
webservice request, if establishment of the
connection takes longer than this timeout. A
timeout of null means an infinite timeout. The
default value is null.

Integer >=
0

Config
Property

scout.jaxws.consumer.p
ortCache.corePoolSize

Number of ports to be preemptively cached to
speed up webservice calls. The default value is
10.

Integer >=
0

Config
Property

scout.jaxws.consumer.p
ortCache.enabled

Indicates whether to use a preemptive port
cache for webservice clients.

Depending on the implementor used, cached
ports may increase performance, because port
creation is an expensive operation due to WSDL
and schema validation.

The cache is based on a corePoolSize, meaning
that that number of ports is created on a
preemptive basis. If more ports than that
number is required, they are are created on
demand and also added to the cache until
expired, which is useful at a high load.

The default value is true.

Boolean Config
Property

scout.jaxws.consumer.p
ortCache.ttl

Maximum time in seconds to retain ports in the
cache if the value of
scout.jaxws.consumer.portCache.corePoolSize is
exceeded. That typically occurs at high load, or if
scout.jaxws.consumer.portCache.corePoolSize is
undersized. The default value is 15 minutes.

Long >= 0 Config
Property

scout.jaxws.consumer.p
ortPoolEnabled

To indicate whether to pool webservice clients.

Creating new service and Port instances is
expensive due to WSDL and schema validation.
Using the pool helps reducing these costs. The
default value is true.

The pool size is unlimited but its elements are
removed after a certain time (configurable)

If this value is true, the value of property
scout.jaxws.consumer.portCache.enabled has no
effect.

Boolean Config
Property

24

Key Description Data Type Kind

scout.jaxws.consumer.r
eadTimeout

Read timeout in milliseconds to abort a
webservice request, if it takes longer than this
timeout for data to be available for read. A
timeout of null means an infinite timeout. The
default value is null.

Integer >=
0

Config
Property

scout.jaxws.implemento
r

Fully qualified class name of the JAX-WS
implementor to use. The class must extend
org.eclipse.scout.rt.server.jaxws.implementor.
JaxWsImplementorSpecifics.

By default, JAX-WS Metro (not bundled with JRE)
is used. For that to work, add the Maven
dependency to JAX-WS Metro to your server
application`s pom.xml: com.sun.xml.ws:jaxws-
rt:2.2.10.

Fully
qualified
class name.
The class
must have
org.eclips
e.scout.rt
.server.ja
xws.implem
entor.JaxW
sImplement
orSpecific
s in its
super
hierarchy.

Config
Property

scout.jaxws.loghandler
Debug

Indicates whether to log SOAP messages in
debug or info level. The default value is false.

Boolean Config
Property

scout.jaxws.provider.a
uthentication.basicRea
lm

Security Realm used for Basic Authentication;
used by
org.eclipse.scout.rt.server.jaxws.provider.aut
h.method.BasicAuthenticationMethod. The default
value is JAX-WS.

String Config
Property

scout.jaxws.provider.u
ser.authenticator

Technical Subject used to authenticate
webservice requests. The default value is jaxws-
authenticator.

Subject
name as
String

Config
Property

scout.jaxws.provider.u
ser.handler

Technical subject used to invoke JAX-WS
handlers if the request is not authenticated yet;
used by
org.eclipse.scout.rt.server.jaxws.provider.han
dler.HandlerDelegate.

The default value is jaxws-handler.

Subject
name as
String

Config
Property

scout.jetty.port The port under which the jetty will be running. Integer
between 1
and 65535

Config
Property

scout.jobmanager.allow
CoreThreadTimeOut

Specifies whether threads of the core-pool
should be terminated after being idle for longer
than the value of property
scout.jobmanager.keepAliveTime. The defautl
value is false.

Boolean Config
Property

25

Key Description Data Type Kind

scout.jobmanager.coreP
oolSize

The number of threads to keep in the pool, even
if they are idle. The default value is 25.

Integer >=
0

Config
Property

scout.jobmanager.keepA
liveTime

The time limit (in seconds) for which threads,
which are created upon exceeding the
scout.jobmanager.corePoolSize limit, may
remain idle before being terminated. The
default value is 1 minute.

Long >= 0 Config
Property

scout.jobmanager.maxim
umPoolSize

The maximal number of threads to be created
once the value of scout.jobmanager.corePoolSize
is exceeded. The default value is unlimited
(which means limited by the resources of the
machine).

Integer >=
0

Config
Property

scout.jobmanager.prest
artCoreThreads

Specifies whether all threads of the core-pool
should be started upon job manager startup, so
that they are idle waiting for work.

By default this is disabled in development mode
(property scout.devMode is true) and enabled
otherwise.

Boolean Config
Property

scout.loadWebResources
FromFilesystem

Specifies if the application should look for web
resources (like .js, .html or .css) on the local
filesystem. If true, the resources will be searched
in modules that follow the Scout naming
conventions (e.g. name.ui.app.dev, name.ui.app,
name.ui) on the local filesystem first and (if not
found) on the classpath second. If false, the
resources are searched on the Java classpath
only. By default this property is true in dev mode
and false otherwise.

Boolean Config
Property

scout.mail.bouncedetec
tor.heuristic.contents

Non standard email bounce detection: content is
checked against the provided list of heuristic
contents (partial match, case-insensitive)

List Config
Property

scout.mail.bouncedetec
tor.heuristic.senderPr
efixes

Non standard email bounce detection: sender is
checked against the provided list of heuristic
sender prefixes (prefix match, case-insensitive)

List Config
Property

scout.mail.bouncedetec
tor.heuristic.subjects

Non standard email bounce detection: subject is
checked against the provided list of heuristic
subjects (partial match, case-insensitive)

List Config
Property

scout.malwareScanner.p
ath

Path to a malware scanner checked directory.
The default value is null which means the
system temp path is used.

String Config
Property

26

Key Description Data Type Kind

scout.mom.cluster.dest
ination.clusterNotific
ationTopic

Name of the topic for cluster notifications
published by scout application.

IDestinatio
n

Config
Property

scout.mom.cluster.envi
ronment

Contains the configuration to connect to the
network or broker. This configuration is specific
to the MOM implementor

Example to connect to a peer based cluster,
which is useful in development mode because
there is no central broker:

scout.mom.cluster.environment[scout.mom.nam
e]=Scout Cluster MOM

scout.mom.cluster.environment[scout.mom.con
nectionfactory.name]=ClusterMom

scout.mom.cluster.environment[java.naming.fac
tory.initial]=org.apache.activemq.jndi.ActiveMQI
nitialContextFactory

scout.mom.cluster.environment[java.naming.pr
ovider.url]=failover:(peer://mom/cluster?persiste
nt=false)

scout.mom.cluster.environment[connectionFact
oryNames]=ClusterMom

Map Config
Property

scout.mom.cluster.impl
ementor

Specifies the MOM implementor.

Example to work with a JMS based implementor:

scout.mom.cluster.implementor=org.eclipse.scou
t.rt.mom.jms.JmsMomImplementor

Fully
qualified
class name.
The class
must have
org.eclips
e.scout.rt
.mom.api.I
MomImpleme
ntor in its
super
hierarchy.

Config
Property

scout.mom.failover.con
nectionRetryCount

Specifies the connection retry count for
connection failover. Default is 15. The value 0
disables connection failover.

Integer Config
Property

scout.mom.failover.con
nectionRetryIntervalMi
llis

Specifies the connection retry interval in
milliseconds. Default is 2000ms.

Integer Config
Property

27

Key Description Data Type Kind

scout.mom.failover.ses
sionRetryIntervalMilli
s

Specifies the session retry interval in
milliseconds. Default is 5000ms.

Integer Config
Property

scout.mom.marshaller Specifies the default Marshaller to use if no
marshaller is specified for a MOM or a
destination. By default the
JsonDataObjectMarshaller is used.

Fully
qualified
class name.
The class
must have
org.eclips
e.scout.rt
.mom.api.m
arshaller.
IMarshalle
r in its
super
hierarchy.

Config
Property

scout.mom.requestreply
.cancellationTopic

Specifies the default topic to receive cancellation
request for request-reply communication. By
default, a defined topic with the name
scout.mom.requestreply.cancellation is used.

IDestinatio
n

Config
Property

scout.mom.requestreply
.enabled

Specifies if request-reply messaging is enabled
by default. This value can also be configured
individually per MOM. The default value is true.

Boolean Config
Property

scout.nodeId Specifies the cluster node name. If not specified
a default id is computed.

String Config
Property

scout.remotefileRootPa
th

Absolute path to the root directory of the
RemoteFileService. The default value is null.

String Config
Property

scout.serverSessionTtl Server sessions that have not been accessed for
the specified number of milliseconds are
removed from the cache. The default value is
one day.

Long >= 0 Config
Property

scout.servicetunnel.co
mpress

Specifies if the service tunnel should compress
the data. If null, the response decides which is
default to true.

Boolean Config
Property

scout.servicetunnel.ma
xConnectionsPerRoute

Specifies the default maximum connections per
route property for the HTTP service tunnel.

Overrides the value from
scout.http.maxConnectionsPerRoute for the
service tunnel.

Default value is 2048.

Integer Config
Property

28

Key Description Data Type Kind

scout.servicetunnel.ma
xConnectionsTotal

Specifies the default total maximum connections
property for the HTTP service tunnel.

Overrides the value from
scout.http.maxConnectionsTotal for the service
tunnel.

The default value is 2048.

Integer Config
Property

scout.servicetunnel.ta
rgetUrl

Specifies the URL to the ServiceTunnelServlet on
the backend server.

By default this property points to the value of
property scout.backendUrl with /process
appended.

String Config
Property

scout.smtp.connectionT
imeout

Socket connection timeout value in milliseconds. Integer >=
0

Config
Property

scout.smtp.debugReceiv
erEmail

If specified all emails are sent to this address
instead of the real one. This may be useful
during development to not send emails to real
users by accident.

String Config
Property

scout.smtp.pool.maxCon
nectionLifetime

Max. lifetime of pooled connections in seconds. Integer >=
0

Config
Property

scout.smtp.pool.maxIdl
eTime

Max. idle time for pooled connections in
seconds.

Integer >=
0

Config
Property

scout.smtp.pool.waitFo
rConnectionTimeout

Max. wait time for SMTP connection in seconds.
If the value is 0, callers will wait infinitely long
for SMTP connections.

Integer >=
0

Config
Property

scout.smtp.readTimeout Socket read timeout value in milliseconds. Integer >=
0

Config
Property

scout.sql.directJdbcCo
nnection

If true a direct JDBC connection is created.
Otherwise a JNDI connection is used. The default
value is true.

Boolean Config
Property

scout.sql.jdbc.driverN
ame

The driver name to use. By default
oracle.jdbc.OracleDriver is used.

String Config
Property

scout.sql.jdbc.mapping
Name

The JDBC mapping name. By default
jdbc:oracle:thin:@localhost:1521:ORCL is used.

String Config
Property

scout.sql.jdbc.pool.co
nnectionBusyTimeout

Connections will be closed after this timeout in
milliseconds even if the connection is still busy.
The default value is 6 hours.

Long >= 0 Config
Property

scout.sql.jdbc.pool.co
nnectionIdleTimeout

Idle connections will be closed after this timeout
in milliseconds. The default value is 5 minutes.

Long >= 0 Config
Property

29

Key Description Data Type Kind

scout.sql.jdbc.pool.si
ze

The maximum number of connections to create.
The default pool size is 25.

Integer >=
0

Config
Property

scout.sql.jdbc.propert
ies

Semicolon separated list of properties to pass to
the JDBC connection. The default value is null.
E.g.: key1=val1;key2=val2

String Config
Property

scout.sql.jdbc.stateme
ntCacheSize

Maximum number of cached SQL statements.
The default value is 25.

Integer >=
0

Config
Property

scout.sql.jndi.initial
ContextFactory

The name of the object to lookup in the JNDI
context. Default is null.

String Config
Property

scout.sql.jndi.name The name of the object to lookup in the JNDI
context. Default is null.

String Config
Property

scout.sql.jndi.provide
rUrl

JNDI provider url (e.g. ldap://somehost:389).
Default is null.

String Config
Property

scout.sql.jndi.urlPkgP
refixes

A colon-separated list of package prefixes for the
class name of the factory class that will create a
URL context factory. Default is null.

String Config
Property

scout.sql.password The password to connect to the database (JDBC
or JNDI)

String Config
Property

scout.sql.transactionM
emberId

Id of the transaction member on which the
connection is available.

String Config
Property

scout.sql.username The username to connect to the database (JDBC
or JNDI)

String Config
Property

scout.texts.showKeys If this property is set to true, the
TextKeyTextProviderService will be registered
with high priority, and each call to TEXTS.get()
will return the given text key instead of the
translation.

This is useful for debug/testing purposes or
exporting forms to JSON.

By default this property is false.

Boolean Config
Property

scout.tiles.dataLoadQu
eueTimeoutSeconds

Maximum number of seconds a tile load job can
execute until it is automatically cancelled. The
default value is 2 minutes.

Integer >=
0

Config
Property

scout.tiles.maxConcurr
entDataLoadThreads

Maximum number of threads per server that
can be created to load tiles. The default value is
25.

Integer >=
0

Config
Property

30

Key Description Data Type Kind

scout.trustedCertifica
tes

URIs to DER (Base64) encoded certificate files
that should be trusted. The URI may refer to a
local file or a resource on the classpath (use
classpath: prefix). The default value is an empty
list.

List Config
Property

scout.ui.backgroundPol
lingMaxWaitTime

The polling request (which waits for a
background job to complete) stays open until a
background job has completed or the specified
number of seconds elapsed.

This property must have a value between 3 and
the value of property scout.ui.maxUserIdleTime.

By default this property is set to 1 minute.

Long >= 0 Config
Property

scout.ui.locales Contains a comma separated list of supported
locales (e.g. en,en-US,de-CH).

This is only relevant if locales.json and texts.json
should be sent to the client, which is not the case
for remote apps. So this property is only used for
JS only apps.

By default no locales are supported.

List Config
Property

scout.ui.maxUserIdleTi
me

If a user is inactive (no user action) for the
specified number of seconds, the session is
stopped and the user is logged out.

By default this property is set to 4 hours.

Long >= 0 Config
Property

scout.ui.modelJobTimeo
ut

The maximal timeout in seconds to wait for
model jobs to complete during a UI request.
After that timeout the model jobs will be aborted
so that the request may return to the client.

By default this property is set to 1 hour.

Long >= 0 Config
Property

scout.ui.sessionstore.
housekeepingDelay

Number of seconds before the housekeeping job
starts after a UI session has been unregistered
from the store.

By default this property is set to 30 seconds.

Integer >=
0

Config
Property

scout.ui.theme The name of the UI theme which is activated
when the application starts.

String Config
Property

31

Key Description Data Type Kind

scout.urlHints.enabled Enable or disable changing UrlHints using URL
parameters in the browser address line.

By default has the same value as the config
property scout.devMode meaning it is by default
only enabled in development mode.

Boolean Config
Property

scout.util.defaultDeci
malSupportProvider

Specifies the default
DefaultDecimalSupportProvider to use. By
default the DefaultDecimalSupportProvider is
used.

Fully
qualified
class name.
The class
must have
org.eclips
e.scout.rt
.platform.
util.DECIM
AL$Default
DecimalSup
portProvid
er in its
super
hierarchy.

Config
Property

[1] https://github.com/wildfly/jandex

[2] https://en.wikipedia.org/wiki/.properties

32

https://github.com/wildfly/jandex
https://en.wikipedia.org/wiki/.properties

Chapter 3. Client Model

3.1. Desktop

3.1.1. Desktop Bench Layout

The Desktop Layout can be configured using the IDesktop.setBenchLayoutData method. This
property is observed and might be changed during the applications lifecycle. The desktop consists
out of 9 view stacks (see Figure 2). Each form can be assigned to a single view stack using the
property DisplayViewId (IForm.getConfiguredDisplayViewId). If multiple forms are assigned to the
same view stack the views will be displayed as tabs where the top form is visible and the
corresponding tab selected.

 Tabs are only visible if the form does have a title, subtitle or an image.

Figure 2. Desktop Bench overview

The east, center and west columns are separated with splitters which can be moved according to
the layout data properties. Each column is split into a north, center and south part. Within a
column the north, center and south parts can not differ in their width.

The modifications (splitter movements) are cached when a cache key (
BenchLayoutData.withCacheKey) is set. In case the cache key is null the layout starts always with the
initial values.

An example of a bench layout data configuration with a fixed north (N) view stack and an south (S)
view stack with an minimal size. See

33

org.eclipse.scout.rt.client.ui.desktop.bench.layout.FlexboxLayoutData API for the documentation
of the properties.

desktop.setBenchLayoutData(①
 new BenchLayoutData()
 .withCacheKey("a-cache-key") ②
 .withCenter(③
 new BenchColumnData()
 .withNorth(new FlexboxLayoutData().withGrow(0).withShrink(0)
.withInitial(280).withRelative(false)) ④
 .withCenter(new FlexboxLayoutData()) ⑤
 .withSouth(new FlexboxLayoutData().withShrink(0).withInitial(-1))));
⑥

① set the BenchLayoutData to the desktop.

② set a cache key to store the layout modifications (dragging splitters) to the session store. Aware
the settings are stored to the browsers session store they are not transfered over different
browsers nor systems.

③ configure the center column (N, C, S).

④ The north part is fixed in size so the splitter between north (N) and center © view stack is
disabled. The size is fixed to 280 pixel.

⑤ Use default for the center © view stack.

⑥ The south part is using the UI height as initial size and is growable but not shrinkable.

3.2. Multiple Dimensions Support
Several components support multiple dimensions for visibility or enabled flags. This means the
component is only visible or enabled if all dimensions are set to true. This gives developers the
flexibility to e.g. use a dimension for granting and one for the business logic.

A total of 8 dimensions are available for a certain component type and attribute. This means you
e.g. have a total of 8 dimensions for Form Field visibility in your application. And 8 dimensions for
enabled-states of Actions. So the dimensions are not consumed by component instance but by
component type. This means you have to be careful in defining new dimensions as all components
of the same type share these dimensions.

Some of these dimensions are already used internally. Refer to the implementation
and JavaDoc of the component for details about how many dimensions are
available for custom use.

34

menu.setEnabled(false); ①
menu.setEnabledGranted(false); ②
menu.setVisible(false, IDimensions.VISIBLE_CUSTOM); ③
formField.setVisible(true, false, true, "MyCustomDimension"); ④
formField2.setVisible(true, true, true); ⑤

formField3.isEnabled(IDimensions.ENABLED_CUSTOM); ⑥
formField3.isEnabled(IDimensions.ENABLED); ⑦
formField3.isEnabled(); ⑧
formField3.isEnabledIncludingParents(); ⑨

① Disables the menu using the internal default dimension

② Disables the menu using the internal granted dimension

③ Hides the menu with a third custom dimension

④ Form Fields also support the propagation of new values to children and parents. This sets the
custom dimension of this field and all of its children to true.

⑤ This sets the internal default enabled dimension of this field and all of its parents and children
to true.

⑥ Checks if the custom dimension is set to true

⑦ Checks if the internal default dimension is set to true

⑧ Checks if all dimensions of formField2 are true

⑨ Checks if all dimensions of formField2 and all dimensions of all parent Form Fields are enabled.

In the example above the instance 'formField3' uses 4 dimensions for the enabled
attribute: ENABLED_CUSTOM because it is explicitly used and the 3 dimensions
that are used internally (ENABLED, ENABLED_GRANTED, ENABLED_SLAVE). Even
though the instance 'formField2' makes no use of the custom dimension it is
consumed for this instance as well because the dimensions do not exist by instance
but by attribute (as explained above).

35

Chapter 4. Texts
The TEXTS class is a convenience class to access the default Text Provider Service used for the
localization of the texts in the user interface.

Listing 13. Text lookup

TEXTS.get("persons");

Its also possible to use some parameters:

Listing 14. Text lookup

String name = "Bob";
int age = 13;

TEXTS.get("NameWithAge", name, age);

In this case, some placeholders for the parameters are needed in the translated text:

Listing 15. Text lookup

 NameWithAge={0} is {1} years old;

4.1. Text properties files
Scout uses the java.util.ResourceBundle mechanism for native language support. So whatever
language files you have in your <project-prefix>.shared/resources/texts/*.properties are taken as
translation base.

Example setup:

• <project-prefix>.shared/resources/texts/Texts.properties

• <project-prefix>.shared/resources/texts/Texts_fr.properties

If your application starts with the -vmargs -Duser.language=fr or eclipse.exe -nl=fr the
translations in Texts_fr.properties are considered. In case of any other user language the
translations in Texts.properties are considered.

It is possible to edit these files in the Eclipse Scout SDK with the NLS Editor.

4.2. Text Provider Service
Text Provider Services are services responsible to provide localization for texts in the user
interface. A typical application contains a such service contributed by the Shared Project.

• implements: ITextProviderService

36

• extends: AbstractDynamicNlsTextProviderService (default, translations are stored in properties
files)

Using Text Provider Services developers can decide to store the translations in a custom container
like a database or XML files. Furthermore using TextProviderServices it is very easy to overwrite
any translated text in the application (also texts used in Scout itself) using the service ranking.

The mechanism is aligned with the icon retrieval which is also managed using Icon Provider
Services.

4.2.1. Localization using .properties files

By default the internationalization mechanism relies on .properties files using a reference
implementation of the TextProviderServices:

Service extending the AbstractDynamicNlsTextProviderService class.

A Text Provider Service working with the default implementation need to define where the
properties files are located. This is realized by overriding the getter getDynamicNlsBaseName().
Here an example:

Listing 16. Text lookup

 @Override
 protected String getDynamicNlsBaseName() {
 return "resources.texts.Texts";
 }

If configured like this, it means that the .properties files will be located in the same plug-in at the
location:

• /resources/texts/Texts.properties (default)

• /resources/texts/Texts_fr.properties (french)

• /resources/texts/Texts_de.properties (german)

• … (additional languages)

If you decide to store your translated texts in .properties files, you migth want to use the NLS Editor
to edit them.

You need to respect the format defined by the Java Properties class. In particular the encoding of a
.properties file is ISO-8859-1 (also known as Latin-1). All non-Latin-1 characters must be encoded.
Examples:

'à' => "\u00E0"
'ç' => "\u00E7"
'ß' => "\u00DF"

The encoding is the "Unicode escape characters": \uHHHH where HHHH is a hexadecimal id of the

37

https://wiki.eclipse.org/index.php?title=Scout/Concepts/Icon_Provider_Service&action=edit&redlink=1
https://wiki.eclipse.org/index.php?title=Scout/Concepts/Icon_Provider_Service&action=edit&redlink=1
https://wiki.eclipse.org/Scout/SDK/NLS_Editor

character in the Unicode character table. Read more on the .properties File on wikipedia.

4.2.2. File Watcher

The NlsFileWatcher observes changes in text property files. If a change in a text property file occurs,
the nls resource bundle cache will be invalidated. This means that there is no need to restart the
server when working on texts and translations. The file watcher is only active if scout.devMode=true
is set and can be disabled with scout.dev.texts.fileWatcherEnabled=false. By default, the file
watcher is enabled in development mode.

38

http://en.wikipedia.org/wiki/List_of_Unicode_characters
http://en.wikipedia.org/wiki/.properties

Chapter 5. Icons
A lot of Scout widgts support icons. For instance a menu item can show an icon next to the menu
text. Icons in Scout can be either a bitmap image (GIF, PNG, JPEG, etc.) or a character from an icon-
font. An example for an icon-font is the scoutIcons.ttf which comes shipped with Scout.

It’s a good practice to define the available icons in your application in a class that defines each icon
as a constant. Create a class Icons in the shared module of your project. These constants should be
references, when you set the IconId property in your code.

For bitmap images you simply specify the filename of the image file without the file extension.
Place all your icon files in the resource folder of your client module. Assuming your project name is
"org.scout.hello", the correct location to store icon files would be:

org.scout.hello.client/ # Client project directory
 src/main/resources/ # Resources directory
 org/scout/hello/client/icons/ # Path to icons
 application_logo_large.png
 person.png
 ...

Listing 17. Icons.java

// Bitmap image (references icons/application_logo_large.png)
public static final String ApplicationLogo = "application_logo_large";

// Character from icon-font scoutIcons.woff (default)
public static final String Calendar ="font:\uE003";

// Character from a custom icon-font
public static final String Phone ="font:awesomeIcons \uF095";

Listing 18. Usage of iconId in a Scout widget

@Override
protected String getConfiguredIconId(){
 return Icons.Calendar;
}

5.1. Using a custom icon font
You can use your own icon font. The required file format for an icon font is .woff. For the following
examples we assume the name of your font file is awesomeIcons.woff. The following steps are
required:

Place the font file in the WebContent/fonts directory of your html.ui module. This makes it available
for http requests on the URL http://[base]/fonts/awesomeIcons.woff.

39

Create a CSS/LESS definition to reference the icon font in stylesheets (e.g. in a file called fonts.less).
Make sure the definition is added to the index.less of your project.

Listing 19. The CSS/LESS font definition should look like this:

@font-face {
 font-family: awesomeIcons;
 font-weight: normal;
 src: url('fonts/awesomeIcons.woff') format('woff');
}

/* Overrides definitions in fonts.css > .font-icon
* Use iconId 'font:awesomeIcons [character]' in Scout model.
* See icons.js and usage of this class to see how iconId is used.
*/
.font-awesomeIcons {
 font-family: awesomeIcons, @font-default-family;
}

To check if your CSS definition is correct, you should download the CSS file directly via URL and
check if the CSS file contains the required font definition. Have a look at your index.html to find the
path to your CSS (e.g. http://[base]/yourapp-theme.css).

When you request resources from the WebContent folder via http, Scout will find
resources from other modules on the classpath too. Thus the scoutIcons.woff is
always available in a Scout project. However, you must avoid naming conflicts,
since at runtime all files exist on the same classpath.

5.2. How to create a custom icon font
Here’s what we do to create and maintain our own icon font scoutIcons.woff. There may be other
methods to achieve the same.

To create and modify our icon font we use the online application IcoMoon. IcoMoon allows you to
assemble a set of icons from various sources (e.g. FontAwesome or custom SVG graphics) and create
a font file from that set.

You can export/import your icon set from and to IcoMoon, and you should store the files exported
from IcoMoon in a SCM system like GIT. IcoMoon stores all important data in the file selection.json.
Make sure you also store the raw SVG graphics you’ve uploaded to IcoMoon in your SCM, in case
you have to change a single icon later.

To edit the icon font in IcoMoon follow these steps:

• Import selection.json in IcoMoon, click on the "Import Icons" button.

• With the Select tool (arrow) you select the icons you want to add to your set. You can also add
one or more characters from other icon fonts like FontAwesome by choosing Add Icons From
Library…

40

https://icomoon.io/app/

• Your can import your custom SVG graphics with Import to Set, which you find in the hamburger
menu on the icon set. The SVG graphic should have the same size as the other icons in the set
and must use only a single color, black. The background must be transparent. Hint: the filename
of the SVG graphic should contain the unicode of the character in the font in order to simplify
maintencance. Only use unicodes from the Private Use Area from U+E000 to U+F8FF.

• When you’re happy with your icon set, you hit the Generate Font button in the footer in
IcoMoon. On the following page you can set the unicode of each icon/character. Click on the
prefences button (cog icon), to set the name of your icon font (e.g. scoutIcons). Finally click on
Download and you receive a ZIP file which contains the new selection.json, and font files like .ttf
and .woff.

• When you’ve added new unicodes to the icon font, you should also update Icons.java and add
constants for the new characters. When you’re using Scout JS you should also update icons.js
and icons.less.

• Important! don’t forget to check in the new selection.js to your SCM.

5.2.1. Tools

• Windows tool Character Map: first you must install your custom TrueType Font .ttf in Windows.
Simply double-click on the .ttf file and choose Install. After that you can start Character Map and
browse through the font.

• The ZIP archive from IcoMoon contains a file demo.html. This file shows a preview of your icon
font. Works in Chrome, but we had trouble viewing the font with Firefox.

• This tool from Wikipedia also creates a preview for an icon font: Vorlage:Private-Use-Area-Test.
Icon font must be installed first.

41

https://de.wikipedia.org/wiki/Vorlage:Private-Use-Area-Test

Chapter 6. Lookup Call
Lookup calls are mainly used by SmartFields and SmartColumns to look up single or multiple
LookupRows.

Class: LookupCall

6.1. Description
The Lookup call mechanism is used to look up a set of key-text pairs. Whereas the key can be of any
Java type the text must be of the type String. Each entry in this set is called LookupRow. In addition
to the key and the text a LookupRow can also define and icon, font, colors and a tooltipText.

This schema explains the role of a LookupCall in a SmartField:

6.2. Input
Lookup calls provide different method to compute the set of LookupRows :

• getDataByKey(): Retrieves a single lookup row for a specific key value. Used by SmartFields
and SmartColumns to get the display text for a given key value.

• getDataByText(): Retrieve multiple lookup rows which match a certain String. Used by
SmartFields when the user starts to enter some text in the field.

• getDataByAll(): Retrieves all available lookup rows. Used by SmartFields when the user clicks
on the browse icon.

• getDataByRec(): This can only be used for hierarchical lookup calls. It retrieves all available
sub-tree lookup rows for a given parent.

6.3. Members
The Lookup call contains attributes (accessible with getter and setter) that can be used to compute
the list of lookups rows. Out of the box you have:

• key: contains the key value when the lookup is queried by key.

• text: contains the text input in case of a text lookup (typically this is the text entered by the user

42

smart field).

• all: contains the browse hint in case of a lookup by all (typically when a user click on the button
to see all proposal in a smart field).

• rec: contains the key of the parent entry, in when the children of a node are loaded.

• master: contains the value of the master field (if a master field is associated to the field using
the lookup call).

It is possible to add you own additional attributes, for example validityFrom, validityTo as date
parameter. Just add them as field with getter and setter:

@ClassId("6154090e-86ac-4c08-9769-bf3ef61c1b4b")
public class LanguageLookupCall extends LookupCall<String> {
 // other stuff like serialVersionUID, Lookup Service definition...

 private static final long serialVersionUID = 1L;

 private Date m_validityFrom;
 private Date m_validityTo;

 @Override
 protected Class<? extends ILookupService<String>> getConfiguredService() {
 return ILanguageLookupService.class;
 }

 public Date getValidityFrom() {
 return m_validityFrom;
 }

 public void setValidityFrom(Date validityFrom) {
 this.m_validityFrom = validityFrom;
 }

 public Date getValidityTo() {
 return m_validityTo;
 }

 public void setValidityTo(Date validityTo) {
 this.m_validityTo = validityTo;
 }
}

In this case, you might want to set your properties before the lookup call query is sent. This can be
done with the PrepareLookup event of the SmartField or the ListBox:

43

 @Override
 protected void execPrepareLookup(ILookupCall<String> call) {
 LanguageLookupCall c = (LanguageLookupCall) call;
 c.setValidityFrom(DateUtility.parse("2012-02-26", "yyyy-mm-dd"));
 c.setValidityTo(DateUtility.parse("2013-02-27", "yyyy-mm-dd"));
 }

If you follow this pattern, you will consume the values on the server by casting the call:

 @Override
 public List<? extends ILookupRow<String>> getDataByAll(ILookupCall<String> call) {
 LanguageLookupCall c = (LanguageLookupCall) call;
 Date validityFrom = c.getValidityFrom();
 Date validityTo = c.getValidityTo();

 List<? extends ILookupRow<String>> result = new ArrayList<>();
 //compute result: corresponding lookup rows (depending on validityFrom and
validityTo).
 return result;
 }

6.4. Type of lookup calls

6.4.1. With a Lookup Service

Delegation to the Lookup Service on server side.

They are not necessarily restricted to a fix number of records. Instead they should be favoured if
the set of records is rather large.

6.4.2. Local Lookup Call

Such a LookupCall is used if the data can be provided directly without the need to make a backend
call.

An example of this approach is when a SmartField or a SmartColumn is configured to be used with
a CodeType. The code types are cached so it is not necessary to fetch them using a lookup service.
Instead a LocalLookupCall, in that case the CodeLookupCall, may be used to load the data. It creates
the LookupRows corresponding to the codes in the CodeType.

6.4.3. Overview

44

6.4.4. Properties

Defined with getConfiguredXxxxxx() methods.

• Service: Defines which service is used to retrieve lookup rows

• MasterRequired: Defines whether a master value must be set in order to query for multiple
lookup rows

6.4.5. Code examples

Using a LookupCall in a SmartField:

 @Override
 protected Class<? extends ILookupCall<String>> getConfiguredLookupCall() {
 return LanguageLookupCall.class;
 }

Accessing a LookupRow directly:

It is possible to access a LookupRow directly. In this example the input is a key (thisKey) and the
method getDataByKey() is used. Before accessing the text, we ensure that a LookupRow has been
retrieved.

45

 //Execute the LookupCall (using DataByKey)
 LookupCall<String> call = new LanguageLookupCall();
 call.setKey(thisKey);
 List<? extends ILookupRow<String>> rows = call.getDataByKey();

 //Get the text (with a null check)
 String text = null;
 if (rows != null && !rows.isEmpty()) {
 text = rows.get(0).getText();
 }

46

Chapter 7. Code Type
A CodeType is a structure to represent a tree key-code association. They are used in SmartField and
SmartColumn.

• implements: ICodeType<T>

• extends: AbstractCodeType<T>

7.1. Description
CodeTypes are used in SmartField to let the user choose between a finite list of values. The value
stored by the field corresponds to the key of the selected code.

A CodeType can be seen as a tree of Codes. Each code associates to the key (the Id) other properties:
among others a Text and an IconId.

In order to have the same resolving mechanism (getting the display text of a key), CodeTypes are
also used in SmartColumns. To choose multiple values in the list, the fields ListBox (flat CodeType)
and TreeBox (hierarchical CodeType) can be used.

7.1.1. Organisation of the codes

The codes are organized in a tree. Therefore a CodeType can have one or more child codes at the
root level, and each code can have other child codes. In a lot of cases a list of codes (meaning a tree
containing only leaves at the first level) is sufficient to cover most of the need.

Child codes are ordered in their parent code. This is realized with the order annotation.

7.1.2. Type of the key

The type of the key is defined by its generic parameter <T>. It is very common to use a type from the
java.lang.* package (like Integer or String), but any Java Object is suitable. It must:

• implement Serializable

• have correctly implemented equals() and hashCode() functions

47

https://wiki.eclipse.org/Scout/Concepts/SmartField
https://wiki.eclipse.org/Scout/Concepts/Code
https://wiki.eclipse.org/Scout/Concepts/SmartColumn
https://wiki.eclipse.org/Scout/Concepts/ListBox
https://wiki.eclipse.org/Scout/Concepts/TreeBox
https://wiki.eclipse.org/Scout/Concepts/Order_Annotation

• be present in the server and the client

There is no obligation to have the same type for the Id between the codes of a CodeType (meaning
the same generic type parameter for the codes inner-class). However it is a good practice to have
the same type between the codes of a CodeType, because the Id are used as value of SmartFields.
Therefore the generic parameter describing the type of value of a SmartField must be compatible
with the type of the codes contained in the CodeType.

7.2. Using a CodeType

7.2.1. SmartField or SmartColumn

CodeType in a SmartField (or SmartColumn).

@ClassId("08ccc68e-7b72-4fe0-b666-245ddb8b8441")
public class YesOrNoSmartField extends AbstractSmartField<Boolean> {

 // other configuration of properties.

 @Override
 protected Class<? extends ICodeType<?, Boolean>> getConfiguredCodeType() {
 return YesOrNoCodeType.class;
 }
}

If the SmartField (or SmartColumn) works with a CodeType, a specific LookupCall is instantiated to
get the LookupRows based on the Codes contained in a CodeType.

7.2.2. Accessing a code directly

Scout-runtime will handle the instantiation and the caching of CodeTypes.

This function returns the text corresponding to the key using a CodeType:

 public String getCodeText(boolean key) {
 ICode c = BEANS.get(YesOrNoCodeType.class).getCode(key);
 if (c != null) {
 return c.getText();
 }
 return null;
 }

7.3. Static CodeType

48

https://wiki.eclipse.org/Scout/Concepts/SmartField

7.3.1. Java Code and structure

The common way to define a CodeType is to extend AbstractCodeType. Each code is an inner-class
extending AbstractCode. Like usual the properties of Codes and CodeTypes can be set using the
getConfiguredXxxxxx() methods.

See the Java Code of a simple YesOrNoCodeType having just two codes:

• YesOrNoCodeType.YesCode

• YesOrNoCodeType.NoCode

7.3.2. With the SDK

The SDK provides some help to generate CodeTypes and Codes. Use File → New → Scout → Scout
Code Type to generate a new code.

7.4. Dynamic CodeType
Code types are not necessarily hardcoded. It is possible to implement other mechanisms to load a
CodeType dynamically.

The description of the Codes can come from a database or from an XML files. If you want to do so,
you just need to implement the method corresponding to the event LoadCodes.

It is possible to use the static and the dynamic approach together. In this case, if there is a conflict (2
codes for the same id) the event OverwriteCode is triggered.

Note for advanced users:

49

https://wiki.eclipse.org/Scout/Concepts/GetConfigured_Methods

Each CodeType is instantiated for

• each language

• each partition

Note: A drawback is that the CodeType class is not aware of the language and the partition it is
instantiated for. Only the CodeTypeStore that manages the CodeType instances knows for which
language and which partition they have been instantiated.

50

Chapter 8. Working with exceptions
Exceptions can be logged via SLF4J Logger, or given to exception handler for centralized, consistent
exception handling, or translated into other exceptions. Scout provides some few exceptions/errors,
which are used by the framework.

8.1. Scout Throwables
All scout throwables are unchecked and typically implementing the IThrowableWithContextInfo
interface, which provides functionality for associating context information with the occurred error.

Most scout throwables are runtime exceptions, and typically inherit from PlatformException. See
Section 8.1.1 for more information.

Some scout throwables are instances of java.lang.Error by extending PlatformError. Those errors
usually provide functionality to interrupt Jobs, for example when a user is canceling a long running
operation.
Note: PlatformErrors should never be catched by business logic! See Section 8.1.2 for more
information.

8.1.1. Scout Runtime Exceptions

PlatformException

Base runtime exception of the Scout platform, which allows for message formatting anchors and
context information to be associated.

There is a single constructor which accepts the exception’s message, and optionally a variable
number of arguments. Typically, a potential cause is given as its argument. The message allows
further the use of formatting anchors in the form of {} pairs. The respective formatting arguments
are provided via the constructor’s varArg parameter. If the last argument is of the type Throwable
and not referenced as formatting anchor in the message, that Throwable is used as the exception’s
cause. Internally, SLF4J MessageFormatter is used to provide substitution functionality. Hence, The
format is the very same as if using SLF4j Logger.

Further, PlatformException allows to associate context information, which are available in Log4j
diagnostic context map (MDC) upon logging the exception.

51

Listing 20. PlatformException examples

Exception cause = new Exception();

// Create a PlatformException with a message
new PlatformException("Failed to persist data");

// Create a PlatformException with a message and cause
new PlatformException("Failed to persist data", cause);

// Create a PlatformException with a message with formatting anchors
new PlatformException("Failed to persist data [entity={}, id={}]", "person", 123);

// Create a PlatformException with a message containing formatting anchors and a cause
new PlatformException("Failed to persist data [entity={}, id={}]", "person", 123,
cause);

// Create a PlatformException with context information associated
new PlatformException("Failed to persist data", cause)
 .withContextInfo("entity", "person")
 .withContextInfo("id", 123);

ProcessingException

Represents a PlatformException and is thrown in case of a processing failure, and which can be
associated with an exception error code and severity.

VetoException

Represents a ProcessingException with VETO character. If thrown server-side, exceptions of this
type are transported to the client and typically visualized in the form of a message box.

AssertionException

Represents a PlatformException and indicates an assertion error about the application’s
assumptions about expected values.

TransactionRequiredException

Represents a PlatformException and is thrown if a ServerRunContext requires a transaction to be
available.

8.1.2. Scout Runtime Errors

Runtime Errors are used to indicate an error, that shouldn’t be catched/treated by business logic
and therefore bubble up to the appropriate exception handler in the scout framework. Because
those errors are handled by the framework internals, they should never be catched on the server
(Services etc.) nor on the client side (Pages, Forms, etc.).

All Scout Runtime Errors extend PlatformError.

52

PlatformError

Like PlatformException, PlatformErrors implement IThrowableWithContextInfo for associating
context information with the occurred error. See PlatformException for usage and example code.

ThreadInterruptedError

Represents a PlatformError and indicates that a thread was interrupted while waiting for some
condition to become true, e.g. while waiting for a job to complete. Unlike
java.lang.InterruptedException, the thread’s interrupted status is not cleared when catching this
exception.

FutureCancelledError

Represents a PlatformError and indicates that the result of a job cannot be retrieved, or the
IFuture’s completion not be awaited because the job was cancelled.

TimedOutError

Represents a PlatformError and indicates that the maximal wait time elapsed while waiting for
some condition to become true, e.g. while waiting a job to complete.

8.2. Exception handling
An exception handler is the central point for exception handling. It provides a single method
'handle' which accepts a Throwable, and which never throws an exception. It is implemented as a
bean, meaning managed by the bean manager to allow easy replacement, e.g. to use a different
handler when running client or server side. By default, a ProcessingException is logged according
to its severity, a VetoException, ThreadInterruptedError or FutureCancelledError logged in DEBUG
level, and any other exception logged as an ERROR. If running client side, exceptions are
additionally visualized and showed to the user.

8.3. Exception translation
Exception translators are used to translate an exception into another exception.

Also, they unwrap the cause of wrapper exceptions, like UndeclaredThrowableException, or
InvocationTargetException, or ExecutionException. If the exception is of the type Error, it is normally
not translated, but re-thrown instead. That is because an Error indicates a serious problem due to
an abnormal condition.

8.3.1. DefaultExceptionTranslator

Use this translator to work with checked exceptions and runtime exceptions, but not with
Throwable.

If given an Exception, or a RuntimeException, or if being a subclass thereof, that exception is
returned as given. Otherwise, a PlatformException is returned which wraps the given Throwable.

53

8.3.2. DefaultRuntimeExceptionTranslator

Use this translator to work with runtime exceptions. When working with RunContext or IFuture,
some methods optionally accept a translator. If not specified, this translator is used by default.

If given a RuntimeException, it is returned as given. For a checked exception, a PlatformException is
returned which wraps the given checked exception.

8.3.3. PlatformExceptionTranslator

Use this translator to work with PlatformExceptions.

If given a PlatformException, it is returned as given. For all other exceptions (checked or
unchecked), a PlatformException is returned which wraps the given exception.

Typically, this translator is used if you require to add some context information via
IThrowableWithContextInfo.withContextInfo(String, Object, Object).

Listing 21. PlatformException examples

try {
 // do something
}
catch (Exception e) {
 throw BEANS.get(PlatformExceptionTranslator.class).translate(e)
 .withContextInfo("cid", "12345")
 .withContextInfo("user", Subject.getSubject(AccessController.getContext()))
 .withContextInfo("job", IFuture.CURRENT.get());
}

8.3.4. NullExceptionTranslator

Use this translator to work with Throwable as given.

Also, if given a wrapped exception like UndeclaredThrowableException, InvocationTargetException or
ExecutionException, that exception is returned as given without unwrapping its cause.

For instance, this translator can be used if working with the Job API, e.g. to distinguish between a
FutureCancelledError thrown by the job’s runnable, or because the job was effectively cancelled.

8.4. Exception Logging
Scout framework logs via SLF4J (Simple Logging Facade for Java). It serves as a simple facade or
abstraction for various logging frameworks (e.g. java.util.logging, logback, log4j) allowing the end
user to plug in the desired logging framework at deployment time.

SLF4J allows the use of formatting anchors in the form of {} pairs in the message which will be
replaced by the respective argument. If the last argument is of the type Throwable and not
referenced as formatting anchor in the message, that Throwable is used as the exception.

54

Listing 22. Logging examples

Exception e = new Exception();

Logger logger = LoggerFactory.getLogger(getClass());

// Log a message
logger.error("Failed to persist data");

// Log a message with exception
logger.error("Failed to persist data", e);

// Log a message with formatting anchors
logger.error("Failed to persist data [entity={}, id={}]", "person", 123);

// Log a message and exception with a message containing formatting anchors
logger.error("Failed to persist data [entity={}, id={}]", "person", 123, e);

55

Chapter 9. JobManager
Scout provides a job manager based on Java Executors framework to run tasks in parallel, and on
Quartz Trigger API to support for schedule plans and to compute firing times. A task (aka job) can
be scheduled to commence execution either immediately upon being scheduled, or delayed some
time in the future. A job can be single executing, or recurring based on some schedule plan. The job
manager itself is implemented as an application scoped bean, meaning that it is a singleton which
exists once in the web application.

9.1. Functionality
• immediate, delayed or timed execution

• single (one-shot) or repetitive execution (based on Quartz schedule plans)

• listen for job lifecycle events

• wait for job completion

• job cancellation

• limitation of the maximal concurrently level among jobs

• RunContext based execution

• configurable thread pool size (core pool size, max pool size)

• association of job execution hints to select jobs (e.g. to cancel or await job’s completion)

• named jobs and threads to ease debugging

9.2. Job
A job is defined as some work to be executed asynchronously and is associated with a JobInput to
describe how to run that work. The work is given to the job manager in the form of a Runnable or
Callable. The only difference is, that a Runnable represents a 'fire-and-forget' action, meaning that
the submitter of the job does not expect the job to return a result. On the other hand, a Callable
returns the computation’s result, which the submitter can await for. Of course, a runnable’s
completion can also be waited for.

Listing 23. Work that does not return a result

public class Work implements IRunnable {

 @Override
 public void run() throws Exception {
 // do some work
 }
}

56

Listing 24. Work that returns a computation result

public class WorkWithResult implements Callable<String> {

 @Override
 public String call() throws Exception {
 // do some work
 return "result";
 }
}

Upon scheduling a job, the job manager returns a IFuture to interact with the job, e.g. to cancel its
execution, or to await its completion. The job itself can also access its IFuture, namely via
IFuture.CURRENT() ThreadLocal.

Listing 25. Accessing the Future from within the job

public class Job implements IRunnable {

 @Override
 public void run() throws Exception {
 IFuture<?> myFuture = IFuture.CURRENT.get();
 }
}

9.3. Scheduling a Job
The job manager provides two scheduling methods, which only differ in the work they accept for
execution (callable or runnable).

IFuture<Void> schedule(IRunnable runnable, JobInput input); ①

<RESULT> IFuture<RESULT> schedule(Callable<RESULT> callable, JobInput input); ②

① Use to schedule a runnable which does not return a result to the submitter

② Use to schedule a callable which does return a result to the submitter

The second and mandatory argument to be provided is the JobInput, which tells the job manager
how to run the job. Learn more about JobInput.

The following snippet illustrates how a job is actually scheduled.

57

Listing 26. Schedule a job

IJobManager jobManager = BEANS.get(IJobManager.class); ①

②
jobManager.schedule(() -> {
 // do something
}, BEANS.get(JobInput.class)); ③

① Obtain the job manager via bean manager (application scoped bean)

② Provide the work to be executed (either runnable or callable)

③ Provide the JobInput to instrument job execution

This looks a little bit clumsy, which is why Scout provides you with the Jobs class to simplify dealing
with the job manager, and to support you in the creation of job related artifacts like JobInput, filter
builders and more. Most importantly, it allows to schedule jobs in a shorter and more readable
form.

Listing 27. Schedule a job via Jobs helper class

Jobs.schedule(() -> {
 // do something
}, Jobs.newInput());

9.4. JobInput
The job input tells the job manager how to run the job. It further names the job to ease debugging,
declares in which context to run the job, and how to deal with unhandled exceptions. The job input
itself is a bean, useful if adding some additional features to the job manager. The API of JobInput
supports for method chaining for reduced and more solid code.

58

Listing 28. Schedule a job and control execution via JobInput

Jobs.schedule(() -> {
 // do something
}, Jobs.newInput()
 .withName("job name") ①
 .withRunContext(ClientRunContexts.copyCurrent()) ②
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(10, TimeUnit.SECONDS) ③
 .withSchedule(FixedDelayScheduleBuilder.repeatForever(5, TimeUnit.SECONDS)))
④
 .withExceptionHandling(new ExceptionHandler() { ⑤

 @Override
 public void handle(Throwable t) {
 System.err.println(t);
 }
 }, true));

This snippet instructs the job manager to run the job as following:

① Give the job a name.

② Run the job in the current calling context, meaning in the very same context as the submitter is
running when giving this job to the job manager. By copying the current context, the job will
also be cancelled upon cancellation of the current RunContext.

③ Commence execution in 10 seconds (delayed execution).

④ Execute the job repeatedly, with a delay of 5 seconds between the termination of one and the
commencement of the next execution. Also, repeat the job infinitely, until being cancelled.

⑤ Print any uncaught exception to the error console, and do not propagate the exception to the
submitter, nor cancel the job upon an uncaught exception.

The following paragraphs describe the functionality of JobInput in more detail.

9.4.1. JobInput.withName

To optionally specify the name of the job, which is used to name the worker thread (only in
development environment) and for logging purpose. Optionally, formatting anchors in the form of
{} pairs can be used in the name, which will be replaced by the respective argument.

Jobs.newInput()
 .withName("Sending emails [from={}, to={}]", "frank", "john@eclipse.org,
jack@eclipse.org");

9.4.2. JobInput.withRunContext

To optionally specify the RunContext to be installed during job execution. The RunMonitor associated
with the RunContext will be used as the job’s monitor, meaning that cancellation requests to the job

59

future or the context’s monitor are equivalent. If no context is given, the job manager ensures a
monitor to be installed, so that executing code can always query its cancellation status via
RunMonitor.CURRENT.get().isCancelled().

9.4.3. JobInput.withExecutionTrigger

To optionally set the trigger to define the schedule upon which the job will commence execution. If
not set, the job will commence execution immediately after being scheduled, and will execute
exactly once.

The trigger mechanism is provided by Quartz Scheduler, meaning that you can profit from the
powerful Quartz schedule capabilities.

For more information, see http://www.quartz-scheduler.org.

Use the static factory method Jobs.newExecutionTrigger() to get an instance:

// Schedules a delayed single executing job
Jobs.newInput()
 .withName("job")
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(10, TimeUnit.SECONDS));

// Schedules a repeatedly running job at a fixed rate (every hour), which ends in 24
hours
Jobs.newInput()
 .withName("job")
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withEndIn(1, TimeUnit.DAYS)
 .withSchedule(SimpleScheduleBuilder.repeatHourlyForever()));

// Schedules a job which runs at 10:15am every Monday, Tuesday, Wednesday, Thursday
and Friday
Jobs.newInput()
 .withName("job")
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withSchedule(CronScheduleBuilder.cronSchedule("0 15 10 ? * MON-FRI")));

Learn more about ExecutionTrigger.

9.4.4. JobInput.withExecutionSemaphore

To optionally control the maximal concurrently level among jobs assigned to the same semaphore.

With a semaphore in place, this job only commences execution, once a permit is free or gets
available. If free, the job commences execution immediately at the next reasonable opportunity,
unless no worker thread is available.

A semaphore initialized to one allows to run jobs in a mutually exclusive manner, and a semaphore

60

http://www.quartz-scheduler.org

initialized to zero to run no job at all. The number of total permits available can be changed at any
time, which allows to adapt the maximal concurrency level to some dynamic criteria like time of
day or system load. However, a semaphore can be sealed, meaning that the number of permits
cannot be changed anymore, and any attempts will be rejected.

A new semaphore instance can be obtained via Jobs class.

IExecutionSemaphore semaphore = Jobs.newExecutionSemaphore(5); ①

for (int i = 0; i < 100; i++) {
②
 Jobs.schedule(() -> {
 // doing something
 }, Jobs.newInput()
 .withName("job-{}", i)
 .withExecutionSemaphore(semaphore)); ③
}

① Create a new ExecutionSemaphore via Jobs class. The semaphore is initialized with 5 permits,
meaning that at any given time, there are no more than 5 jobs running concurrently.

② Schedule 100 jobs in a row.

③ Set the semaphore to limit the maximal concurrency level to 5 jobs.

Learn more about ExecutionSemaphore.

9.4.5. JobInput.withExecutionHint

To associate the job with an execution hint. An execution hint is simply a marker to mark a job, and
can be evaluated by filters to select jobs, e.g. to listen to job lifecycle events of some particular jobs,
or to wait for some particular jobs to complete, or to cancel some particular jobs. A job may have
multiple hints associated. Further, hints can be registered directly on the future via
IFuture.addExecutionHint(hint), or removed via IFuture.removeExecutionHint(hint).

9.4.6. JobInput.withExceptionHandling

To control how to deal with uncaught exceptions. By default, an uncaught exception is handled by
ExceptionHandler bean and then propagated to the submitter, unless the submitter is not waiting for
the job to complete via IFuture.awaitDoneAndGet().

This method expects two arguments: an optional exception handler, and a boolean flag indicating
whether to swallow exceptions. 'Swallow' is independent of the specified exception handler, and
indicates whether an exception should be propagated to the submitter, or swallowed otherwise.

If running a repetitive job with swallowing set to true, the job will continue its repetitive execution
upon an uncaught exception. If set to false, the execution would exit.

61

9.4.7. JobInput.withThreadName

To set the thread name of the worker thread that will execute the job.

9.4.8. JobInput.withExpirationTime

To set the maximal expiration time upon which the job must commence execution. If elapsed, the
job is cancelled and does not commence execution. By default, a job never expires.

For a job that executes once, the expiration is evaluated just before it commences execution. For a
job with a repeating schedule, it is evaluated before every single execution.

In contrast, the trigger’s end time specifies the time at which the trigger will no longer fire.
However, if fired, the job may not be executed immediately at this time, which depends on whether
having to compete for an execution permit first. So the end time may already have elapsed once
commencing execution. In contrast, the expiration time is evaluated just before starting execution.

9.5. IFuture
A future represents the result of an asynchronous computation, and is returned by the job manager
upon scheduling a job. The future provides functionality to await for the job to complete, or to get
its computation result or exception, or to cancel its execution, and more.

Learn more about job cancellation in Section 9.9.
Learn more about listening for job lifecycle events in Section 9.10.
Learn more about awaiting the job’s completion in Section 9.11.

9.6. Job states
Upon scheduling a job, the job transitions different states. The current state of a job can be queried
from its associated IFuture.

state description

SCHEDULED Indicates that a job was given to the job manager for execution.

REJECTED Indicates that a job was rejected for execution. This might happen if the
job manager has been shutdown, or if no more worker threads are
available.

PENDING Indicates that a job’s execution is pending, either because scheduled with
a delay, or because of being a repetitive job while waiting for the
commencement of the next execution.

RUNNING Indicates that a job is running.

DONE Indicates that a job finished execution, either normally or because it was
cancelled. Use IFuture.isCancelled() to check for cancellation.

WAITING_FOR_PERMIT Indicates that a semaphore aware job is competing for a permit to
become available.

62

state description

WAITING_FOR_BLOCKI
NG_CONDITION

Indicates that a job is blocked by a blocking condition, and is waiting for
it to fall.

The state 'done' does not necessarily imply that the job already finished execution.
That is because a job also enters 'done' state upon cancellation, but may still
continue execution.

9.7. Future filter
A future filter is a filter which can be passed to various methods of the job manager to select some
futures. The filter must implement IFilter interface, and has a single method to accept futures of
interest.

Listing 29. Example of a future filter

public class FutureFilter implements Predicate<IFuture<?>> {

 @Override
 public boolean test(IFuture<?> future) {
 // Accept or reject the future
 return false;
 }
}

Scout provides you with FutureFilterBuilder class to ease building filters which match multiple
criteria joined by logical 'AND' operation.

Listing 30. Usage of FutureFilterBuilder

Predicate<IFuture<?>> filter = Jobs.newFutureFilterBuilder() ①
 .andMatchExecutionHint("computation") ②
 .andMatchNotState(JobState.PENDING) ③
 .andAreSingleExecuting() ④
 .andMatchNotFuture(IFuture.CURRENT.get()) ⑤
 .andMatchRunContext(ClientRunContext.class) ⑥
 .andMatch(new SessionFutureFilter(ISession.CURRENT.get())) ⑦
 .toFilter(); ⑧

① Returns an instance of the future filter builder

② Specifies to match only futures associated with execution hint 'computation'

③ Specifies to match only jobs not in state pending

④ Specifies to match only single executing jobs, meaning no recurring jobs

⑤ Specifies to exclude the current future (if any)

⑥ Specifies to match only jobs running on behalf of a ClientRunContext

63

⑦ Specifies to match only jobs of the current session

⑧ Builds the filters to get a Filter instance

Fore more information, refer to the JavaDoc of FutureFilterBuilder.

9.8. Event filter
A job event filter is a filter which can be given to job manager to subscribe for job lifecycle events.
The filter must implement IFilter interface, and has a single method to accept events of interest.

Listing 31. Example of an event filter

public class EventFilter implements Predicate<JobEvent> {

 @Override
 public boolean test(JobEvent event) {
 // Accept or reject the event
 return false;
 }
}

Scout provides you with JobEventFilterBuilder class to ease building filters which match multiple
criteria joined by logical 'AND' operation.

Listing 32. Usage of JobEventFilterBuilder

Predicate<JobEvent> filter = Jobs.newEventFilterBuilder() ①
 .andMatchEventType(JobEventType.JOB_STATE_CHANGED) ②
 .andMatchState(JobState.RUNNING) ③
 .andMatch(new SessionJobEventFilter(ISession.CURRENT.get())) ④
 .andMatchExecutionHint("computation") ⑤
 .toFilter(); ⑥

① Returns an instance of the job event filter builder

② Specifies to match all events representing a job state change

③ Specifies to match only events for jobs which transitioned into running state

④ Specifies to match only events for jobs of the current session

⑤ Specifies to match only events for jobs which are associated with the execution hint
'computation'

⑥ Builds the filters to get a Filter instance

Fore more information, refer to the JavaDoc of JobEventFilterBuilder.

9.9. Job cancellation
A job can be cancelled in two ways, either directly via its IFuture, or via job manager. Both expect

64

you to provide a boolean flag indicating whether to interrupt the executing working thread. Upon
cancellation, the job immediately enters 'done' state. Learn more about Section 9.6. If cancelling via
job manager, a future filter must be given to select the jobs to be cancelled. Learn more about
Section 9.7

The cancellation attempt will be ignored if the job has already completed or was cancelled. If not
running yet, the job will never run. If the job has already started, then the interruptIfRunning
parameter determines whether the thread executing the job should be interrupted in an attempt to
stop the job.

In the following some examples:

Listing 33. Cancel a job via its future

// Schedule a job
IFuture<?> future = Jobs.schedule(new Work(), Jobs.newInput());

// Cancel the job via its future
future.cancel(false);

Listing 34. Cancel multiple jobs via job manager

Jobs.getJobManager().cancel(Jobs.newFutureFilterBuilder()
 .andMatchFuture(future1, future2, future3)
 .toFilter(), false);

Listing 35. Cancel multiple jobs which match a specific execution hint and the current session

Jobs.getJobManager().cancel(Jobs.newFutureFilterBuilder()
 .andMatchExecutionHint("computation")
 .andMatch(new SessionFutureFilter(ISession.CURRENT.get()))
 .toFilter(), false);

A job can query its current cancellation status via RunMonitor.CURRENT.get().isCancelled(). If doing
some long running operations, it is recommended for the job to regularly check for cancellation.

A job which is scheduled to run on a copy of the submitting RunContext, it gets also
cancelled once the RunMonitor of that context gets cancelled.

9.10. Subscribe for job lifecycle events
Sometimes it is useful to register for some job lifecycle events. The following event types can be
subscribed for:

state description

JOB_STATE_CHANGED Signals that a job transitioned to a new JobState, e.g. form
JobState.SCHEDULED to JobState.RUNNING.

65

state description

JOB_EXECUTION_HINT_
ADDED

Signals that an execution hint was added to a job.

JOB_EXECUTION_HINT_
REMOVED

Signals that an execution hint was removed from a job.

JOB_MANAGER_SHUTD
OWN

Signals that the job manager was shutdown.

The listener is registered via job manager as following:

Listing 36. Subscribe for global job events

Jobs.getJobManager().addListener(Jobs.newEventFilterBuilder() ①
 .andMatchEventType(JobEventType.JOB_STATE_CHANGED)
 .andMatchState(JobState.RUNNING)
 .andMatch(new SessionJobEventFilter(ISession.CURRENT.get()))
 .toFilter(), event -> {
 IFuture<?> future = event.getData().getFuture(); ②
 System.out.println("Job commences execution: " + future.getJobInput().getName()
);
 });

① Subscribe for all events related to jobs just about to commence execution, and which belong to
the current session

② Get the future this event was fired for

If interested in only events of a single future, the listener can be registered directly on the future.

Listing 37. Subscribe for local job events

future.addListener(Jobs.newEventFilterBuilder()
 .andMatchEventType(JobEventType.JOB_STATE_CHANGED)
 .andMatchState(JobState.RUNNING)
 .toFilter(), event -> System.out.println("Job commences execution"));

9.11. Awaiting job completion
A job’s completion can be either awaited on its IFuture, or via job manager - the first optionally
allows to consume the job’s computation result, whereas the second allows multiple futures to be
awaited for.

9.11.1. Difference between 'done' and 'finished' state

When awaiting futures, the definition of 'done' and 'finished' state should be understood - 'done'
means that the future completed either normally, or was cancelled. But, if cancelled while running,
the job may still continue its execution, whereas a job which not commenced execution yet, will
never do so. The latter typically applies for jobs scheduled with a delay. However, 'finished' state

66

differs from 'done' state insofar as a cancelled, currently running job enters 'finished' state only
upon its actual completion. Otherwise, if not cancelled, or cancelled before executing, it is
equivalent to 'done' state. In most situations, it is sufficient to await for the future’s done state,
especially because a cancelled job cannot return a result to the submitter anyway.

9.11.2. Awaiting a single future’s 'done' state

Besides of some overloaded methods, IFuture basically provides two methods to wait for a future to
enter 'done' state, namely awaitDone and awaitDoneAndGet, with the difference that the latter
additionally returns the job’s result or exception. If the future is already done, those methods will
return immediately. For both methods, there exists an overloaded version to wait for at most a
given time, which once elapsed results in a TimedOutError thrown.

Further, awaitDoneAndGet allows to specify an IExceptionTranslator to control exception translation.
By default, DefaultRuntimeExceptionTranslator is used, meaning that a RuntimeException is
propagated as it is, whereas a checked exception would be wrapped into a PlatformException. If
you require checked exceptions to be thrown as they are, use DefaultExceptionTranslator instead,
or even NullExceptionTranslator to work with the raw ExecutionException as being thrown by Java
Executor framework.

Listing 38. Examples of how to await done state on a future

IFuture<String> future = Jobs.schedule(() -> {
 // doing something
 return "computation result";
}, Jobs.newInput());

// Wait until done without consuming the result
future.awaitDone(); ①
future.awaitDone(10, TimeUnit.SECONDS); ②

// Wait until done and consume the result
String result = future.awaitDoneAndGet(); ③
result = future.awaitDoneAndGet(10, TimeUnit.SECONDS); ④

// Wait until done, consume the result, and use a specific exception translator
result = future.awaitDoneAndGet(DefaultExceptionTranslator.class); ⑤
result = future.awaitDoneAndGet(10, TimeUnit.SECONDS, DefaultExceptionTranslator.
class); ⑥

① Waits if necessary for the job to complete, or until cancelled. This method does not throw an
exception if cancelled or the computation failed, but throws ThreadInterruptedError if the
current thread was interrupted while waiting.

② Waits if necessary for at most 10 seconds for the job to complete, or until cancelled, or the
timeout elapses. This method does not throw an exception if cancelled, or the computation
failed, but throws TimedOutError if waiting timeout elapsed, or throws ThreadInterruptedError
if the current thread was interrupted while waiting.

③ Waits if necessary for the job to complete, and then returns its result, if available, or throws its
exception according to DefaultRuntimeExceptionTranslator, or throws FutureCancelledError if

67

cancelled, or throws ThreadInterruptedError if the current thread was interrupted while
waiting.

④ Waits if necessary for at most 10 seconds for the job to complete, and then returns its result, if
available, or throws its exception according to DefaultRuntimeExceptionTranslator, or throws
FutureCancelledError if cancelled, or throws TimedOutError if waiting timeout elapsed, or
throws ThreadInterruptedError if the current thread was interrupted while waiting.

⑤ Waits if necessary for the job to complete, and then returns its result, if available, or throws its
exception according to the given DefaultExceptionTranslator, or throws FutureCancelledError if
cancelled, or throws ThreadInterruptedError if the current thread was interrupted while
waiting.

⑥ Waits if necessary for at most the given time for the job to complete, and then returns its result,
if available, or throws its exception according to the given DefaultExceptionTranslator, or
throws FutureCancelledError if cancelled, or throws TimedOutError if waiting timeout elapsed,
or throws ThreadInterruptedError if the current thread was interrupted while waiting.

It is further possible to await asynchronously on a future to enter done state by registering a
callback via whenDone method. The advantage over registering a listener is that the callback is
invoked even if the future already entered done state upon registration.

Listing 39. Example of when-done callback

future.whenDone(event -> {
 // invoked upon entering done state.
}, ClientRunContexts.copyCurrent());

Because invoked in another thread, this method optionally accepts a RunContext to be applied
when being invoked.

9.11.3. Awaiting a single future’s 'finished' state

Use the method awaitFinished to wait for the job to finish, meaning that the job either completed
normally or by an exception, or that it will never commence execution due to a premature
cancellation. To learn more about the difference between 'done' and 'finished' state, click here.
Please note that this method does not return the job’s result, because by Java Future definition, a
cancelled job cannot provide a result.

Listing 40. Examples of how to await finished state on a future

IFuture<String> future = Jobs.schedule(() -> {
 // doing something
 return "computation result";
}, Jobs.newInput());

// Wait until finished
future.awaitFinished(10, TimeUnit.SECONDS);

68

9.11.4. Awaiting multiple future’s 'done' state

Job Manager allows to await for multiple futures at once. The filter to be provided limits the futures
to await for. This method requires you to provide a maximal time to wait.

Filters can be plugged by using logical filters like AndFilter or OrFilter, or negated by enclosing a
filter in NotFilter. Also see Section 9.7 to create a filter to match multiple criteria joined by logical
'AND' operation.

Listing 41. Examples of how to await done state of multiple futures

// Wait for some futures
Jobs.getJobManager().awaitDone(Jobs.newFutureFilterBuilder() ①
 .andMatchFuture(future1, future2, future3)
 .toFilter(), 1, TimeUnit.MINUTES);

// Wait for all futures marked as 'reporting' jobs of the current session
Jobs.getJobManager().awaitDone(Jobs.newFutureFilterBuilder() ②
 .andMatchExecutionHint("reporting")
 .andMatch(new SessionFutureFilter(ISession.CURRENT.get()))
 .toFilter(), 1, TimeUnit.MINUTES);

① Waits if necessary for at most 1 minute for all three futures to complete, or until cancelled, or
the timeout elapses.

② Waits if necessary for at most 1 minute until all jobs marked as 'reporting' jobs of the current
session complete, or until cancelled, or the timeout elapses.

9.11.5. Awaiting multiple future’s 'finished' state

Use the method awaitFinished to wait for multiple jobs to finish, meaning that the jobs either
completed normally or by an exception, or that they will never commence execution due to a
premature cancellation. To learn more about the difference between 'done' and 'finished' state,
click here.

Listing 42. Examples of how to await finish state of multiple futures

// Wait for some futures
Jobs.getJobManager().awaitFinished(Jobs.newFutureFilterBuilder() ①
 .andMatchFuture(future1, future2, future3)
 .toFilter(), 1, TimeUnit.MINUTES);

// Wait for all futures marked as 'reporting' jobs of the current session
Jobs.getJobManager().awaitFinished(Jobs.newFutureFilterBuilder() ②
 .andMatchExecutionHint("reporting")
 .andMatch(new SessionFutureFilter(ISession.CURRENT.get()))
 .toFilter(), 1, TimeUnit.MINUTES);

① Waits if necessary for at most 1 minute for all three futures to finish, or until cancelled, or the
timeout elapses.

69

② Waits if necessary for at most 1 minute until all jobs marked as 'reporting' jobs of the current
session finish, or until cancelled, or the timeout elapses.

9.12. Uncaught job exceptions
If a job throws an exception, that exception is handled by ExceptionHandler, and propagated to the
submitter. However, the exception is only propagated if having a waiting submitter. Also, an
uncaught exception causes repetitive jobs to terminate.

This default behavior as described can be changed via JobInput.withExceptionHandling(..).

9.13. Blocking condition
A blocking condition allows a thread to wait for a condition to become true. That is similar to the
Java Object’s 'wait/notify' mechanism, but with some additional functionality regarding semaphore
aware jobs. If a semaphore aware job enters a blocking condition, it releases ownership of the
permit, which allows another job of that same semaphore to commence execution. Upon the
condition becomes true, the job then must compete for a permit anew.

A condition can be used across multiple threads to wait for the same condition. Also, a condition is
reusable upon invalidation. And finally, a condition can be used even if not running within a job.

A blocking condition is often used by model jobs to wait for something to happen, but to allow
another model job to run while waiting. A typical use case would be to wait for a MessageBox to be
closed.

9.13.1. Example of a blocking condition

You are running in a semaphore aware job and require to do some long running operation. During
that time you do not require to be the permit owner. A simple but wrong approach would be the
following:

// Schedule a long running operation.
IFuture<?> future = Jobs.schedule(new LongRunningOperation(), Jobs.newInput());

// Wait until done.
future.awaitDone();

The problem with this approach is, that you still are the permit owner while waiting, meaning that
you possibly prevent other jobs from running. Instead, you could use a blocking condition for that
to achieve:

70

// Create a blocking condition.
final IBlockingCondition operationCompleted = Jobs.newBlockingCondition(true);

// Schedule a long running operation.
IFuture<Void> future = Jobs.schedule(new LongRunningOperation(), Jobs.newInput());

// Register done callback to unblock the condition.
future.whenDone(event -> {
 // Let the waiting job re-acquire a permit and continue execution.
 operationCompleted.setBlocking(false);
}, null);

// Wait until done. Thereby, the permit of the current job is released for the time
while waiting.
operationCompleted.waitFor();

9.14. ExecutionSemaphore
Represents a fair counting semaphore used in Job API to control the maximal number of jobs
running concurrently.

Jobs which are assigned to the same semaphore run concurrently until they reach the maximal
concurrency level defined for that semaphore. Subsequent tasks then wait in the queue until a
permit becomes available.

A semaphore initialized to one allows to run jobs in a mutually exclusive manner, and a semaphore
initialized to zero to run no job at all. The number of total permits available can be changed at any
time, which allows to adapt the maximal concurrency level to some dynamic criteria like time of
day or system load. However, once calling seal(), the number of permits cannot be changed
anymore, and any attempts will result in an AssertionException. By default, a semaphore is
unbounded.

9.15. ExecutionTrigger
Component that defines the schedule upon which a job will commence execution.

A trigger can be as simple as a 'one-shot' execution at some specific point in time in the future, or
represent a schedule which executes a job on a repeatedly basis. The latter can be configured to run
infinitely, or to end at a specific point in time. It is further possible to define rather complex
triggers, like to execute a job every second Friday at noon, but with the exclusion of all the
business’s holidays.

See the various schedule builders provided by Quartz Scheduler: SimpleScheduleBuilder,
CronScheduleBuilder, CalendarIntervalScheduleBuilder, DailyTimeIntervalScheduleBuilder. The most
powerful builder is CronScheduleBuilder. Cron is a UNIX tool with powerful and proven scheduling
capabilities. For more information, see http://www.quartz-scheduler.org.

Additionally, Scout provides you with FixedDelayScheduleBuilder to run a job with a fixed delay

71

http://www.quartz-scheduler.org

between the termination of one execution and the commencement of the next execution.

Use the static factory method 'Jobs.newExecutionTrigger()' to get an instance.

9.15.1. Misfiring

Regardless of the schedule used, job manager guarantees no concurrent execution of the same job.
That may happen, if using a repeatedly schedule with the job not terminated its last execution yet,
but the schedule’s trigger would like to fire for the next execution already. Such a situation is called
a misfiring. The action to be taken upon a misfiring is configurable via the schedule’s misfiring
policy. A policy can be to run the job immediately upon termination of the previous execution, or to
just ignore that missed firing. See the JavaDoc of the schedule for more information.

9.16. Stopping the platform
Upon stopping the platform, the job manager will also be shutdown. If having a IPlatformListener
to perform some cleanup work, and which requires the job manager to be still functional, that
listener must be annotated with an @Order less than IJobManager.DESTROY_ORDER, which is 5'900. If not
specifying an @Order explicitly, the listener will have the default order of 5, meaning being invoked
before job manager shutdown anyway.

9.17. ModelJobs
Model jobs exist client side only, and are used to interact with the Scout client model to read and
write model values in a serial manner per session. That enables no synchronization to be used
when interacting with the model.

By definition, a model job requires to be run on behalf of a ClientRunContext with a IClientSession
set, and must have the session’s model job semaphore set as its ExecutionSemaphore. That causes
all such jobs to be run in sequence in the model thread. At any given time, there is only one model
thread active per client session.

The class ModelJobs is a helper class, and is for convenience purpose to facilitate the creation of
model job related artifacts, and to schedule model jobs.

Listing 43. Running work in model thread

①
ModelJobs.schedule(() -> {
 // doing something in model thread
}, ModelJobs.newInput(ClientRunContexts.copyCurrent()) ②
 .withName("Doing something in model thread"));

① Schedules the work to be executed in the model thread

② Creates the JobInput to become a model job, meaning with the session’s model job semaphore set

For model jobs, it is also allowed to run according to a Quartz schedule plan, or to be executed with
a delay. Then the model permit is acquired just before each execution, and not upon being

72

scheduled.

Furthermore, the class ModelJobs provides some useful static methods:

// Returns true if the current thread represents the model thread for the current
client session. At any given time, there is only one model thread active per client
session.
ModelJobs.isModelThread();

// Returns true if the given Future belongs to a model job.
ModelJobs.isModelJob(IFuture.CURRENT.get());

// Returns a builder to create a filter for future objects representing a model job.
ModelJobs.newFutureFilterBuilder();

// Returns a builder to create a filter for JobEvent objects originating from model
jobs.
ModelJobs.newEventFilterBuilder();

// Instructs the job manager that the current model job is willing to temporarily
yield its current model job permit. It is rarely appropriate to use this method. It
may be useful for debugging or testing purposes.
ModelJobs.yield();

9.18. Configuration
Job manager can be configured with properties starting with scout.jobmanager. See Section 2.5.

9.19. Extending job manager
Job manager is implemented as an application scoped bean, and which can be replaced. To do so,
create a class which extends JobManager, and annotate it with @Replace annotation. Most likely, you
like to use the EE container’s ThreadPoolExecutor, or to contribute some behavior to the callable
chain which finally executes the job.

To change the executor, overwrite createExecutor method and return the executor of your choice.
But do not forget to register a rejection handler to reject futures upon rejection. Also, overwrite
shutdownExecutor to not shutdown the container’s executor.

To contribute some behavior to the callable chain, overwrite the method interceptCallableChain
and contribute your decorator or interceptor. Refer to the method’s JavaDoc for more information.

9.20. Scheduling examples
This sections contains some common scheduling examples.

73

Listing 44. Schedule a one-shot job

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running once")
 .withRunContext(ClientRunContexts.copyCurrent()));

Listing 45. Schedule a job with a delay

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running in 10 seconds")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(10, TimeUnit.SECONDS))); // delay of 10 seconds

Listing 46. Schedule a repetitive job at a fixed rate

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running every minute")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(1, TimeUnit.MINUTES) ①
 .withSchedule(SimpleScheduleBuilder.simpleSchedule() ②
 .withIntervalInMinutes(1) ③
 .repeatForever()))); ④

① Configure to fire in 1 minute for the first time

② Use Quartz simple schedule to achieve fixed-rate execution

③ Repetitively fire every minute

④ Repeat forever

74

Listing 47. Schedule a repetitive job which runs 60 times at every minute

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running every minute for total 60 times")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(1, TimeUnit.MINUTES) ①
 .withSchedule(SimpleScheduleBuilder.simpleSchedule() ②
 .withIntervalInMinutes(1) ③
 .withRepeatCount(59)))); ④

① Configure to fire in 1 minute for the first time

② Use Quartz simple schedule to achieve fixed-rate execution

③ Repetitively fire every minute

④ Repeat 59 times, plus the initial execution

Listing 48. Schedule a repetitive job at a fixed delay

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running forever with a delay of 1 minute between the termination of the
previous and the next execution")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(1, TimeUnit.MINUTES) ①
 .withSchedule(FixedDelayScheduleBuilder.repeatForever(1, TimeUnit.MINUTES))));
②

① Configure to fire in 1 minute for the first time

② Use fixed delay schedule

Listing 49. Schedule a repetitive job which runs 60 times, but waits 1 minute between the termination of the
previous and the commencement of the next execution

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running 60 times with a delay of 1 minute between the termination of
the previous and the next execution")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withStartIn(1, TimeUnit.MINUTES) ①
 .withSchedule(FixedDelayScheduleBuilder.repeatForTotalCount(60, 1, TimeUnit
.MINUTES)))); ②

① Configure to fire in 1 minute for the first time

75

② Use fixed delay schedule

Listing 50. Running at 10:15am every Monday, Tuesday, Wednesday, Thursday and Friday

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running at 10:15am every Monday, Tuesday, Wednesday, Thursday and
Friday")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withSchedule(CronScheduleBuilder.cronSchedule("0 15 10 ? * MON-FRI")))); ①

① Cron format: [second] [minute] [hour] [day_of_month] [month] [day_of_week] [year]?

Listing 51. Running every minute starting at 14:00 and ending at 14:05, every day

Jobs.schedule(() -> {
 // doing something
}, Jobs.newInput()
 .withName("Running every minute starting at 14:00 and ending at 14:05, every day")
 .withRunContext(ClientRunContexts.copyCurrent())
 .withExecutionTrigger(Jobs.newExecutionTrigger()
 .withSchedule(CronScheduleBuilder.cronSchedule("0 0-5 14 * * ?")))); ①

① Cron format: [second] [minute] [hour] [day_of_month] [month] [day_of_week] [year]?

Listing 52. Limit the maximal concurrency level among jobs

IExecutionSemaphore semaphore = Jobs.newExecutionSemaphore(5); ①

for (int i = 0; i < 100; i++) {
 Jobs.schedule(() -> {
 // doing something
 }, Jobs.newInput()
 .withName("job-{}", i)
 .withExecutionSemaphore(semaphore)); ②
}

① Create the execution semaphore initialized with 5 permits

② Set the execution semaphore to the job subject for limited concurrency

Listing 53. Cancel all jobs of the current session

Jobs.getJobManager().cancel(Jobs.newFutureFilterBuilder()
 .andMatch(new SessionFutureFilter(ISession.CURRENT.get()))
 .toFilter(), true);

76

Listing 54. Query for cancellation

public class CancellableWork implements IRunnable {

 @Override
 public void run() throws Exception {

 // do first chunk of operations

 if (RunMonitor.CURRENT.get().isCancelled()) {
 return;
 }

 // do next chunk of operations

 if (RunMonitor.CURRENT.get().isCancelled()) {
 return;
 }

 // do next chunk of operations
 }
}

Listing 55. Release current semaphore permit while executing

// Create a blocking condition.
final IBlockingCondition operationCompleted = Jobs.newBlockingCondition(true);

// Schedule a long running operation.
IFuture<Void> future = Jobs.schedule(new LongRunningOperation(), Jobs.newInput());

// Register done callback to unblock the condition.
future.whenDone(event -> {
 // Let the waiting job re-acquire a permit and continue execution.
 operationCompleted.setBlocking(false);
}, null);

// Wait until done. Thereby, the permit of the current job is released for the time
while waiting.
operationCompleted.waitFor();

77

Chapter 10. RunContext
Mostly, code is run on behalf of some semantic context, for example as a particular Subject and
with some context related ThreadLocals set, e.g. the user’s session and its Locale. Scout provides you
with different RunContexts, such as ClientRunContext or ServerRunContext. They all share some
common characteristics like Subject, Locale and RunMonitor, but also provide some additional
functionality like transaction boundaries if using ServerRunContext. Also, a RunContext facilitates
propagation of state among different threads. In order to ease readability, the 'setter-methods' of
the RunContext support method chaining.

All a RunContext does is to provide some setter methods to construct the context, and a run and call
method to run an action on behalf of that context. Thereby, the only difference among those two
methods is their argument. Whereas run takes a IRunnable instance, call takes a Callable to
additionally return a result to the caller. The action is run in the current thread, meaning that the
caller is blocked until completion.

By default, a RunContext is associated with a RunMonitor, and the monitor’s cancellation status can be
queried via RunMonitor.CURRENT.get().isCancelled(). The monitor allows for hard cancellation,
meaning that the executing thread is interrupted upon cancellation. For instance if waiting on an
interruptible construct like Object.wait() or IFuture.awaitDone(), the waiting thread returns with
an interruption exception.

10.1. Factory methods to create a RunContext
Typically, a RunContext is created from a respective factory like RunContexts to create a RunContext, or
ServerRunContexts to create a ServerRunContext, or ClientRunContexts to create a ClientRunContext.
Internally, the BeanManager is asked to provide a new instance of the RunContext, which allows you to
replace the default implementation of a RunContext in an easy way. The factories declare two factory
methods: empty() and copyCurrent(). Whereas empty() provides you an empty RunContext,
copyCurrent() takes a snapshot of the current calling context and initializes the RunContext
accordingly. That is useful if only some few values are to be changed, or, if using ServerRunContext,
to run the code on behalf of a new transaction.

The following Listing 56 illustrates the creation of an empty RunContext initialized with a particular
Subject and Locale.

78

Listing 56. Creation of an empty RunContext

Subject subject = new Subject(); ①
subject.getPrincipals().add(new SimplePrincipal("john"));
subject.setReadOnly();

②
RunContexts.empty()
 .withSubject(subject)
 .withLocale(Locale.US)
 .run(() -> {
 // run some code ③
 System.out.println(NlsLocale.CURRENT.get()); // > Locale.US
 System.out.println(Subject.getSubject(AccessController.getContext())); // > john
 });

① create the Subject to do some work on behalf

② Create and initialize the RunContext

③ This code is run on behalf of the RunContext

The following Listing 57 illustrates the creation of a 'snapshot' of the current calling RunContext with
another Locale set.

Listing 57. Create a copy of the current calling RunContext

RunContexts.copyCurrent()
 .withLocale(Locale.US)
 .run(() -> {
 // run some code
 });

An important difference is related to the RunMonitor. By using the copyCurrent() factory method, the
context’s monitor is additionally registered as child monitor of the monitor of the current calling
context. That way, a cancellation request to the calling context is propagated down to this context as
well. Of course, that behavior can be overwritten by providing another monitor yourself.

10.2. Properties of a RunContext
The following properties are declared on a RunContext and are inherited by ServerRunContext and
ClientRunContext.

79

propert
y

description accessib
ility

runMoni
tor

Monitor to query the cancellation status of the context.

* must not be null * is automatically set if creating the context by its factory *
is automatically registered as child monitor if creating the context by
copyCurrent() factory method

RunMon
itor.CUR
RENT.ge
t()

subject Subject to run the code on behalf Subject.g
etSubjec
t(Access
Controll
er.getCo
ntext())

locale Locale to be bound to the Locale ThreadLocal NlsLocal
e.CURRE
NT.get()

property
Map

Properties to be bound to the Property ThreadLocal Property
Map.CU
RRENT.g
et()

10.3. Properties of a ServerRunContext
A ServerRunContext controls propagation of server-side state and sets the transaction boundaries,
and is a specialization of RunContext.

propert
y

description accessib
ility

session Session to be bound to Session ThreadLocal ISession.
CURREN
T.get()

transacti
onScope

To control transaction boundaries. By default, a new transaction is started, and
committed or rolled back upon completion.

* Use TransactionScope.REQUIRES_NEW to run the code in a new transaction (by
default). * Use TransactionScope.REQUIRED to only start a new transaction if not
running in a transaction yet. * Use TransactionScope.MANDATORY to enforce that
the caller is already running in a transaction. Otherwise, a
TransactionRequiredException is thrown.

ITransac
tion.CUR
RENT.ge
t()

transacti
on

Sets the transaction to be used to run the runnable. Has only an effect, if
transaction scope is set to TransactionScope.REQUIRED or
TransactionScope.MANDATORY. Normally, this property should not be set
manually.

ITransac
tion.CUR
RENT.ge
t()

80

propert
y

description accessib
ility

clientNo
tificatio
nCollect
or

To associate the context with the given ClientNotificationCollector, meaning
that any code running on behalf of this context has that collector set in
ClientNotificationCollector.CURRENT thread-local.
That collector is used to collect all transactional client notifications, which are
to be published upon successful commit of the associated transaction, and
which are addressed to the client node which triggered processing (see
withClientNodeId(String)). That way, transactional client notifications are not
published immediately upon successful commit, but included in the client’s
response instead (piggyback).
Typically, that collector is set by ServiceTunnelServlet for the processing of a
service request.

ClientNo
tificatio
nCollect
or.CURR
ENT.get(
)

clientNo
deId

Associates this context with the given 'client node ID', meaning that any code
running on behalf of this context has that id set in IClientNodeId.CURRENT
thread-local.
Every client node (that is every UI server node) has its unique 'node ID' which
is included with every 'client-server' request, and is mainly used to publish
client notifications. If transactional client notifications are issued by code
running on behalf of this context, those will not be published to that client
node, but included in the request’s response instead (piggyback).
However, transactional notifications are only sent to clients upon successful
commit of the transaction.
Typically, this node ID is set by ServiceTunnelServlet for the processing of a
service request.

IClientN
odeId.C
URRENT.
get()

10.4. Properties of a ClientRunContext
A ClientRunContext controls propagation of client-side state, and is a specialization of RunContext.

propert
y

description accessib
ility

session Session to be bound to Session ThreadLocal ISession.
CURREN
T.get()

form Associates this context with the given IForm, meaning that any code running on
behalf of this context has that IForm set in IForm.CURRENT thread-local.
That information is mainly used to determine the current calling model
context, e.g. when opening a message-box to associate it with the proper
IDisplayParent.
Typically, that information is set by the UI facade when dispatching a request
from UI, or when constructing UI model elements.

IForm.C
URRENT.
get()

81

propert
y

description accessib
ility

outline Associates this context with the given IOutline, meaning that any code
running on behalf of this context has that IOutline set in IOutline.CURRENT
thread-local.
That information is mainly used to determine the current calling model
context, e.g. when opening a message-box to associate it with the proper
IDisplayParent.
Typically, that information is set by the UI facade when dispatching a request
from UI, or when constructing UI model elements.

IOutline.
CURREN
T.get()

desktop Associates this context with the given IDesktop, meaning that any code
running on behalf of this context has that IDesktop set in IDesktop.CURRENT
thread-local.
That information is mainly used to determine the current calling model
context, e.g. when opening a message-box to associate it with the proper
IDisplayParent.
Typically, that information is set by the UI facade when dispatching a request
from UI, or when constructing UI model elements.

IDesktop
.CURRE
NT.get()

82

Chapter 11. RunMonitor
A RunMonitor allows the registration of ICancellable objects, which are cancelled upon
cancellation of this monitor. A RunMonitor is associated with every RunContext and IFuture,
meaning that executing code can always query its current cancellation status via
RunMonitor.CURRENT.get().isCancelled().

A RunMonitor itself is also of the type ICancellable, meaning that it can be registered within another
monitor as well. That way, a monitor hierarchy can be created with support of nested cancellation.
That is exactly what is done when creating a copy of the current calling context, namely that the
new monitor is registered as ICancellable within the monitor of the current calling context.
Cancellation only works top-down, and not bottom up, meaning that a parent monitor is not
cancelled once a child monitor is cancelled.

When registering a ICancellable and this monitor is already cancelled, the ICancellable is cancelled
immediately.

Furthermore, a job’s Future is linked with the job’s RunMonitor, meaning that cancellation requests
targeted to the Future are also propagated to the RunMonitor, and vice versa.

The following Figure 3 illustrates the RunMonitor and its associations.

Figure 3. RunMonitor and its associations

83

Chapter 12. Client Notifications
In a scout application, typically, the scout client requests some data from the scout server.
Sometimes, however, the communication needs go the other way: The scout server needs to inform
the scout client about something. With client notifications it is possible to do so.

Figure 4. Client Notifications

12.1. Examples
Example scenarios for client notifications are:

• some data shared by client and server has changed (e.g. a cache on the client is no longer up-to-
date, or a shared variable has changed)

• a new incoming phone call is available for a specific client and should be shown in the GUI

• a user wants to send a message to another user

Scout itself uses client notifications to synchronize code type and permission caches and session
shared variables.

12.2. Data Flow
A client notification message is just a serializable object. It is published on the server and can be
addressed either to all client nodes or only to a specific session or user. On the UI server side,
handlers can be used to react upon incoming notifications.

Client notification handlers may change the state of the client model. In case of visible changes in
the UI, these changes are automatically reflected in the UI.

In case of multiple server nodes, the client notifications are synchronized using cluster notifications
to ensure that all UI servers receive the notifications.

12.3. Push Technology

84

Figure 5. Long Polling

Client notifications are implemented using long polling as described below, because long polling
works reliably in most corporate networks with proxy servers between server and client as well as
with security policies that do not allow server push.

With long polling, the client requests notifications from the server repeatedly. If no new
notifications are available on the server, instead of sending an empty response, the server holds the
request open and waits until new notifications are available or a timeout is reached.

In addition to the long polling mechanism, pending client notifications are also transferred to the
client along with the response of regular client requests.

12.4. Components
A client notification can be published on the server using the ClientNotificationRegistry.
Publishing can be done either in a non-transactional or transactional way (only processed, when
the transaction is committed).

The UI Server either receives the notifications via the ClientNotificationPoller or in case of
transactional notifications together with the response of a regular service request. The notification
is then dispatched to the corresponding handler.

When a client notifications is published on the server, it is automatically synchronized with the
other server nodes (by default).

85

Figure 6. Client Notification Big Picture

12.4.1. Multiple Server Nodes

Figure 7. Client Notification Multiple Server Nodes

In order to deal with multiple ui-server nodes, the server holds a single notifications queue per ui-
server node.

In this queues only the relevant notifications need to be kept: If a client notification is addressed to
a session or user, that does not exist on a ui-server node, it is not added to the queue.

Sessions and corresponding users are registered on the server upon creation (and de-registered
after destruction).

86

12.5. Publishing
Listing 58. Publishing Client Notifications

BEANS.get(ClientNotificationRegistry.class).putForUser("admin", new
PersonTableChangedNotification());

There are several options to choose from when publishing a new client notification:

12.5.1. ClientNotificationAddress

The ClientNotificationAddress determines which how the client notification needs to be dispatched
and handled. A client notification can be addressed to

• all nodes

• all sessions

• one or more specific session

• one or more specific user

12.5.2. Transactional vs. Non-transactional

Client notifications can be published in a transactional or non-transactional way.

• Transactional means that the client notifications are only published once the transaction is
committed. If the transaction fails, client notifications are disregarded.

• Non-transactional means that client notifications are published immediately without
considering any transactions.

12.5.3. Distributing to all Cluster Nodes

Generally, it makes sense to distribute the client notifications automatically to all other server
cluster nodes (if available). This is achieved using ClusterNotifications. It is however also possible
to publish client notifications without cluster distribution. E.g. in case of client notifications already
received from other cluster nodes.

12.5.4. Coalescing Notifications

It is possible that a service generates a lot of client notifications that are obsolete once a newer
notification is created. In this case a coalescer can be created to reduce the notifications:

87

Listing 59. Client Notification Coalescer

public class BookmarkNotificationCoalescer implements ICoalescer
<BookmarkChangedClientNotification> {

 @Override
 public List<BookmarkChangedClientNotification> coalesce(List
<BookmarkChangedClientNotification> notifications) {
 // reduce to one
 return CollectionUtility.arrayList(CollectionUtility.firstElement(notifications));
 }
}

12.6. Handling
The ClientNotificationDispatcher is responsible for dispatching the client notifications to the
correct handler.

12.6.1. Creating a Client Notification Handler

To create a new client notification handler for a specific client notification, all you need to do is
creating a class implementing org.eclipse.scout.rt.shared.notification.INotificationHandler<T>,
where T is the type (or subtype) of the notification to handle.

The new handler does not need to be registered anywhere. It is available via jandex class inventory.

Listing 60. Notification Handler for MessageNotifications

public class MessageNotificationHandler implements INotificationHandler
<MessageNotification> {

 @Override
 public void handleNotification(final MessageNotification notification) {

12.6.2. Handling Notifications Temporarily

Sometimes it is necessary to start and stop handling notification dynamically, (e.g. when a form is
opened) in this case AbstractObservableNotificationHandler can be used to add and remove
listeners.

12.6.3. Asynchronous Dispatching

Dispatching is always done asynchronously. However, in case of transactional notifications, a
service call blocks until all transactional notifications returned with the service response are
handled.

This behavior was implemented to simplify for example the usage of shared caches:

88

Listing 61. Blocking until notification handling completed

CodeService cs = BEANS.get(CodeService.class);
cs.reloadCodeType(UiThemeCodeType.class);

//client-side reload triggered by client notifications is finished
List<? extends ICode<String>> reloadedCodes = cs.getCodeType(UiThemeCodeType.class)
.getCodes();

In the example above, it is guaranteed, that the codetype is up-to-date as soon as reloadCodeType is
finished.

12.6.4. Updating Scout Model

Notification handlers are never called from a scout model thread. If the scout model needs to be
updated when handling notifications, a model job needs to be created for that task.

Listing 62. Notification Handler Creating Model Job

@Override
public void handleNotification(final MessageNotification notification) {
 ModelJobs.schedule(() -> {
 IDesktop desktop = ClientSessionProvider.currentSession().getDesktop();
 // e.g. send dataChanged event to UI listeners
 desktop.dataChanged(notification.getMessage());
 }, ModelJobs.newInput(ClientRunContexts.copyCurrent()));
}

Make sure to always run updates to the scout models in a model job (forms, pages,
…): Use ModelJobs.schedule(…) where necessary in notification handlers.

89

Chapter 13. Extensibility

 Required version: The API described here requires Scout version 4.2 or newer.

13.1. Overview
Since December 2014 and Scout 4.2 or newer a new extensibility concept is available for Scout. This
article explains the new features and gives some examples how to use them.

When working with large business applications it is often required to split the application into
several modules. Some of those modules may be very basic and can be reused in multiple
applications. For those it makes sense to provide them as binary library. But what if you have
created great templates for your applications but in one special case you want to include one more
column in a table or want to execute some other code when a pre-defined context menu is pressed?
You cannot just modify the code because it is a general library used everywhere. This is where the
new extensibility concept helps.

To achieve this two new elements have been introduced:

• Extension Classes: Contains modifications for a target class. Modifications can be new elements
or changed behavior of existing elements.

• Extension Registry: Service holding all Extensions that should be active in the application.

The Scout extensibility concept offers three basic possibilites to extend existing components:

• Extensions Changing behavior of a class

• Contributions Add new elements to a class

• Moves Move existing elements within a class

The following chapers will introduce this concepts and present some examples.

13.2. Extensions
Extensions contain modifications to a target class. This target class must be extensible. All elements
that implement org.eclipse.scout.rt.shared.extension.IExtensibleObject are extensible. And for
all extensible elements there exists a corresponding abstract extension class.

Examples:

• AbstractStringField is extensible. Therefore there is a class AbstractStringFieldExtension.

• AbstractCodeType is extensible. Therefore there is a class AbstractCodeTypeExtension.

Target classes can be all that are instanceof those extensible elements. This means an
AbstractStringFieldExtension can be applied to AbstractStringField and all child classes.

Extensions contain methods for all Scout Operations (see Exec Methods). Those methods have the
same signature except that they have one more input parameter. This method allows you to

90

https://wiki.eclipse.org/Scout/Concepts/Exec_Methods

intercept the given Scout Operation and execute your own code even though the declaring class
exists in a binary library. It is then your decision if you call the original code or completely replace
it. To achieve this the Chain Pattern is used: All extensions for a target class are called as part of a
chain. The order is given by the order in which the extensions are registered. And the original
method of the Scout element is an extension as well.

Extensions to specific types of elements are prepared as abstract classes:

• AbstractGroupBoxExtension

• AbstractImageFieldExtension

The following image visualizes the extension chain used to intercept the default behavior of a
component:

13.2.1. Extending a StringField example

The following example changes the initial value of a StringField called NameField:

Listing 63. Extension for NameField

public class NameFieldExtension extends AbstractStringFieldExtension<NameField> {

 public NameFieldExtension(NameField owner) {
 super(owner);
 }

 @Override
 public void execInitField(FormFieldInitFieldChain chain) {
 chain.execInitField(); // call the original exec init. whatever it may do.
 getOwner().setValue("FirstName LastName"); // overwrite the initial value of the
name field
 }
}

Note: The type parameter of the extension (e.g. NameField) denotes the element which is extended.

91

http://en.wikipedia.org/wiki/Chain-of-responsibility_pattern
https://wiki.eclipse.org/Scout/Concepts/StringField

The extension needs to be registeres when starting the application:

Listing 64. Register extension for NameField

Jobs.schedule(() -> BEANS.get(IExtensionRegistry.class).register(NameFieldExtension
.class), Jobs.newInput()
 .withRunContext(ClientRunContexts.copyCurrent())
 .withName("register extension"));

13.3. Contributions
The section before explained how to modify the behavior of existing Scout elements. This section
will describe how to contribute new elements into existing containers.

This is done by using the same mechanism as before. It is required to create an Extension too. But
instead of overwriting any Scout Operation we directly define the new elements within the
Extension. A lot of new elements can be added this way: Fields, Menus, Columns, Codes, …

Some new elements may also require a new DTO (FormData, TablePageData, TableData) to be filled
with data from the server. The corresponding DTO for the extension is automatically created when
using the SDK 4.2 or newer and having the @Data annotation specified on your extension. As soon as
the DTO extension has been registered in the IExtensionRegistry service it is automatically created
when the target DTO is created and will also be imported and exported automatically!

The following example adds two new fields for salary and birthday to a PersonForm. Please note the
@Data annotation which describes where the DTO for this extension should be created.

Listing 65. Extension for PersonForm

/**
 * Extension for the MainBox of the PersonForm
 */
@Data(PersonFormMainBoxExtensionData.class)
public class PersonFormMainBoxExtension extends AbstractGroupBoxExtension<MainBox> {

 public PersonFormMainBoxExtension(MainBox ownerBox) {
 super(ownerBox);
 }

 @Order(2000)
 @ClassId("fda7cd67-0df1-4194-9d70-22a9b3ce890d")
 public class SalaryField extends AbstractBigDecimalField {
 }

 @Order(3000)
 @ClassId("478037fb-759f-4fa1-b737-c77f903c6881")
 public class BirthdayField extends AbstractDateField {
 }
}

92

https://wiki.eclipse.org/Scout/Concepts/Field
https://wiki.eclipse.org/Scout/Concepts/Menu
https://wiki.eclipse.org/Scout/Concepts/Column
https://wiki.eclipse.org/Scout/Concepts/Code
http://en.wikipedia.org/wiki/Data_transfer_object
https://wiki.eclipse.org/Scout/Concepts/FormData
https://wiki.eclipse.org/Scout/Concepts/TablePageData
https://wiki.eclipse.org/Scout/Concepts/TableData
https://wiki.eclipse.org/Scout/SDK

Beware: Field names must be unique throughout form and extensions (e.g. there may not be a field
on the form or another extension contributing to the same form with the same field name).
However, it is possible to create templates (e.g. a group box as container with its own @FormData
annotation) which is added multiple times through a form or extensions.

The extension data must be registered manually in the job like in the example before:

Listing 66. Register extension for PersonForm

BEANS.get(IExtensionRegistry.class).register(PersonFormMainBoxExtension.class);

Then the SDK automatically creates the extension DTO which could look as follows. Please note: The
DTO is generated automatically but you have to register the generated DTO manually!

Listing 67. Extension Data for PersonForm

@Extends(PersonFormData.class)
@Generated(value = "org.eclipse.scout.docs.snippets.person.PersonFormMainBoxExtension
", comments = "This class is auto generated by the Scout SDK. No manual modifications
recommended.")
public class PersonFormMainBoxExtensionData extends AbstractFormFieldData {
 private static final long serialVersionUID = 1L;

 public Birthday getBirthday() {
 return getFieldByClass(Birthday.class);
 }

 public Salary getSalary() {
 return getFieldByClass(Salary.class);
 }

 @ClassId("478037fb-759f-4fa1-b737-c77f903c6881-formdata")
 public static class Birthday extends AbstractValueFieldData<Date> {
 private static final long serialVersionUID = 1L;
 }

 @ClassId("fda7cd67-0df1-4194-9d70-22a9b3ce890d-formdata")
 public static class Salary extends AbstractValueFieldData<BigDecimal> {
 private static final long serialVersionUID = 1L;
 }
}

You can also access the values of the DTO extension as follows:

93

https://wiki.eclipse.org/Scout/SDK

Listing 68. Access extended fields

// create a normal FormData
// contributions are added/imported/exported automatically
PersonFormData data = new PersonFormData();

// access the data of an extension
PersonFormMainBoxExtensionData c = data.getContribution(
PersonFormMainBoxExtensionData.class);
c.getSalary().setValue(new BigDecimal("200.0"));

13.3.1. Extending a form and a handler

Extending a AbstractForm and one (or more) of its AbstractFormHandlers that can be achieved as
follows:

94

Listing 69. Extension for PersonForm

public class PersonFormExtension extends AbstractFormExtension<PersonForm> {

 public PersonFormExtension(PersonForm ownerForm) {
 super(ownerForm);
 }

 @Override
 public void execInitForm(FormInitFormChain chain) {
 chain.execInitForm();
 // Example logic: Access the form, disable field
 getOwner().getNameField().setEnabled(false, true, true);
 }

 public void testMethod() {
 MessageBoxes.create().withHeader("Extension method test").withBody("A method from
the form extension was called").show();
 }

 public static class NewFormHandlerExtension extends AbstractFormHandlerExtension
<NewHandler> {

 public NewFormHandlerExtension(NewHandler owner) {
 super(owner);
 }

 @Override
 public void execPostLoad(FormHandlerPostLoadChain chain) {
 chain.execPostLoad();
 // Example logic: Show a message box after load
 MessageBoxes.create().withHeader("Extension test").withBody("If you can read
this, the extension works correctly").show();

 // Access element from the outer extension.
 PersonFormExtension extension = ((AbstractForm) getOwner().getForm())
.getExtension(PersonFormExtension.class);
 extension.testMethod();
 }
 }
}

There are a few things to note about this example:

• It is only necessary to register the outer form extension, not the inner handler extension as well.

• The inner handler extension must be static, otherwise an Exception will occur when the
extended form is being started!

• You can access the element you are extending by calling getOwner().

• Since you cannot access elements from your form extension directly from the inner handler

95

extension (because it is static), you will need to retrieve the form extension via the
getExtension(Class<T extends IExtension<?>>) method on the extended object, as done here to
retrieve the form extension from the form handler extension.

13.4. Move elements
You can also move existing Scout elements to other positions. For this you have to register a move
command in the IExtensionRegistry. As with all extension registration it is added to the extension
registration Job in your Activator class:

Listing 70. Move NameField to LastBox

BEANS.get(IExtensionRegistry.class).registerMove(NameField.class, 20d, LastBox.class);

13.5. Migration
The new extensibility concept is added on top of all existing extension possibilities like injection or
sub-classing. Therefore it works together with the current mechanisms. But for some use cases (like
modifying template classes) it offers a lot of benefits. Therefore no migration is necessary. The
concepts do exist alongside each others.

However there is one impact: Because the Scout Operation methods are now part of a call chain
they may no longer be invoked directly. So any call to e.g. execValidateValue() is no longer allowed
because this would exclude the extensions for this call. The Scout SDK marks such calls with error
markers in the Eclipse Problems view. If really required the corresponding intercept-Method can be
used. So instead directly calling myField.execChangedValue you may call
myField.interceptChangedValue().

96

Chapter 14. Mobile Support

Figure 8. Scout apps run on desktops, tablets and mobile phones

Scout applications are mobile capable, meaning that they can be used on portable touch devices
like smart phones and tablets. This capability is based on 2 main parts:

• Responsive and Touch Capable Widgets

• Device Transformation

14.1. Responsive and Touch Capable Widgets
Responsive design in context of a web application means that the design reacts to screen size
changes. A Scout application does not use responsive design for the whole page, but many widgets
itself may change the appearance when they don’t fit into screen.

One example is the menu bar that stacks all menus which don’t fit into an ellipsis menu.

Figure 9. Responsive menu bar

Beside being responsive, the widgets may deal with touch devices as well. This means they are big
enough to be used with the finger. And they don’t need a mouse, especially the right mouse button.

One example is the tooltip of a form field which is reflected by an info icon on the right side of the
field. Instead of hovering over the field the user can press that info icon to bring up the tooltip. This
approach not only provides an indicator where tooltips are available, it also works for mouse and

97

touch based devices.

Figure 10. Touch friendly widgets

14.1.1. GroupBox

Another widget that will react to changing sizes is the group box. Once a group box becomes
smaller than its preferred width it will transform its internal fields. Example: For all internal fields
the labelPosition will be set to 'top' to give the field more horizontal space.

Figure 11. Responsive group box

Those transformations are handled by scout.GroupBoxResponsiveHandler and managed by
scout.ResponsiveManager. The manager decides when to switch to a responsive mode and back. If
desired, the responsive transformations can be completely disabled by calling
scout.responsiveManager.setActive(false). By default all the main boxes will be responsive. In
order to exclude a group box from the responsive transformations you could do the following:

@Order(20)
@ClassId("98af1bc6-2d62-4132-9953-55e08492f65f")
public class MyGroupBox extends AbstractGroupBox {

 @Override
 protected TriState getConfiguredResponsive() {
 return TriState.FALSE;
 }
}

The handler is called when the manager detects a changed responsive state to perform its
transformations. There are three responsive modes, of which only the first two are supported in
scout classic.

• Normal (e.g. width >= 500): Regular case, no transformations are applied.

• Condensed (e.g. 300 ⇐ width < 500): Sets the label position to 'TOP'.

• Compact (e.g. width < 300): This mode is only supported in scout js. Sets grid column count to 1
and ensures labels and status are set to 'TOP'.

98

Figure 12. Responsive Form

Add a Custom Handler

If a different widget is required to react to screen size changes, you can create your own handler by
subclassing scout.ResponsiveHandler and registering it by calling
scout.responsiveManager.register(widget, handler). Each handler can define the thresholds when
to switch from one responsive mode to another by implementing
scout.ResponsiveHandler.prototype.getCompactThreshold or
scout.ResponsiveHandler.prototype.getCondensedThreshold.

14.2. Device Transformation
The second part of the mobile support is called device transformation. Transformation means the
adaptation of model properties for different devices. Example: Setting the property labelPosition
from 'left' to 'top' in order to move the label to the top.

Please note that this device transformation feature is not available for pure Scout
JS apps. In return, they profit from a better responsive handling, see Compact state
at Section 14.1.1.

Such transformations are done on the UI server by so called device transformers. Currently, 2
device transformers are available:

• Mobile Device Transformer

• Tablet Device Transformer

Which transformer is active depends on the used user agent. The mobile transformer is active if the
Scout app is used on a smart phone, the tablet one is active if it is used on a tablet. The order in
which these transformers are processed is defined using the @Order annotation which is possible
because they are regular Scout beans. This also means you can add your own transformer if you
need custom transformations.

The transformations are mainly limited to the adjustment of properties, although some properties
have a bigger effect than others. The property displayStyle of the desktop for example controls the
look of the desktop and setting it to COMPACT rearranges the desktop in a mobile friendly way. For
details see chapter Section 14.2.1

99

Figure 13. Desktop with displayStyle set to 'compact'

14.2.1. Compact Desktop

If the display style of the desktop is set to compact (done by the
MobileDeviceTransformation.MAKE_DESKTOP_COMPACT), the desktop will either show the navigation or
the bench, but never both at the same time.

Whether the bench is visible depends on whether a view (form with displayHint='view') is visible. If
no view is open, the navigation with the outline is shown. As soon as a view is shown it will switch
to the bench and back when the view is closed again.

When the navigation is shown the tool box which normally is in the desktop header will be moved
into the navigation beside the view buttons.

The MobileDeviceTransformation.MAKE_DESKTOP_COMPACT not only transforms the desktop but also
adjusts the outline and its components like pages and detail forms. The result is that the outline will
be displayed in bread crumb mode and, most importantly, will display some content that is
normally shown in the bench. This includes detail forms (incl. default detail forms), outline tiles,

100

menus, table controls and table row summaries. If no detail form is configured, the detail content
will be automatically generated based on the selected table row (TableRowDetail.js).

Figure 14. Table Row Detail

Adjusting Summary Cells

Whenever a table page is selected, the table rows are converted to table pages which are displayed
as child nodes of the selected table page. The text in such nodes is based on a table row and called
summary cell. The default behavior in a regular Scout app is to build that summary cell based on
the summary columns. If there are no summary columns, the first displayable column is used.

Even though this maybe sufficient for desktop apps where the table itself is visible too, it may not
be sufficient for mobile apps with a compact outline. To include more details about the row, the
ITableCompactHandler is used to build the summary cell. This is done by the
MobileSummaryCellBuilder.

If you need to adjust the created summary cell, you can use the same mechanism as described in
Section 14.2.2. Just override the method createCompactHandler and adjust the handler if you like to

101

modify the general compact style of that table. Or override the method createSummaryCompactHandler
if you only want to modify the summary cell style.

Figure 15. Mobile Summary Cells

14.2.2. Compact Table

Since Scout 11, the table got a new mode called compact. This will hide all columns and insert a new
one containing the content of every other column. The content will be displayed vertically which
means the cells of a row will be put below each other.

102

This mode won’t be set automatically by a device transformer because it does not work for editable
tables and may not be desired for every table. But if you like the mode you can easily activate it by
setting the property 'compact' to true.

By default the table uses the visible columns in the order they are configured and creates a compact
cell for each row. This is done by a so called ITableCompactHandler. If you don’t like how the content
is arranged you can control the conversion by adjusting the compact handler.

public class Table extends AbstractTable {
 @Override
 protected ITableCompactHandler createCompactHandler() {
 return super.createCompactHandler()
 .withTitleColumnSupplier(this::getAColumn)
 .withSubtitleColumnSupplier(this::getAnotherColumn);
 }

With this mechanism you can easily reorder and hide columns, limit the initially visible content
columns or hide the "more link". If this is not sufficient you can always set a custom
CompactBeanBuilder or replace the compact handler completely by your own implementation.

103

public class Table2 extends AbstractTable {
 @Override
 protected ITableCompactHandler createCompactHandler() {
 return super.createCompactHandler()
 .withBeanBuilder((columns, row) -> {
 CompactBean bean = new CompactBean();
 bean.setTitle("custom title");
 bean.addContentLine(new CompactLine("label", "text"));
 return bean;
 });
 }
}

14.2.3. Form Transformation

If the MobileDeviceTransformer is active, the responsive feature of the Section 14.1.1 will be disabled.
Instead some transformations will be applied like moving the label and status to top, reducing the
column count to one, disabling cancel confirmation and more. Have a look at
MobileDeviceTransformation and at MobileDeviceTransformer to learn more about it.

104

Figure 16. Form on Mobile

14.2.4. Disable Transformations

Since the transformers are plain Scout beans, you can easily replace them and adjust their
behavior. To disable some transformations just get the configuration and disable the unwanted
ones.

105

@Replace
public class CustomMobileDeviceTransformer extends MobileDeviceTransformer {

 @Override
 protected void initTransformationConfig() {
 super.initTransformationConfig();
 getDeviceTransformationConfig().disableTransformation(MobileDeviceTransformation
.MOVE_FIELD_LABEL_TO_TOP);
 }
}

Have a look at the class MobileDeviceTransformation to get a list of all available transformations.

All these transformations are triggered by extensions to components like form fields or the desktop.
These extensions are registered by DeviceTransformationPlatformListener. If you don’t want any of
these transformers to be active you could simply replace that listener and do nothing.

@Replace
public class CustomDeviceTransformationPlatformListener extends
DeviceTransformationPlatformListener {

 @Override
 public void stateChanged(PlatformEvent event) {
 // Do nothing to not register any extension so no transformation will happen
 }
}

14.3. Adapt Specific Components
The device transformers take care of global transformations which should be applied for most of
the components. If you need to adapt a specific component you can do it at the component itself.
Let’s say you want to hide a field if the application is running on a smart phone, you could do the
following.

@Order(20)
@ClassId("032f5ffb-bb1a-477a-95c8-f185e930a977")
public class MyField extends AbstractStringField {

 @Override
 protected void execInitField() {
 if (UserAgentUtility.isMobileDevice()) {
 setVisibleGranted(false);
 }
 }
}

106

Sometimes a transformation done by a device transformer is not desired but you don’t want to turn
it off globally. If that is the case you can disable that transformation for a specific form or form
field.

@Override
protected void execInitField() {
 BEANS.get(IDeviceTransformationService.class).excludeFieldTransformation(this,
MobileDeviceTransformation.REDUCE_GROUPBOX_COLUMNS_TO_ONE);
}

Or you can exclude a specific form or form field from all transformations.

@Override
protected void execInitField() {
 BEANS.get(IDeviceTransformationService.class).excludeField(this);
}

14.3.1. Optimize the Look

Once you have done your adjustments on the model and transformations and you are still not
pleased how your app looks, you still have the possibility to add some custom CSS. To do so, just add
a CSS class to your component and define the rules in a Less file. Also have a look at the Java file
CssClasses. Scout provides a few predefined css classes for some specific use cases.

@Override
protected void execInitField() {
 if (UserAgentUtility.isMobileDevice()) {
 addCssClass("mobile");
 }
}

For details on how to write the Less code please see the chapter Styling in the Technical Guide for
Scout JS.

If you just want to reduce some padding maybe it is sufficient to adjust the gaps of a group box. To
do so just override the method getConfiguredBodyLayoutConfig of your group box and do the
adjustments.

@Override
protected LogicalGridLayoutConfig getConfiguredBodyLayoutConfig() {
 return super.getConfiguredBodyLayoutConfig()
 .withVGap(0);
}

107

https://eclipsescout.github.io/11.0/technical-guide-js.html#styling
https://eclipsescout.github.io/11.0/technical-guide-js.html#styling

14.4. User Agent
The class UserAgent is essential for the mobile support. It stores information about the running
device like the used browser or OS. The user agent is available on the UI server as well as on the
backend server and can be accessed using the static method UserAgent.get().

The class UserAgentUtility provides some useful helper methods to check which type of device is
running, like if it’s a mobile phone, a tablet, or a desktop device.

14.5. Best Practices
When creating a Scout application which should run on touch devices as well, the following tipps
may help you.

1. Focus on the essential. Even though most of the application should run fine on a mobile device,
some parts may not make sense. Identify those parts and make them invisible using
setVisibleGranted(false). The advantage of using setVisibleGranted over setVisible is that the
model of the invisible components won’t be sent to the client at all, which might increase the
performance a little. But remember: The users nowadays might expect every functionality to be
available even on a mobile phone, so don’t take them away too much.

2. Limit the usage of custom HTML. Custom HTML cannot be automatically transformed, so you
need to do it by yourself. Example: You created a table with several columns using HTML. On a
small screen this table will be too large, so you have to make sure that your table is responsive,
or provide other HTML code when running on a mobile device.

3. Don’t use too large values for gridH. GridH actually is the minimum grid height, so if you set
gridH to 10 the field will always be at least 10 logical grid rows height. This may be too big on a
mobile device.

4. Use appropriate values for table column width. Tables are displayed the same way on a mobile
phone as on the desktop device (unless compact is set to true), if the content is not fully visible
the user can scroll. If you have tables with autoResizeColumns set to true, you should make sure
that the column widths are set properly. Just check how the table looks on a small screen and
adjust the values accordingly.

5. Know the difference between small screens and touch capable. If you do checks against
different device types, you should be aware that a touch device is not necessarily a small device.
That means UserAgentUtility.isTouchDevice() may be true on a laptop as well, so use it with
care.

6. If you use filler fields for layouting purpose, make sure you use the official IPlaceholderField.
Such filler fields normally waste space on a one column layout, so the mobile transformer will
make them invisible.

108

Chapter 15. Security

15.1. Default HTTP Response Headers
All Scout HTTP servlets delegate to a central authority to append HTTP response headers. This is the
bean HttpServletControl. It enables developers to control which headers that should be added to
the HTTP response for each servlet and request.

The next sections describe the headers that are added to any response by default. Beside these also
the following headers may be of interest for an end user application (consider adding them to your
application if possible):

• Public Key Pinning

• Strict Transport Security (HSTS)

• X-Content-Type-Options

 Please note that not all headers are supported in all user agents!

15.1.1. X-Frame-Options

The X-Frame-Options HTTP response header [3] can be used to indicate whether or not a user agent
should be allowed to render a page in a <frame>, <iframe> or <object>. Sites can use this to avoid
clickjacking [4] attacks, by ensuring that their content is not embedded into other sites. The X-Frame-
Options header is described in RFC 7034 [5].

In Scout this header is set to SAMEORIGIN which allows the page to be displayed in a frame on the
same origin (scheme, host and port) as the page itself only.

15.1.2. X-XSS-Protection

This header enables the XSS [6] filter built into most recent user agents. It’s usually enabled by
default anyway, so the role of this header is to re-enable the filter for the website if it was disabled
by the user. The X-XSS-Protection header is described in controlling-the-xss-filter.

In Scout this header is configured to enable XSS protections and instructs the user-agent to block a
page from loading if reflected XSS is detected.

15.1.3. Content Security Policy

Content Security Policy is a HTTP response header that helps you reduce XSS risks on modern user
agents by declaring what dynamic resources are allowed to load [7]. The CSP header is described in
Level 1 and Level 2. There is also a working draft for a Level 3.

Scout makes use of Level 1 (and one directive from Level 2) and sets by default the following
settings:

• JavaScript [8]: Only accepts JavaScript resources from the same origin (same scheme, host and

109

https://developer.mozilla.org/en-US/docs/Web/Security/Public_Key_Pinning
https://tools.ietf.org/html/rfc6797
https://msdn.microsoft.com/en-us/library/gg622941%28v=vs.85%29.aspx?f=255&MSPPError=-2147217396
https://blogs.msdn.microsoft.com/ieinternals/2011/01/31/controlling-the-xss-filter/
http://www.w3.org/TR/CSP1/
http://www.w3.org/TR/CSP2/
http://www.w3.org/TR/CSP3/

port). Inline JavaScript is allowed and unsafe dynamic code evaluation (like eval(string),
setTimeout(string), setInterval(string), new Function(string)) is allowed as well.

• Stylesheets (CSS) [9]: Only accepts Stylesheet resources from the same origin (same scheme, host
and port). Inline style attributes are allowed.

• Frames [10]: All sources are allowed because the iframes created by the Scout BrowserField run
in the sandbox mode and therefore handle the security policy on their own.

• All other types (Image, WebSocket [11], EventSource [12], AJAX calls [13], fonts, <object> [14], <embed> [15],
<applet> [16], <audio> [17] and <video> [18]) only allow resources from the same origin (same scheme,
host and port).

If a resource is blocked because it violates the CSP a report is created and logged on server side
using level warning. This is done in the class ContentSecurityPolicyReportHandler. This enables
admins to monitor the application and to react if a CSP violation is detected.

15.2. Session Cookie (JSESSIONID Cookie)
Configuration Validation
The UiServlet checks if the session cookie is configured safely. The validation is only performed on
first access to the UiServlet. There is no automatic validation on the backend server side or on any
custom servlets!

If the validation fails, a corresponding error message is logged to the server and an exception is
thrown making the UiServlet inaccessible. Because of security reasons the exception shown to the
user includes no details about the error. These can only be seen on the server side log.

15.2.1. HttpOnly

First the existence of the HttpOnly flag is checked. The servlet container will then add this flag to the
Set-Cookie HTTP response header. If the user agent supports this flag, the cookie cannot be accessed
through a client side script. As a result even if a cross-site scripting (XSS) flaw exists and a user
accidentally accesses a link that exploits this flaw, the user agent will not reveal the cookie to a
third party. For a list of user agents supporting this feature please refer to OWASP.

It is recommended to always enable this flag.

Since Java Servlet 3.0 specification this property can be set in the configuration in the deployment
descriptor WEB-INF/web.xml:

110

https://www.owasp.org/index.php/HTTPOnly#Browsers_Supporting_HttpOnly

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">
 ...
 <session-config>
 ...
 <cookie-config>
 <http-only>true</http-only> ①
 ...
 </cookie-config>
 ...
 </session-config>
 ...
</web-app>

① The HttpOnly flag activated

15.2.2. Secure

Second the existence of the Secure flag is checked. The servlet container will then add this flag to
the Set-Cookie HTTP response header. The purpose of the secure flag is to prevent cookies from
being observed by unauthorized parties due to the transmission of a the cookie in clear text.
Therefore setting this flag will prevent the user agent from transmitting the session id over an
unencrypted channel.

Since Java Servlet 3.0 specification this property can be set in the configuration in the deployment
descriptor WEB-INF/web.xml:

111

<?xml version="1.0" encoding="UTF-8"?>
<web-app
 xmlns="http://xmlns.jcp.org/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.jcp.org/xml/ns/javaee
http://xmlns.jcp.org/xml/ns/javaee/web-app_3_1.xsd"
 version="3.1">
 ...
 <session-config>
 ...
 <cookie-config>
 <secure>true</secure> ①
 ...
 </cookie-config>
 ...
 </session-config>
 ...
</web-app>

① The Secure flag activated

This of course only makes sense if the application is exposed to the end user using an encrypted
channel like HTTPS (which is strongly recommended).

Unfortunately for the UI server it is not possible to detect if an application uses a secured channel.
Consider the following example: The servlet container is protected by a reverse proxy. The
communication between the user agent and the proxy is encrypted while the channel between the
proxy and the servlet container is not. In this scenario the container cannot know that from a user
agent point of view the channel is secured.

Because of this the validation assumes that the channel from the user agent to the entering node is
secured and by default checks for the Secure flag. In case this assumption is not true and an
unencrypted channel must be used this validation step can be disabled by setting the following
property in the config.propertis file:

scout.auth.cookieSessionValidateSecure=false

This skips the Secure flag check completely. In this scenario (not using https) it is also required to
remove the secure tag from the cookie config in the WEB-INF/web.xml.

15.3. Secure Output
This chapter describes how HTML Output can be handled in a secure way.

Scout applications often display potentially dangerous data, e.g. user input or data from other
systems. Encoding this input in such a way, that it can not be executed, prevents security
vulnerabilities like cross-site scripting.

112

https://en.wikipedia.org/wiki/HTTPS

15.3.1. Encoding by Default

By default, all input in the Scout model is encoded. Examples are values/labels in value fields, cells
in tables, message in message box. The reason behind this default choice is that developers do not
have to think about output encoding in the standard case and are therefore less likely to forget
output encoding and introduce a security vulnerability.

Example: In the following label field, the HTML tag is encoded as bold text:

public class LabelField extends AbstractLabelField {
 @Override
 protected void execInitField() {
 setValue("...Bold text...");
 }

15.3.2. Html Enabled

Sometimes developers may want to use HTML in the Scout model.

Examples are

• Simple styling of dynamic content, such as addresses or texts in message boxes

• Text containing application-internal or external links

• Html or XML content received from other systems, such as e-mails or html pages

Html input should only partially be encoded or not at all.

To disable the encoding of the whole value, the property HtmlEnabled can be used:

public class NoEncodingLabelField extends AbstractLabelField {
 @Override
 protected boolean getConfiguredHtmlEnabled() {
 return true;
 }

@Override
protected void execInitField() {
 setValue("...Bold text...");
}

There are several ways to implement the use cases above. Some typical implementations are
described in the following sections.

113

CSS Class and Other Model Properties

Often using HTML in value fields or table cells is not necessary for styling. Very basic styling can be
done for example by setting the CSS class.

HTML Builder

For creating simple HTML files or fragments with encoded user input, the class
org.eclipse.scout.rt.platform.html.HTML can be used. It is also easily possible to create application
internal and external link with this approach.

Styling in the UI-Layer

For more complex HTML, using IBeanField in the scout model and implementing the styling in the
UI-Layer is often the preferred way. Links are possible as well.

Manual Encoding

It is also possible to encode any String manually using StringUtility.htmlEncode(String).
org.eclipse.scout.rt.platform.html.HTML uses this method internally for encoding. However, using
HTML is recommended, where possible, because it is more concise and leads to less errors.

Using a White-List Filter

If HTML or XML from external sources or more complex HTML are used in the Scout model, using a
white-list filter might be the best way to avoid security bugs. Libraries, such as JSoup provide such a
white-list filter. Scout currently does not include any services or utilities for using white-list filters,
because the configuration and usage is very use-case-specific and would therefore not add much
benefit.

15.4. Authorization (Granting)
Scout uses the java.security API principles to grant access to a specific resource.

Each user has a set of granted java.security.Permission instances. This set is a
java.security.PermissionCollection. A call to PermissionCollection.implies(Permission p) does the
access check. The argument p in this call is a new permission instance for which we want to do the
access check and which is compared against the granted permissions. Usually, the permission
collection implementation iterates through all granted permissions and calls on each
Permission.implies(Permission p) until one call returns true.

Scouts adds some concepts and helpers to this API:

IPermission

Unlike other permissions, a permission implementing this interface can only be implied by
another IPermission with the same name. A permission used together with scouts security API
does not have to implement the IPermission interface but it is recommended.

PermissionLevel

An IPermission, which is part of an IPermissionCollection has always a granted access level

114

http://jsoup.org/

assigned (IPermission.getLevel()). If the granted level is PermissionLevel.NONE, any access checks
will fail.

IAccessControlService

This service is responsible to provide and manage a users set of granted permissions. A scout
application usually extends AbstractAccessControlService and implements #execLoadPermissions.

ACCESS

Provides a set of convenience methods to check access.

Let us assume you require a permission to allow a user to access companies.

public class ReadCompanyPermission extends AbstractPermission {
 private static final long serialVersionUID = 1L;

 public ReadCompanyPermission() {
 super("scoutdoc.ReadCompany");
 }
}

To check access one can use ACCESS.

if (ACCESS.check(new ReadCompanyPermission())) { ①
 throw new AccessForbiddenException(TEXTS.get("YouAreNotAllowedToReadThisData"));
}

ACCESS.checkAndThrow(new ReadCompanyPermission()); ②

① Checks permission against granted permissions of current user.

② Checks permission and if this check fails, throw an AccessForbiddenException with a default
message.

We can defined a default access check failed message for a permission.

public class CreateCompanyPermission extends AbstractPermission {
 private static final long serialVersionUID = 1L;

 public CreateCompanyPermission() {
 super("scoutdoc.CreateCompany");
 }

 @Override
 public String getAccessCheckFailedMessage() {
 return TEXTS.get("YouAreNotAllowedToRegisterThisData");
 }
}

115

ACCESS allows to check multiple permissions at once.

ACCESS.checkAllAndThrow(new ReadCompanyPermission(), new CreateCompanyPermission());

ACCESS.checkAnyAndThrow(new ReadCompanyPermission(), new CreateCompanyPermission());

We have seen some simple permission checks. Now let us assume, that some users may modify a
company only if they have registered the company by themselves. For this use case we introduce a
new permission level ScoutdocPermissionLevels.OWN. This is the permission level which is granted
for those users.

public final class ScoutdocPermissionLevels {

 private ScoutdocPermissionLevels() {
 }

 public static final int LEVEL_NONE = PermissionLevel.LEVEL_NONE;
 public static final int LEVEL_OWN = 10;
 public static final int LEVEL_ALL = PermissionLevel.LEVEL_ALL;

 public static final PermissionLevel NONE = PermissionLevel.NONE;
 public static final PermissionLevel OWN =
 PermissionLevel.register(LEVEL_OWN, "OWN", true, () -> TEXTS.get("Own"));
 public static final PermissionLevel ALL = PermissionLevel.ALL;

 public static void init() {
 // ensures all static initializers have been called
 }
}

In order to check access for this new level we have to override AbstractPermission#evalPermission.

public class UpdateCompanyPermission extends AbstractPermission {
 private static final long serialVersionUID = 1L;

 private final UUID m_companyId;

 public UpdateCompanyPermission() {
 this(null);
 }

 public UpdateCompanyPermission(UUID companyId) {
 super("scoutdoc.UpdateCompany");
 m_companyId = companyId;
 }

 public UUID getCompanyId() {
 return m_companyId;

116

 }

 @Override
 protected boolean evalPermission(IPermission p) {
 // Precondition: p.getClass() == getClass() && getName().equals(p.getName()) &&
 // getLevel() != PermissionLevel.NONE
 if (ScoutdocPermissionLevels.OWN == getLevel()) {
 UUID companyId = ((UpdateCompanyPermission) p).getCompanyId();
 return BEANS.get(ICompanyService.class).isOwnCompany(companyId);
 }
 return true; // ScoutdocPermissionLevels.ALL == getLevel()
 }

 @Override
 public int hashCode() {
 final int prime = 31;
 int result = super.hashCode();
 result = prime * result + ((m_companyId == null) ? 0 : m_companyId.hashCode());
 return result;
 }

 @Override
 public boolean equals(Object obj) {
 if (this == obj) {
 return true;
 }
 if (!super.equals(obj)) {
 return false;
 }
 if (getClass() != obj.getClass()) {
 return false;
 }
 UpdateCompanyPermission other = (UpdateCompanyPermission) obj;
 if (m_companyId == null) {
 if (other.m_companyId != null) {
 return false;
 }
 }
 else if (!m_companyId.equals(other.m_companyId)) {
 return false;
 }
 return true;
 }
}

ACCESS.checkAndThrow(new UpdateCompanyPermission(companyId));

If such a service call would be expensive, one may cache the result of such a permission check. You
have to implement this by yourself. A recommended solution is to create a wrapper around

117

IPermissionCollection and this wrapper caches calls to IPermissionCollection#implies if required.

[3] https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options

[4] https://en.wikipedia.org/wiki/Clickjacking

[5] https://tools.ietf.org/html/rfc7034

[6] https://en.wikipedia.org/wiki/Cross-site_scripting

[7] http://content-security-policy.com/

[8] https://en.wikipedia.org/wiki/JavaScript

[9] https://en.wikipedia.org/wiki/Cascading_Style_Sheets

[10] https://en.wikipedia.org/wiki/Framing_(World_Wide_Web)

[11] https://en.wikipedia.org/wiki/WebSocket

[12] https://developer.mozilla.org/en-US/docs/Web/API/EventSource

[13] https://en.wikipedia.org/wiki/Ajax_%28programming%29

[14] https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object

[15] https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed

[16] https://developer.mozilla.org/en-US/docs/Web/HTML/Element/applet

[17] https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio

[18] https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video

118

https://developer.mozilla.org/en-US/docs/Web/HTTP/X-Frame-Options
https://en.wikipedia.org/wiki/Clickjacking
https://tools.ietf.org/html/rfc7034
https://en.wikipedia.org/wiki/Cross-site_scripting
http://content-security-policy.com/
https://en.wikipedia.org/wiki/JavaScript
https://en.wikipedia.org/wiki/Cascading_Style_Sheets
https://en.wikipedia.org/wiki/Framing_(World_Wide_Web
https://en.wikipedia.org/wiki/WebSocket
https://developer.mozilla.org/en-US/docs/Web/API/EventSource
https://en.wikipedia.org/wiki/Ajax_%28programming%29
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/object
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/embed
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/applet
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/audio
https://developer.mozilla.org/en-US/docs/Web/HTML/Element/video

Chapter 16. Data Objects
Data objects are Scout beans, which are used as data transfer objects for synchronous REST and
asynchronous MOM interfaces. Furthermore, they can be used as domain objects within business
logic.

16.1. Data Object Definition
A data object extends the DoEntity base class and declares each attribute as a single accessor
method. Attributes of two kinds are available:

• Value attribute of type T

• List attribute of type List<T>

The name of the accessor method defines the attribute name. The return value of the accessor
method defines the attribute type.

Listing 71. Example: ExampleEntityDo

@TypeName("ExampleEntity")
@TypeVersion("scout-8.0.0.027")
public class ExampleEntityDo extends DoEntity {

 public DoValue<String> name() { ①
 return doValue("name");
 }

 public DoList<Integer> values() { ②
 return doList("values");
 }

① Example attribute of type String

② Example attribute of type List<Integer>

For convenience reasons when working with the data objects it is recommended to add a getter and
a with (e.g. setter) method. Using the convenience with methods, new data objects can be created
with fluent-style API:

Listing 72. Example: Create ExampleEntityDo instance

 ExampleEntityDo entity = BEANS.get(ExampleEntityDo.class)
 .withName("Example")
 .withValues(1, 2, 3, 4, 5);

16.2. Marshalling
Using the IDataObjectMapper interface a data object can be converted from and to its string

119

representation. The marshalling strategy is generic and replaceable. The Scout platform defines the
IDataObjectMapper interface, at runtime a Scout bean implementing the interface must be available.

The Scout module org.eclipse.scout.rt.jackson provides a default implementation serializing data
objects from and to JSON using the Jackson library.

Listing 73. Example: Serialize ExampleEntityDo

 String string = BEANS.get(IDataObjectMapper.class).writeValue(entity);

The data object ExampleEntityDo serialized to JSON:

Listing 74. Example: ExampleEntityDo as JSON

{
 "_type" : "ExampleEntity",
 "name" : "example",
 "values" : [1,2,3,4,5]
}

Listing 75. Example: Deserialize ExampleEntityDo

 ExampleEntityDo marhalled = BEANS.get(IDataObjectMapper.class)
 .readValue(string, ExampleEntityDo.class);

16.2.1. Type Name

A data object is annotated with a logical type name using the @TypeName annotation.

Declaring a logical type name using the @TypeName annotation for each data object
is mandatory.

The annotation value is added to the serialized JSON object as top-level _type property. Using the
type property the data object marshaller is able to find and instantiate the matching data object
class, without having to rely on a fully classified class name. It avoids a 1:1 dependency between the
serialized JSON String and the fully classified class name. A stable type name is required in order to
be able to change the data object structure without breaking the API.

16.2.2. Type Version

A data object may be annotated with a type version using the @TypeVersion annotation. The type
version represents the version of the structure of the data object and not the version of the data
within the data object. The type version value should be incremented, each time, the data object
class is modified (add/remove/rename attributes). If a version is required for versioning the values
of a data object, consider add a version attribute, incrementing its value, every time a value of the
data object is modified.

The annotation value is added to the serialized JSON object as top-level _typeVersion property. The

120

https://github.com/FasterXML/jackson

serialized _typeVersion value is not deserialized into an attribute, since the deserializer creates a
concrete data object class at runtime, having the @TypeVersion annotation providing the type
version value.

Declaring a logical type version using the `@TypeVersion`annotation is highly
recommended if a data object is persisted as JSON document to a file or database.

16.2.3. Data Object Naming Convention

Scout objects use the following naming conventions:

• A data object class should use the `Do' suffix.

• The value of the @TypeName annotation corresponds to the simple class name without Do suffix

16.2.4. Attribute Name

The default attribute name within the serialized string corresponds to the name of the attribute
accessor method defined in the data object. To use a custom attribute name within the serialized
string, the attribute accessor method can be annotated by @AttributeName providing the custom
attribute name.

Listing 76. Example: Custom Attribute Name

 @AttributeName("myCustomName")
 public DoValue<String> name() {
 return doValue("myCustomName"); ①
 }

① Important: The annotation value must be equals to the string constant used for the doValue() or
doList() attribute declaration.

Listing 77. Example: Custom Attribute Name as JSON

{
 "_type" : "CustomAttributeNameEntity",
 "myCustomName" : "example"
}

16.2.5. Attribute Format

Using the ValueFormat annotation a data type dependent format string may be provided, which is
used for the marshalling.

121

Listing 78. Example: Custom Attribute Format

 @ValueFormat(pattern = IValueFormatConstants.DATE_PATTERN)
 public DoValue<Date> date() {
 return doValue("date");
 }

The IValueFormatConstants interface declares a set of default format pattern constants.

Attributes with type java.util.Date accept the format pattern specified by SimpleDateFormat class
(see https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html)

16.3. Ignoring an Attribute
The @JsonIgnore annotation included in the Jackson library is currently not supported for data
objects. To ignore an attribute when serializing a data object, the attribute must be removed from
the data object by either not setting a value for the desired attribute or by explicitly removing the
attribute before a data object is serialized:

Listing 79. Example: Remove an attribute from a data object

 ExampleEntityDo entity = BEANS.get(ExampleEntityDo.class)
 .withName("Example")
 .withValues(1, 2, 3, 4, 5);

 // remove by attribute accessor method reference
 entity.remove(entity::name);

 // remove by attribute node
 entity.remove(entity.name());

 // remove by attribute name
 entity.remove(entity.name().getAttributeName());

 // remove by attribute name raw
 entity.remove("name");

16.4. Handling of DoEntity Attributes
Instead of data objects, a REST or MOM interface could be built using simple plain old Java objects
(POJOs). Compared to POJOs a Scout data object offers additional support and convenience when
working with attributes.

A JSON attribute may have three different states:

• Attribute available with a value

• Attribute available with value null

122

https://docs.oracle.com/javase/8/docs/api/java/text/SimpleDateFormat.html

• Attribute not available

These three states cannot be represented with a POJO object which is based on a single variable
with a pair of getter/setter. In order to differ between value not available and value is null, a
wrapper type is required, which beside the value stores the information, if the attribute is
available. Scout data objects solve this issue: Data objects internally use a Map<String, DoNode<?>>
where the abstract DoNode at runtime is represented by a DoValue<T> or a DoList<T> object instance
wrapping the value.

16.4.1. Access Data Object Attributes

• Value: DoNode.get() returns the (wrapped) value of the attribute

Listing 80. Example: ExampleEntityDo Access the Attribute Value

 ExampleEntityDo entity = BEANS.get(ExampleEntityDo.class)
 .withName("Example")
 .withValues(1, 2, 3, 4, 5);

 // access using attribute accessor
 String name1 = entity.name().get();
 List<Integer> values1 = entity.values().get();

 // access using generated attribute getter
 String name2 = entity.getName();
 List<Integer> values2 = entity.getValues();

• Existence: Using the DoNode.exists() method, each attribute may be checked for existence

Listing 81. Example: ExampleEntityDo Attribute Existence

 // check existence of attribute
 boolean hasName = entity.name().exists();

16.5. Abstract Data Objects & Polymorphism
A simple data objects is implemented by subclassing the DoEntity class.

For a complex hierarchy of data objects the base class may be abstract and extend the DoEntity
class, further subclasses extend the abstract base class. The abstract base data object class does not
need to specify a @TypeName annotation since there are no instances of the abstract class which are
serialized or deserialized directly. Each non-abstract subclass must specify a unique @TypeName
annotation value.

123

Listing 82. Example: Abstract class AbstractExampleEntityDo with one attribute

public abstract class AbstractExampleEntityDo extends DoEntity {
 public DoValue<String> name() {
 return doValue("name");
 }

Listing 83. Example: Subclass 1 with an additional attribute and a unique type name

@TypeName("ExampleEntity1")
public class ExampleEntity1Do extends AbstractExampleEntityDo {
 public DoValue<String> name1Ex() {
 return doValue("name1Ex");
 }

Listing 84. Example: Subclass 2 with an additional attribute and a unique type name

@TypeName("ExampleEntity2")
public class ExampleEntity2Do extends AbstractExampleEntityDo {
 public DoValue<String> name2Ex() {
 return doValue("name2Ex");
 }

Listing 85. Example: Class with attributes of type AbstractExampleEntityDo

public class ExampleDoEntityListDo extends DoEntity {
 public DoList<AbstractExampleEntityDo> listAttribute() {
 return doList("listAttribute");
 }

 public DoValue<AbstractExampleEntityDo> singleAttribute() {
 return doValue("singleAttribute");
 }

124

Listing 86. Example: Using the ExampleDoEntityListDo class with different kinds of
AbstractExampleEntityDo sub classes

 ExampleDoEntityListDo entity = BEANS.get(ExampleDoEntityListDo.class);
 entity.withListAttribute(
 BEANS.get(ExampleEntity1Do.class)
 .withName1Ex("one-ex")
 .withName("one"),
 BEANS.get(ExampleEntity2Do.class)
 .withName2Ex("two-ex")
 .withName("two"));

 entity.withSingleAttribute(
 BEANS.get(ExampleEntity1Do.class)
 .withName1Ex("single-one-ex")
 .withName("single-one"));

If an instance of ExampleDoEntityListDo is serialized, each attribute is serialized using its runtime
data type, adding an appropriate _type attribute to each serialized object. Therefore, the
deserializer knows which concrete class to instantiate while deserializing the JSON document. This
mechanism is used for simple value properties and list value properties. To each object which is
part of a list value property the _type property is added to support polymorphism within single
elements of a list.

Listing 87. Example: ExampleDoEntityListDo as JSON

{
 "_type" : "ExampleDoEntityListDo",
 "listAttribute" : [{
 "_type" : "ExampleEntity1",
 "name" : "one",
 "name1Ex" : "one-ex"
 }, {
 "_type" : "ExampleEntity2",
 "name" : "two",
 "name2Ex" : "two-ex"
 }],
 "singleAttribute" : {
 "_type" : "ExampleEntity1",
 "name" : "single-one",
 "name1Ex" : "single-one-ex"
 }
}

16.6. Rename an attribute of a data object in a subclass
To rename a data object attribute in a subclass, override the attribute accessor method and
annotate it with @AttributeName using the new attribute name as value. Additionally the overridden
method must call the doValue() method providing the new attribute name as argument.

125

Listing 88. Example: Rename attribute in a data object subclass

@TypeName("ExampleEntityEx")
public class ExampleEntityExDo extends ExampleEntityDo {

 @Override
 @AttributeName("nameEx")
 public DoValue<String> name() { ①
 return doValue("nameEx");
 }

① Rename name attribute of superclass to nameEx

16.7. Interfaces to Data Objects
Use the basic data object interface IDoEntity to model a data object hierarchy with own base
interfaces and a set of implementing classes.

Interfaces extending IDataObject do not need a @TypeName annotation, since they are never directly
serialized or deserialized.

The interfaces may be used as types for attributes within a data object. At runtime the concrete
classes implementing the interfaces are serialized and their @TypeName annotation value is used.

16.8. Equals and Hashcode
The Data Object base class DoEntity defines a generic equals() and hashCode() implementation
considering all attributes of a data object for equality. A data object is equals to another data object,
if the Java class of both data objects is identical and the attribute maps (including their nested
values) of both data objects are equals.

For futher details see:

• org.eclipse.scout.rt.dataobject.DoEntity.equals(Object)

• org.eclipse.scout.rt.dataobject.DoNode.equals(Object)

16.9. Generic DoEntity
An instance of the DoEntity class can represent any kind of JSON document. If the JSON document
contains no type attributes or no matching data object class exists at runtime, the JSON document is
deserialized into a raw DoEntity instance holding all attributes. To access the attributes of the data
object a set of generic getter methods may be used by specifying the attribute name. A generic JSON
document is deserialized into a generic tree-like structure of nested DoEntity instances. If the
serialized JSON document contains a _type and/or _typeVersion attribute, the attribute and its value
is added as attribute to the generic raw DoEntity instance.

126

Listing 89. Example: ExampleEntityDo accessing attribute "by name"

 ExampleEntityDo entity = BEANS.get(ExampleEntityDo.class)
 .withName("Example")
 .withValues(1, 2, 3, 4, 5);

 // access name attribute by its attribute name
 Object name1 = entity.get("name"); ①
 String name2 = entity.get("name", String.class); ②
 String name3 = entity.getString("name"); ③

 // access values attribute by its attribute name
 List<Object> values1 = entity.getList("values"); ④
 List<String> values2 = entity.getList("values", String.class); ⑤
 List<String> values3 = entity.getStringList("values"); ⑥

 // optional list attribute access by its attribute name
 Optional<List<Object>> values4 = entity.optList("values"); ⑦
 Optional<List<String>> values5 = entity.optList("values", String.class); ⑧

① Accessing value attribute, default type is Object

② Accessing value attribute, specify the type as class object if known

③ Accessing value attribute, convenience method for a set of common types

④ Accessing list attribute, default type is Object

⑤ Accessing list attribute, specify the type as class object if known

⑥ Accessing list attribute, convenience method for a set of common types

⑦ Accessing optional list attribute, default type is Object

⑧ Accessing optional list attribute, specify the type as class object if known

If a list attribute is not available, using one of the getList(…) getters adds an
empty list as attribute value into the entity and returns the list. Use optList(…) in
order to get an optionally available list without adding a new empty list as
attribute.

Apart of the convenience methods available directly within the DoEntity class, the DataObjectHelper
class contains a set of further convenience methods to access raw values of a data object.

16.9.1. Accessing number values

If a generic JSON document is deserialized to a DoEntity class without using a subclass specifying
the attribute types, all attributes of type JSON number are deserialized into the smallest possible
Java type. For instance the number value 42 is deserialized into an Integer value, a large number
may be deserialized into a BigInteger or BigDecimal if it is a floating point value. Using the
convenience method DoEntity.getDecimal(…) each number attribute is converted automatically
into a BigDecimal instance on access.

127

If a generic JSON document is deserialized, only a set of basic Java types like
String, Number, Double are supported. Every JSON object is deserialized into a
(nested) DoEntity structure, which internally is represented by a nested structure
of Map<String, Object>.

16.10. Map of objects
To build map-like a data object (corresponds to Map<String, T>), the DoMapEntity<T> base class may
be used.

Listing 90. Example: Map<String, ExampleEntityDo> as ExampleMapEntityDo data object

@TypeName("ExampleMapEntity")
public class ExampleMapEntityDo extends DoMapEntity<ExampleEntityDo> {
}

The example JSON document of ExampleMapEntityDo instance with two elements:

Listing 91. Example: ExampleMapEntityDo with two elements:

{
 "_type" : "ExampleMapEntity",
 "mapAttribute1" : {
 "_type" : "ExampleEntity",
 "name" : "example-1",
 "values" : [1,2,3,4,5]
 },
 "mapAttribute2" : {
 "_type" : "ExampleEntity",
 "name" : "example-2",
 "values" : [6,7,8,9]
 }
}

Listing 92. Example: Accessing attributes

 ExampleMapEntityDo mapEntity = BEANS.get(ExampleMapEntityDo.class);
 mapEntity.put("mapAttribute1",
 BEANS.get(ExampleEntityDo.class)
 .withName("Example")
 .withValues(1, 2, 3, 4, 5));
 mapEntity.put("mapAttribute2",
 BEANS.get(ExampleEntityDo.class)
 .withName("Example")
 .withValues(6, 7, 8, 9));

 ExampleEntityDo attr1 = mapEntity.get("mapAttribute1"); ①
 Map<String, ExampleEntityDo> allAttributes = mapEntity.all(); ②

128

① Accessing attribute using get method returns the attribute of declared type T

② Accessing all attributes using all method returns a map with all attributes of type T

A DoMapEntity<T> subclass may declare custom attributes of another type than T
(e.g. an integer size attribute). If attributes of other types are used, using the all
method results in a ClassCastException since not all attributes are of the same type
any longer.

16.11. IDataObject Interface - Data Objects with
unknown structure
According to the JSON specification a JSON document at top level may contain a object or an array.
If a JSON string of unknown structure is deserialized, the common super interface IDataObject may
be used as target type for the call to the deserializer:

Listing 93. Example: Deserialize a JSON document with unknown structure

 String json = "<any JSON content>";
 IDataObjectMapper mapper = BEANS.get(IDataObjectMapper.class);
 IDataObject dataObject = mapper.readValue(json, IDataObject.class);
 if (dataObject instanceof IDoEntity) {
 // handle object content
 }
 else if (dataObject instanceof DoList) {
 // handle array content
 }

16.12. Ad-Hoc Data Objects
The DoEntityBuilder may be used to build ad-hoc data objects without a concrete Java class defining
its attributes.

Listing 94. Example: DoEntityBuilder

 IDoEntity entity = BEANS.get(DoEntityBuilder.class)
 .put("attr1", "foo")
 .put("attr2", "bar")
 .putList("listAttr", 1, 2, 3)
 .build(); ①

 String entityString = BEANS.get(DoEntityBuilder.class)
 .put("attr1", "foo")
 .put("attr2", "bar")
 .putList("listAttr", 1, 2, 3)
 .buildString(); ②

① Builder for a DoEntity object

129

http://json.org/

② Builder for the string representation of a DoEntity objects

16.13. Maven Dependencies
The Scout data object implementation does not reference any specific Java serialization library or
framework. The basic building blocs of data objects are part of the Scout platform and to not
reference any thirdparty libraries. At runtime an implementation of the IDataObjectMapper interface
must be provided. The Scout default implementation based on the JSON library Jackson is provided
by adding a maven dependency to the module org.eclipse.scout.rt.jackson. The dependency to
this module must be added in the top-level .dev/.app module. A dependency within the program
code is not necessaray as long as no specific Jackson features should be used within the application
code.

16.14. Data Object Inventory
The class org.eclipse.scout.rt.dataobject.DataObjectInventory provides access to all available data
objects at runtime. For each data object all available attributes and their properties (name, type,
accessor method and format pattern) are available:

Listing 95. Example: Accessing data object inventory

 Map<String, DataObjectAttributeDescriptor> attributes =
 BEANS.get(DataObjectInventory.class).getAttributesDescription(ExampleEntityDo
.class);
 attributes.forEach(
 (key, value) -> System.out.println("Attribute " + key + " type " + value
.getType()));

Apart from attribute descriptions, the inventory provides access to type name and type version of
each data object class.

16.15. Extending with custom serializer and
deserializer
The application scoped beans DataObjectSerializers resp. DataObjectDeserializers define the
available serializer and deserializer classes used to marshal the data objects. Own custom serializer
and deserializer implementations can be added by replacing the corresponding base class and
register its own custom serializer or deserializer.

16.16. Enumerations within Data Objects
Implementations of org.eclipse.scout.rt.dataobject.enumeration.IEnum add a stringValue()
method to each enumeration value, guaranteeing a constant, fixed string value for each
enumeration value. An arbitrary Java enum may be used within a data object, but does not
guarantee a stable serialized value, if an enumeration value is changed in future.

130

Additionally implementations of IEnum can be annotated with @EnumName and @EnumVersion to support
handling of different versions and migration between.

All instances of IEnum may be used within data objects and are automatically serialized to their
JSON string value representation and deserialized back to the correct Java class instance.

The default resolver mechanism for IEnum (see
org.eclipse.scout.rt.dataobject.enumeration.EnumResolver) matches the given string with the
available string values in the current enumeration implementation to look up the matching
enumeration value. An optional static resolve() method handles the resolve of a given string value
into the correct enumeration value allowing to support even string values, whose enumeration
values where changed or deleted.

131

Listing 96. Example IEnum implementation

 @EnumName("scout.FixtureEnum")
 @EnumVersion("scout-8.0.0.036")
 public enum ExampleEnum implements IEnum {

 ONE("one"),
 TWO("two"),
 THREE("three");

 private final String m_stringValue;

 ExampleEnum(String stringValue) {
 m_stringValue = stringValue;
 }

 @Override
 public String stringValue() {
 return m_stringValue;
 }

 public static ExampleEnum resolve(String value) { ①
 // custom null handling
 if (value == null) {
 return null;
 }
 switch (value) {
 // custom handling of old values (assuming 'old' was used in earlier
revisions)
 case "one":
 return ONE;
 case "two":
 return TWO;
 case "three":
 return THREE;
 case "four":
 return THREE;
 default:
 // custom handling of unknown values
 throw new AssertionException("unsupported status value '{}'", value);
 }
 }

 }

① Optional resolve method

16.17. Typed IDs within Data Objects
Implementations of org.eclipse.scout.rt.dataobject.id.IId<WRAPPED_TYPE> interface wrap an

132

arbitrary value adding a concrete Java type to a scalar value. E.g. the key of an example entity
which technically is a UUID becomes an instance of the ExampleId class.

All instances of IId may be used within data objects and are automatically serialized to their JSON
string representation of the wrapped value and deserialized back to the correct Java class instance.

An exampleId instance may then be used as type-safe parameter for further referencing a given
example entity record, for instance as attribute value within a data object.

Listing 97. Example ID implementation wrapping a UUID

 @IdTypeName("scout.ExampleId")
 public static final class ExampleId extends AbstractUuId {
 private static final long serialVersionUID = 1L;

 public static ExampleId create() {
 return new ExampleId(UUID.randomUUID());
 }

 public static ExampleId of(UUID id) {
 if (id == null) {
 return null;
 }
 return new ExampleId(id);
 }

 public static ExampleId of(String id) {
 if (id == null) {
 return null;
 }
 return new ExampleId(UUID.fromString(id));
 }

 private ExampleId(UUID id) {
 super(id);
 }
 }

16.18. Unit Testing
A set of utility methods for unit tests with data objects are provided within the DataObjectTestHelper
class. Commonly used are a set of assert methods (e.g. assertEquals(Object expected, Object
actual)) for testing data objects for (deep) equality.

133

Chapter 17. REST

17.1. REST Resource Conventions
Table 2. HTTP Methods for RESTful Services

HTTP
Method

CRUD Description

POST Create Is most-often used to create new resources.

POST is not idempotent. Making two identical POST requests will
most-likely result in two resources containing the same information
or the action executed twice.

GET Read Only used to read or retrieve a representation of a resource.

According to the HTTP specification GET (and HEAD) requests are
used to read data and must not change anything! If a REST API wants
to violate the specification, such requests must be protected against
CSRF which is not enabled for GET and HEAD requests by default. See
the Scout Bean org.eclipse.scout.rt.rest.csrf.AntiCsrfHelper for
more details.

GET requests are idempotent, which means that making multiple
identical requests ends up having the same result as a single request
(assuming the data has not been changed in the meantime).

PUT Update/Repl
ace

Is most-often used to update resources.

PUT expects to send the complete resource (not like PATCH) and is
idempotent. In other words, if you create or update a resource using
PUT and then make that same call again, the resource is still there and
still has the same state as it did with the first call.

If, for instance, calling PUT on a resource increments a counter within
the resource, the call is no longer idempotent. In such a scenario it is
strongly recommended to use POST for non-idempotent requests.

PATCH Update PATCH is used to update resources. The PATCH request typically only
contains the changes to the resource, not the complete resource.

PATCH is not required to be idempotent. But it is possible to
implement it in a way to be idempotent, which also helps prevent bad
outcomes from collisions between multiple requests on the same
resource.

134

http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html#sec9.1.1
https://en.wikipedia.org/wiki/Cross-site_request_forgery

HTTP
Method

CRUD Description

DELETE Delete Used to delete a resource.

DELETE operations are idempotent concerning the result but may
return another status code after the first deletion (e.g. 404 NOT
FOUND).

17.2. REST Resource Provider
A REST resource using the JAX-RS API is implemented by a POJO class annotated with a set of
annotations.

The Scout module org.eclipse.scout.rt.rest contains the basic IRestResource marker interface
which integrates REST resources within the Scout framework. The interface is annotated by @Bean
allowing the Scout platform to load and register all REST resources automatically at startup using
the Jandex class inventory.

Listing 98. Example: REST resource

@Path("example")
public class ExampleResource implements IRestResource {

 @GET
 @Path("{id}")
 @Produces(MediaType.APPLICATION_JSON)
 public ExampleEntityDo getExamlpeEntity(@PathParam("id") String id) {
 return BEANS.get(ExampleEntityDo.class)
 .withName("example-" + id)
 .withValues(1);
 }
}

17.2.1. REST Resource Registration

All available REST resources are automatically registered by the RestApplication class while the
Scout platform startup.

Add the following snippet to your web.xml file to expose your REST API using the /api context path:

135

http://www.oracle.com/technetwork/java/javaee/tech/jax-rs-159890.html

Listing 99. web.xml

<!-- JAX-RS Jersey Servlet -->
<servlet>
 <servlet-name>api</servlet-name>
 <servlet-class>org.glassfish.jersey.servlet.ServletContainer</servlet-class>
 <init-param>
 <param-name>javax.ws.rs.Application</param-name>
 <param-value>org.eclipse.scout.rt.rest.RestApplication</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet-mapping>
 <servlet-name>api</servlet-name>
 <url-pattern>/api/*</url-pattern>
</servlet-mapping>

17.2.2. Extend REST Application

The JAX-RS application API (javax.ws.rs.core.Application) allows a REST application
implementation to specify a set of classes, a set of singleton instances and a map of custom
properties to be registered. The Scout implementation of the REST application class
org.eclipse.scout.rt.rest.RestApplication allows contributing classes, singletons and properties
without needing to extend the RestApplication class.

Three different contributor interfaces are available for contributions:

• IRestApplicationClassesContributor to contribute any classes

• IRestApplicationSingletonsContributor to contribute any object instances (singletons)

• IRestApplicationPropertiesContributor to contribute key/value properties

Listing 100. Example class contributor

public static class ExampleClassContributor implements
IRestApplicationClassesContributor {
 @Override
 public Set<Class<?>> contribute() {
 return Collections.singleton(MyCustomExample.class);
 }
}

17.2.3. Data Objects

Scout data objects may be used as request and response objects for REST APIs. See Chapter 16 for
details and examples.

136

17.2.4. Marshaller

A REST API may be used by non-Java consumers. In order to communicate using a platform-
independent format, usually REST services use JSON as transport format. The marshaller between
Java data objects and JSON is abstracted in the JAX-RS specification. Using the
@Produces(MediaType.APPLICATION_JSON) annotation, each REST service method specifies the
produced data format.

The Scout REST integration uses the popular Jackson library as default marshaller.

17.2.5. RunContext

Like a usual service call using the Scout service tunnel a REST request must ensure that processing
of the request takes place within a RunContext. The HttpServerRunContextFilter or
HttpRunContextFilter can be used to intercept incoming REST requests and wrap them within a
Scout RunContext. HttpServerRunContextFilter can be used if a Scout server dependency is
available. Optionally this filter also supports the creation of a Scout server session if this should be
required (stateful). Refer to the javadoc for more details. The HttpRunContextFilter on the other
hand does not provide session support and is always stateless.

Therefore, a REST resource implementation is not required to deal with setting up a RunContext to
wrap the request within each method. The filter must be added in the web.xml configuration file and
should be configured to be called after the authentication filter. The filter expects that the
authentication has been performed and that a subject is available (JAAS context). All following
filters and servlets and thus also the REST resources run automatically in the correct context.

Listing 101. web.xml registration example for HttpServerRunContextFilter.

<filter>
 <filter-name>HttpServerRunContextFilter</filter-name>
 <filter-class>
org.eclipse.scout.rt.server.context.HttpServerRunContextFilter</filter-class>
 <init-param>
 <param-name>session</param-name>
 <param-value>false</param-value>
 </init-param>
 </filter>

<filter-mapping>
 <filter-name>HttpServerRunContextFilter</filter-name>
 <url-pattern>/api/*</url-pattern>
</filter-mapping>

Beside the subject and other attributes the HttpServerRunContextFilter and HttpRunContextFilter
setup the Correlation ID, as well as the locale. Both values are read from the incoming request
header, the caller must ensure that the headers Accept-Language and X-Scout-Correlation-Id are set
accordingly.

137

17.3. Dependency Management
Scout REST services based on JAX-RS using the Jersey library and the Jackson JSON marshaller need
a maven dependency to jersey-media-json-jackson in the application pom.xml. This enables the use
of Jackson as JAX-RS marshaller with the Jersey JAX-RS implementation. Additionally, a dependency
to the Scout module org.eclipse.scout.rt.rest.jackson is necessary. This module adds a set of
Jackson additions in order to use the Jackson library together with Scout data objects.

Listing 102. Dependency section of pom.xml to use Scout REST services with Jackson & Jersey

<!-- JAX-RS Jersey -->
<dependency>
 <groupId>org.glassfish.jersey.containers</groupId>
 <artifactId>jersey-container-servlet-core</artifactId>
</dependency>
<dependency>
 <groupId>org.glassfish.jersey.inject</groupId>
 <artifactId>jersey-hk2</artifactId>
</dependency>
<dependency>
 <groupId>org.glassfish.jersey.media</groupId>
 <artifactId>jersey-media-json-jackson</artifactId>
</dependency>

<!-- Jackson/Scout integration -->
<dependency>
 <groupId>org.eclipse.scout.rt</groupId>
 <artifactId>org.eclipse.scout.rt.rest.jackson</artifactId>
</dependency>

17.4. REST Client
The Scout module org.eclipse.scout.rt.rest offers a set of helper classes in order to call REST
services.

Each REST service endpoint is represented by a specific REST resource client helper class. The
(usually application scoped bean) class is used to specify the resource URL and additional
properties used to build up the connection (authentication, additional headers,…). Further it
provides a call-back method for transforming unsuccessful responses into appropriate exception.

At least the REST resource’s base URI must be specified:

138

Listing 103. Example: REST resource client helper

public class ExampleRestClientHelper extends AbstractRestClientHelper {

 @Override
 protected String getBaseUri() {
 return "https://api.example.org/"; ①
 }

 @Override
 protected void configureClientBuilder(ClientBuilder clientBuilder) {
 super.configureClientBuilder(clientBuilder);
 clientBuilder.property(RestClientProperties.COOKIE_SPEC, CookieSpecs.STANDARD);
 clientBuilder.property(RestClientProperties.PROXY_URI, "http://my.proxy.com");
 }

 @Override
 protected RuntimeException transformException(RuntimeException e, Response response)
{ ②
 if (response != null && response.hasEntity()) {
 ErrorDo error = response.readEntity(ErrorResponse.class).getError();
 throw new VetoException(error.getMessage())
 .withTitle(error.getTitle());
 }
 return e;
 }
}

① Declare base uri.

② Custom exception transformer that is used as default strategy for all invocations prepared by
this helper. (This is just for demonstration. Better extend
org.eclipse.scout.rt.rest.client.proxy.AbstractEntityRestClientExceptionTransformer).

Based on the helper class, an example REST resource client may be implemented:

Listing 104. Example: REST resource client

public class ExampleResourceClient implements IRestResourceClient {

 protected static final String RESOURCE_PATH = "example";

 protected ExampleRestClientHelper helper() {
 return BEANS.get(ExampleRestClientHelper.class);
 }

 public ExampleEntityDo getExampleEntity(String id) {
 WebTarget target = helper().target(RESOURCE_PATH)
 .property(RestClientProperties.FOLLOW_REDIRECTS, false)
 .path("/{id}")
 .resolveTemplate("id", id);

139

 return target.request()
 .accept(MediaType.APPLICATION_JSON)
 .get(ExampleEntityDo.class); ①
 }

 public ExampleEntityDo updateExampleEntity(String id, ExampleEntityDo entity) {
 WebTarget target = helper().target(RESOURCE_PATH)
 .path("/{id}")
 .resolveTemplate("id", id);

 return target.request()
 .accept(MediaType.APPLICATION_JSON)
 .post(Entity.json(entity), ExampleEntityDo.class); ②
 }

 public void deleteExampleEntity(String id) {
 WebTarget target = helper().target(RESOURCE_PATH)
 .path("/{id}")
 .resolveTemplate("id", id);

 Response response = target.request().delete(); ③
 response.close();
 }

 public ExampleEntityDo getExampleEntityCustomExceptionHandling(String id) {
 WebTarget target = helper().target(RESOURCE_PATH, this::transformCustomException)
④
 .path("/{id}")
 .resolveTemplate("id", id);

 return target.request()
 .accept(MediaType.APPLICATION_JSON)
 .get(ExampleEntityDo.class);
 }

 protected RuntimeException transformCustomException(RuntimeException e, Response r)
{
 if (r != null && r.hasEntity() && MediaType.TEXT_PLAIN_TYPE.equals(r.getMediaType
())) {
 String message = r.readEntity(String.class);
 throw new VetoException(message);
 }
 return e;
 }
}

① HTTP GET example: Directly read response into an object. Exceptions are transformed
transparently and the underlying resources are released (e.g. HTTP client).

② HTTP POST example: Again, directly read the response into an object.

140

③ HTTP DELETE example: This delete operation does not send a response if it was successful.
Hence close the returned Response explicitly to release underlying resources (see next line).
Note: Unsuccessful responses are already handled by the REST client proxy.

④ Use custom exception transformer.

17.4.1. REST Client Properties

The Scout REST Client implementation offers a set of properties to customize the underlying REST-
and HTTP client, see org.eclipse.scout.rt.rest.client.RestClientProperties for a list of supported
properties.

Properties can be set on the REST client during initialization (valid for all requests):

Listing 105. Setting properties for REST Client for all requests

 @Override
 protected void configureClientBuilder(ClientBuilder clientBuilder) {
 super.configureClientBuilder(clientBuilder);
 clientBuilder.property(RestClientProperties.COOKIE_SPEC, CookieSpecs.STANDARD);
 clientBuilder.property(RestClientProperties.PROXY_URI, "http://my.proxy.com");
 }

Some properties (see JavaDoc for details) may also be set on a request level:

Listing 106. Setting properties for REST Client for a single requests, e.g. setting FOLLOW_REDIRECTS to false

 public ExampleEntityDo getExampleEntity(String id) {
 WebTarget target = helper().target(RESOURCE_PATH)
 .property(RestClientProperties.FOLLOW_REDIRECTS, false)
 .path("/{id}")
 .resolveTemplate("id", id);

 return target.request()
 .accept(MediaType.APPLICATION_JSON)
 .get(ExampleEntityDo.class); ①
 }

17.4.2. REST Client HTTP Proxy

There are multiple possibilities to configure a REST client to use a HTTP proxy:

• Directly on REST client instance: see
org.eclipse.scout.rt.rest.client.RestClientProperties.PROXY_URI (and PROXY_USER /
PROXY_PASSWORD properties)

• Using the dynamic Scout org.eclipse.scout.rt.shared.http.proxy.ConfigurableProxySelector,
see example configuration:

141

Listing 107. Setting HTTP proxy for outgoing requests to *.example.com

scout.http.proxyPatterns[0]=.*\.example.com(:\d+)?=127.0.0.1:8888

In order to use the configurable proxy selector property, make sure to enable the
new Scout Apache HTTP client connector, either using the REST client property
org.eclipse.scout.rt.rest.client.RestClientProperties.USE_SCOUT_APACHE_CONNECTO
R or by setting the config property scout.rest.useScoutApacheConnector=true.

17.5. REST Cancellation Support
REST and the underlying HTTP protocol do not provide an explicit way to cancel running requests.
Typically, a client terminates its connection to the HTTP server if it is no longer interested in the
response. REST resources would have to monitor TCP connections and interpret a close as
cancellation. Depending on the abstraction of the REST framework, connection events are not
passed through and the cancellation is only recognized when the response is written to the closed
connection. Until this happens, however, backend resources are used unnecessarily.

Scout’s standard REST integration implements the described approach by closing the connection
without any further action. It is not possible to react to this on the resource side.

In order to enable a real cancellation, Scout also provides all necessary elements to assign an ID to a
request, to manage these IDs in the backend during execution and to cancel transactions in the
event of a cancellation. The following steps must be taken for their use:

17.5.1. Cancellation Resource and Resource Client

Scout does not impose nor provide a cancellation resource. It must be implemented by the project:

Listing 108. Example: REST cancellation Resource

@Path("cancellation")
public class CancellationResource implements IRestResource {

 @PUT
 @Path("{requestId}")
 public void cancel(@PathParam("requestId") String requestId) {
 String userId = BEANS.get(IAccessControlService.class).getUserIdOfCurrentSubject(
); ①
 BEANS.get(RestRequestCancellationRegistry.class).cancel(requestId, userId); ②
 }
}

① Resolve the userId of the current user. This is optional and may depend on the current project.

② Invoke the cancellation registry for the given requestId and userId.

142

Listing 109. Example: REST cancellation Resource Client

public class CancellationResourceClient implements IRestResourceClient {

 protected static final String RESOURCE_PATH = "cancellation";

 protected CancellationRestClientHelper helper() {
 return BEANS.get(CancellationRestClientHelper.class);
 }

 public void cancel(String requestId) {
 WebTarget target = helper().target(RESOURCE_PATH)
 .path("{requestId}")
 .resolveTemplate("requestId", requestId);

 Response response = target.request()
 .put(Entity.json(""));
 response.close();
 }
}

17.5.2. Install Cancellation Request Filter

To assign an ID to each request, an appropriate client request filter must be registered:

Listing 110. Example: Register Client Request Cancellation Filter in REST Client Helper

public class CancellationRestClientHelper extends AbstractRestClientHelper {

 @Override
 protected String getBaseUri() {
 return "https://api.example.org/";
 }

 @Override
 protected void registerRequestFilters(ClientBuilder clientBuilder) {
 super.registerRequestFilters(clientBuilder);
 clientBuilder.register(new RestRequestCancellationClientRequestFilter(this:
:cancelRequest)); ①
 }

 protected void cancelRequest(String requestId) {
 BEANS.get(CancellationResourceClient.class).cancel(requestId); ②
 }
}

① Register the RestRequestCancellationClientRequestFilter that assigns a UUID to every request,
which is sent as an HTTP header named X-ScoutRequestId.

② Binds the actual cancel-operation to the cancel Method (in this case the cancellation rest

143

resource client from above).

17.5.3. Implement Cancellation Servlet Filter

Requests arriving at the backend need to be registered in the cancellation registry. This is done by a
servlet filter (Note: REST container filters would have two issues: 1. there is no real interceptor
around the resource call, but only a ContainerRequestFilter that is invoked before and a
ContainerResponseFilter which is invoked after the the request is passed to the resource. 2.
Cancellation in Scout is tied to an ITransaction that are managed by a RunContext and observed and
controlled by a RunMonitor. Depending on sub-RunContexts and their transaction isolation it might
happen, that the transaction visible in a container filter is not controlled by the currently active
RunMonitor. Therefore, a cancel request would not cancel the transaction.)

Listing 111. Example: Register client request cancellation filter in Rest Client Helper

public class RestRequestCancellationServletFilter extends
AbstractRestRequestCancellationServletFilter {

 @Override
 protected Object resolveUserId(HttpServletRequest request) {
 return BEANS.get(IAccessControlService.class).getUserIdOfCurrentSubject(); ①
 }
}

① Implement the same userId Lookup as in the CancellationResource.

Finally, declare the servlet filter in your web.xml:

Listing 112. web.xml registration example for RestRequestCancellationFilter.

<filter>
 <filter-name>RestRequestCancellationFilter</filter-name>
 <filter-
class>org.eclipse.scout.docs.snippets.rest.RestRequestCancellationServletFilter</filte
r-class>
 </filter>

<filter-mapping>
 <filter-name>RestRequestCancellationFilter</filter-name>
 <url-pattern>/api/*</url-pattern>
</filter-mapping>

Make sure the cancellation filter is registered after the
HttpServerRunContextFilter.

144

Chapter 18. Webservices with JAX-WS
The Java API for XML-Based Web Services (JAX-WS) is a Java programming language API for
creating web services. JAX-WS is one of the Java XML programming APIs, and is part of the Java EE
platform.

Scout facilitates working with webservices, supports you in the generation of artifacts, and
provides the following functionality:

18.1. Functionality
• ready to go Maven profile for easy webservice stub and artifact generation

• full JAX-WS 2.2 compliance

• JAX-WS implementor independence

• provides an up front port type EntryPoint to enforce for authentication, and to run web requests
in a RunContext

• adds cancellation support for on-going webservice requests

• provides a port cache for webservice consumers

• allows to participate in 2PC protocol for webservice consumers

• allows to provide 'init parameters' to handlers

18.2. JAX-WS implementor and deployment

18.2.1. JAX-WS version and implementor

The JAX-WS Scout integration provides a thin layer on top of JAX-WS implementors to facilitate
working with webservices. It depends on the JAX-WS 2.2.x API as specified in JSR 224. It is
implementor neutral, and was tested with with the following implementations:

• JAX-WS RI (reference implementation) as shipped with Java 7 and Java 8. Please note that
starting with Java 11 this is no longer part of the JRE.

• JAX-WS METRO (2.2.10)

• Apache CXF (3.1.3)

The integration does not require you to bundle the JAX-WS implementor with your application,
which is a prerequisite for running in an EE container.

18.2.2. Running JAX-WS in a servlet container

A servlet container like Apache Tomcat typically does not ship with a JAX-WS implementor. As the
actual implementor, you can either use JAX-WS RI as shipped with the JRE, or provide a separate
implementor like JAX-WS METRO or Apache CXF in the form of a Maven dependency. However,
JAX-WS RI does not provide a servlet based entry point, because the Servlet API is not part of the
Java SE specification.

145

When publishing webservices, it therefore is easiest to ship with a separate implementor: Declare a
respective Maven dependency in your webbapp project - that is the Maven module typically
containing the application’s web.xml.

18.2.3. Running JAX-WS in a EE container

When running in an EE container, the container typically ships with a JAX-WS implementor. It is
highly recommended to use that implementor, primarily to avoid classloading issues, and to further
profit from the container’s monitoring and authentication facility. Refer to the containers
documentation for more information.

18.2.4. Configure JAX-WS implementor

JAX-WS Scout integration is prepared to run with different implementors. Unfortunately, some
implementors do not implement the JSR exactly, or some important functionality is missing in the
JSR. To address this fact without loosing implementor independence, the delegate bean
JaxWsImplementorSpecifics exists.

As of now, Scout ships with three such implementor specific classes, which are activated via
config.properties by setting the property scout.jaxws.implementor with its fully qualified class name.
By default, JAX-WS METRO implementor is installed.

For instance, support for Apache CXF implementor is activated as following:

scout.jaxws.implementor=org.eclipse.scout.rt.server.jaxws.implementor.JaxWsCxfSpecific
s

class description

JaxWsRISpecifics implementor specifics for JAX-WS Reference Implementation (RI) as
contained in JRE

JaxWsMetroSpecifics implementor specifics for JAX-WS METRO implementation

JaxWsCxfSpecifics implementor specifics for Apache JAX-WS CXF implementation

Of course, other implementors can be used as well. For that to work, install your own
JaxWsImplementorSpecifics class, and reference its fully qualified name in config.properties.

JaxWsImplementorSpecifics

This class encapsulates functionality that is defined in JAX-WS JSR 224, but may diverge among JAX-
WS implementors. As of now, the following points are addressed:

• missing support in JSR to set socket connect and read timeout;

• proprietary 'property' to set response code in Apache CXF;

• when working with Apache CXF, response header must be set directly onto Servlet Response,
and not via MessageContext;

• when working with JAX-WS METRO or JAX-WS RI, the handler’s return value is ignored in one-

146

way communication; instead, the chain must be exited by throwing a webservice exception;

Learn more about how to configure a JAX-WS implementor: Section 18.2.4

Configure JAX-WS Maven dependency in pom.xml

The effective dependency to the JAX-WS implementor is to be specified in the pom.xml of the
webapp module (not the server module). That allows for running with a different implementor
depending on the environment, e.g. to provide the implementor yourself when starting the
application from within your IDE in Jetty, or to use the container’s implementor when deploying to
an EE enabled application server. Even if providing the very same implementor for all
environments yourself, it is good practice to do the configuration in the webapp module.

A generally applicable configuration cannot be given, because the effective configuration depends
on the implementor you choose, and whether it is already shipped with the application server you
use. However, if JAX-WS RI is sufficient, you do not have to specify an implementor at all because
already contained in JRE.

If running in an EE application server, refer to the containers documentation for more information.

Listing 113 provides sample configuration for shipping with JAX_WS METRO and Listing 114 does
the same for Apache CXF

Listing 113. Maven dependency for JAX-WS METRO

<!-- JAX-WS METRO not bundled with JRE -->
<dependency>
 <groupId>com.sun.xml.ws</groupId>
 <artifactId>jaxws-rt</artifactId>
 <version>...</version>
</dependency>

Listing 114. Maven dependency for Apache CXF

<!-- JAX-WS Apache CXF -->
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 <version>...</version>
</dependency>
<dependency>
 <groupId>org.apache.cxf</groupId>
 <artifactId>cxf-rt-transports-http</artifactId>
 <version>...</version>
</dependency>
<dependency>
 <groupId>org.springframework</groupId>
 <artifactId>spring-web</artifactId>
 <version>...</version>
</dependency>

147

Configure JAX-WS servlet in web.xml

This section describes the configuration of the entry point Servlet to publish webservices. If
working with webservice consumers only, no configuration is required.

Similar to the pom.xml as described in Section 18.2.4.2, the web.xml differs from implementor to
implementor, and whether the implementor is already shipped with the application server.
Nevertheless, the following Listing 115 show a sample configuration for JAX-WS METRO and Listing
116 for Apache CXF.

Listing 115. web.xml for JAX-WS METRO Servlet

<!-- JAX-WS METRO not bundled with JRE -->
<context-param>
 <param-name>com.sun.xml.ws.server.http.publishStatusPage</param-name>
 <param-value>true</param-value>
</context-param>
<context-param>
 <param-name>com.sun.xml.ws.server.http.publishWSDL</param-name>
 <param-value>true</param-value>
</context-param>
<listener>
 <listener-class>
com.sun.xml.ws.transport.http.servlet.WSServletContextListener</listener-class>
</listener>
<servlet>
 <servlet-name>jaxws</servlet-name>
 <servlet-class>com.sun.xml.ws.transport.http.servlet.WSServlet</servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>jaxws</servlet-name>
 <url-pattern>/jaxws/*</url-pattern> ①
</servlet-mapping>

① the base URL where to publish the webservice endpoints

148

Listing 116. web.xml for Apache CXF Servlet

<!-- JAX-WS Apache CXF -->
<servlet>
 <display-name>CXF Servlet</display-name>
 <servlet-name>jaxws</servlet-name>
 <servlet-class>org.apache.cxf.transport.servlet.CXFServlet</servlet-class>
 <init-param>
 <param-name>config-location</param-name>
 <param-value>/WEB-INF/cxf-jaxws.xml</param-value> ①
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>
<servlet-mapping>
 <servlet-name>jaxws</servlet-name>
 <url-pattern>/jaxws/*</url-pattern> ②
</servlet-mapping>

① Apache CXF specific configuration file for endpoints to be published. See Section 18.5.8.2 for
more information.

② the base URL where to publish the webservice endpoints

But, if running in an EE container, it is most likely that a Servlet configuration must not be
configured, because the endpoints are discovered by the application server, or registered in a
vendor specific way. Refer to the containers documentation for more information.

Some application servers like Oracle WebLogic Server (WLS) allow the port types
to be registered as a Servlet in web.xml. However, this is vendor specific, and
works despite the fact that port type does not implement 'javax.servlet.Servlet'.

Do not forget to exclude the webservice’s Servlet URL pattern from authentication
filter.

18.3. Modularization
Scout JAX-WS integration does not prescribe how to organize your webservices in terms of Maven
modules. You could either put all your webservices directly into the server module, or create a
separate jaxws module containing all webservices, or even create a separate jaxws module for each
webservice. Most often, the second approach of a single, separate jaxws module, which the server
module depends on, is chosen.

This is mainly because of the following benefits:

• annotation processing must not be enabled for the entire server module

• one module to build all webservice artifacts at once

• easier to work with shared element types among webservices

149

Figure 17. typical modularization

It is important to note, that the server depends on the jaxws module, and not vice versa. The jaxws
module is primarily of technical nature, meaning that it knows how to generate its WS artifacts,
and also contains those. However, implementing port type beans and even implementing handler
beans are typically put into the server module to the access service and database layer. On the
other hand, WS clients may be put into jaxws module, because they rarely contain any project
specific business logic.

You may ask yourself, how the jaxws module can access the implementing port type and handlers
located in the server module. That works because of the indirection via bean manager, and because
there is a flat classpath at runtime.

See WebServiceEntryPoint for more information.

18.4. Build webservice stubs and artifacts

18.4.1. Configure webservice stub generation via wsimport

The Maven plugin 'com.sun.xml.ws:jaxws-maven-plugin' with the goal 'wsimport' is used to
generate a webservice stub from a WSDL file and its referenced XSD schema files. If your Maven
module inherits from the Scout module 'maven_rt_plugin_config-master', the 'jaxws' profile is
available, which activates automatically upon the presence of a 'WEB-INF/wsdl' folder. Instead of
inheriting from that module, you can alternatively copy the 'jaxws' profile into your projects parent
POM module.

This profile is for convenience purpose, and provides a ready-to-go configuration to generate
webservice stubs and webservice provider artifacts. It configures the 'jaxws-maven-plugin' to look
for WSDL and XSD files in the folder 'src/main/resources/WEB-INF/wsdl', and for binding files in the
folder '/src/main/resources/WEB-INF/binding'. Upon generation, the stub will be put into the folder
'target/generated-sources/wsimport'.

The profiles requires the Scout runtime version to be specified, and which is used to refer to

150

org.eclipse.scout.jaxws.apt module to generate webservice provider artifacts. However, this
version is typically defined in pom.xml of the parent module, because also used to refer to other
Scout runtime artifacts.

Listing 117. Scout version defined as Maven property

<properties>
 <org.eclipse.scout.rt.version>5.2.0-SNAPSHOT</org.eclipse.scout.rt.version>
</properties>

If your project design envisions a separate JAR module per WSDL, you simply have to set the
property 'jaxws.wsdl.file' with the name of your WSDL file in the module’s pom.xml (example in
Listing 118).

Listing 118. wsimport configuration in pom.xml if working with a single WSDL file per JAR module

<properties>
 <jaxws.wsdl.file>YourWebService.wsdl</jaxws.wsdl.file> ①
</properties>

① name of the wsdl file

Otherwise, if having multiple WSDL files in your JAR module, some little more configuration is
required, namely a respective execution section per WSDL file. Thereby, the 'id' of the execution
section must be unique. Scout 'jaxws' profile already provides one such section, which is used to
generate the stub for a single WSDL file (see such configuration in Listing 118), and names it
'wsimport-1'. It is simplest to name the subsequent execution sections 'wsimport-2', 'wsimport-3',
and so on.
For each execution section, you must configure its unique id, the goal 'wsimport', and in the
configuration section the respective wsdlLocation and wsdlFile. For 'wsimport' to work,
wsdlLocation is not required. However, that location will be referenced in generated artifacts to set
the wsdl location via @WebService and @WebServiceClient. The complete configuration is presented in
Listing 119.

If you decide to configure multiple WSDL files in your POM as described in Listing
119, the configuration defined in the parent POM (maven_rt_plugin_config-master)
and expecting a configuration as presented in Listing 118 needs to be overridden,
therefore one of your execution id needs to be wsimport-1.

151

Listing 119. wsimport configuration in pom.xml if working with multiple WSDL files per JAR module

<build>
 <plugins>
 <plugin>
 <groupId>com.sun.xml.ws</groupId>
 <artifactId>jaxws-maven-plugin</artifactId>
 <executions>
 <!-- YourFirstWebService.wsdl -->
 <execution> ①
 <!-- DO NOT CHANGE THE ID: 'wsimport-1';
 it overrides an execution defined in the parent pom -->
 <id>wsimport-1</id> ②
 <goals>
 <goal>wsimport</goal> ③
 </goals>
 <configuration>
 <wsdlLocation>WEB-INF/wsdl/YourFirstWebService.wsdl</wsdlLocation> ④
 <wsdlFiles>
 <wsdlFile>YourFirstWebService.wsdl</wsdlFile> ⑤
 </wsdlFiles>
 </configuration>
 </execution>

 <!-- YourSecondWebService.wsdl -->
 <execution> ⑥
 <id>wsimport-2</id>
 <goals>
 <goal>wsimport</goal>
 </goals>
 <configuration>
 <wsdlLocation>WEB-INF/wsdl/YourSecondWebService.wsdl</wsdlLocation>
 <wsdlFiles>
 <wsdlFile>YourSecondWebService.wsdl</wsdlFile>
 </wsdlFiles>
 </configuration>
 </execution>

 ...

 </executions>
 </plugin>
 </plugins>
</build>

① declare an execution section for each WSDL file

② give the section a unique id (wsimport-1, wsimport-2, wsimport-3, …)

③ specify the goal 'wsimport' to build the webservice stub

④ specify the project relative path to the WSDL file

152

⑤ specify the relative path to the WSDL file (relative to 'WEB-INF/wsdl')

⑥ declare an execution section for the next WSDL file

Further, you can overwrite any configuration as defined by 'jaxws-maven-plugin'. See
http://www.mojohaus.org/jaxws-maven-plugin/ for supported configuration properties.

Also, it is good practice to create a separate folder for each WSDL file, which also contains all its
referenced XSD schemas. Then, do not forget to change the properties wsdlLocation and wsdlFile
accordingly.

18.4.2. Customize WSDL components and XSD schema elements via binding
files

By default, all XML files contained in folder 'WEB-INF/binding' are used as binding files. But, most
often, you will have a global binding file, which applies to all your WSDL files, and some custom
binding files different per WSDL file and XSD schema files. See how to explicitly configure binding
files in Listing 120.

Listing 120. explicit configuration of binding files

<!-- YourFirstWebService.wsdl -->
<execution>
 ...
 <configuration>
 ...
 <bindingFiles>
 <bindingFile>global-bindings.xml</bindingFile> ①
 <bindingFile>your-first-webservice-ws-bindings.xml</bindingFile> ②
 <bindingFile>your-first-webservice-xs-bindings.xml</bindingFile> ③
 </bindingFiles>
 </configuration>
</execution>

<!-- YourSecondWebService.wsdl -->
<execution>
 ...
 <configuration>
 ...
 <bindingFiles>
 <bindingFile>global-bindings.xml</bindingFile> ①
 <bindingFile>your-second-webservice-ws-bindings.xml</bindingFile> ②
 <bindingFile>your-second-webservice-xs-bindings.xml</bindingFile> ③
 </bindingFiles>
 </configuration>
</execution>

① global binding file which applies to all XSD schema elements. See Listing 121 for an example.

② custom binding file to customize the webservice’s WSDL components in the namespace
http://java.sun.com/xml/ns/jaxws. See Listing 122 for an example.

153

http://www.mojohaus.org/jaxws-maven-plugin/
http://java.sun.com/xml/ns/jaxws

③ custom binding file to customize the webservice’s XSD schema elements in the namespace
http://java.sun.com/xml/ns/jaxb. See Listing 123 for an example.

With binding files in place, you can customize almost every WSDL component and XSD element
that can be mapped to Java, such as the service endpoint interface class, packages, method name,
parameter name, exception class, etc.

The global binding file typically contains some customization for common data types like
java.util.Date or java.util.Calendar, whereas the custom binding files are specific for a WSDL or XSD
schema. See Section 18.7.

Listing 121. example of global binding file in the namespace http://java.sun.com/xml/ns/jaxb

<bindings version="2.0"
 xmlns="http://java.sun.com/xml/ns/jaxb"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc">
 <globalBindings>
 <xjc:javaType
 name="java.util.Date"
 xmlType="xsd:date"
 adapter="org.eclipse.scout.rt.server.jaxws.adapter.UtcDateAdapter" />
 <xjc:javaType
 name="java.util.Date"
 xmlType="xsd:time"
 adapter="org.eclipse.scout.rt.server.jaxws.adapter.UtcTimeAdapter" />
 <xjc:javaType
 name="java.util.Date"
 xmlType="xsd:dateTime"
 adapter="org.eclipse.scout.rt.server.jaxws.adapter.UtcDateTimeAdapter" />
 </globalBindings>
</bindings>

By default, generated artifacts are put into the package corresponding to the element’s namespace.
Sometimes, you like to control the package names, but you want to do that on a per-namespace
basis, and not put all the artifacts of a webservice into the very same package. That is mainly to
omit collisions, and to have artifacts shared among webservices not duplicated.

Two separate binding files are required to customize WSDL components and XSD schema elements.
That is because WSDL component customization is to be done in 'jaxws' namespace
http://java.sun.com/xml/ns/jaxws, whereas XSD schema element customization in 'jaxb' namespace
http://java.sun.com/xml/ns/jaxb.

154

http://java.sun.com/xml/ns/jaxb
http://java.sun.com/xml/ns/jaxb
http://java.sun.com/xml/ns/jaxws
http://java.sun.com/xml/ns/jaxb

Listing 122. example of jaxws component customization in the namespace http://java.sun.com/xml/ns/jaxws

<!-- binding to customize webservice components
(xmlns=http://java.sun.com/xml/ns/jaxws) -->
<bindings xmlns="http://java.sun.com/xml/ns/jaxws"> ①
 <package name="org.eclipse.ws.yourfirstwebservice"/> ②
</bindings>

① customization via jaxws namespace: http://java.sun.com/xml/ns/jaxws

② instructs to put all webservice components (port type, service) into package
org.eclipse.ws.yourfirstwebservice

Listing 123. example of xsd schema element customization in the namespace http://java.sun.com/xml/ns/
jaxb

<!-- binding to customize xsd schema elements (xmlns=http://java.sun.com/xml/ns/jaxb)
-->
<bindings xmlns="http://java.sun.com/xml/ns/jaxb" version="2.1"> ①
 <!-- namespace http://eclipse.org/public/services/ws/soap -->
 <bindings scd="x-schema::tns" xmlns:tns="http://eclipse.org/public/services/ws/soap
">
 <schemaBindings>
 <package name="org.eclipse.ws.yourfirstwebservice" /> ②
 </schemaBindings>
 </bindings>

 <!-- namespace http://eclipse.org/public/services/ws/common/soap -->
 <bindings scd="x-schema::tns" xmlns:tns=
"http://eclipse.org/public/services/ws/common/soap">
 <schemaBindings>
 <package name="org.eclipse.ws.common" /> ③
 </schemaBindings>
 </bindings>
</bindings>

① customization via jaxb namespace: http://java.sun.com/xml/ns/jaxb

② instructs to put all XSD schema elements in namespace http://eclipse.org/public/services/ws/soap
into package org.eclipse.ws.yourfirstwebservice

③ instructs to put all XSD schema elements in namespace http://eclipse.org/public/services/ws/
common/soap into package org.eclipse.ws.common

wsimport allows to directly configure the package name for files to be generated
(packageName). However, this is discouraged, because all artifacts are put into the
very same package. Use package customization on a per-namespace basis instead.

155

http://java.sun.com/xml/ns/jaxws
http://java.sun.com/xml/ns/jaxws
http://java.sun.com/xml/ns/jaxb
http://java.sun.com/xml/ns/jaxb
http://java.sun.com/xml/ns/jaxb
http://eclipse.org/public/services/ws/soap
http://eclipse.org/public/services/ws/common/soap
http://eclipse.org/public/services/ws/common/soap

For shared webservice artifacts, you can also use XJC binding compiler to generate
those artifacts in advance, and then provide the resulting episode binding file
(META-INF/sun-jaxb.episode) to wsimport. See http://www.mojohaus.org/jaxb2-
maven-plugin/Documentation/v2.2/xjc-mojo.html for more information.

18.4.3. Annotation Processing Tool (APT)

Annotation Processing (APT) is a tool which can be enabled to fire for annotated types during
compilation. In JAX-WS Scout integration, it is used as a trigger to generate webservice port type
implementations. Such an auto-generated port type implementation is called an entry point. It is to
be published as the webservice’s endpoint, and acts as an interceptor for webservice requests. It
optionally enforces for authentication, and makes the request to be executed in a RunContext.
Then, it handles the web request to the effectively implementing port type bean for actual
processing.

The entry point generated simplifies the actual port type implementation by removing lot of glue
code to be written by hand otherwise. Of course, this entry point is just for convenience purpose,
and it is up to you to make use of this artifact.

When using 'jaxws' Scout Maven profile, annotation processing is enabled for that module by
default. But, an entry point for a webservice port type will only be generated if enabled for that
port type, meaning that a class annotated with WebServiceEntryPoint pointing to that very
endpoint interface is found in this module. Anyway, for a sole webservice consumer, it makes no
sense to generate an entry point at all.

Enable Annotation Processing Tool (APT) in Eclipse IDE

In Eclipse IDE, the workspace build ignores annotation processing as configured in pom.xml.
Instead, it must be enabled separately with the following files. Nevertheless, to simply run Maven
build with annotation support from within Eclipse IDE, those files are not required.

file description

.settings/org.eclipse.jdt.core.prefs Enables APT for this module via the property
org.eclipse.jdt.core.compiler.processAnnotations=enabled

.settings/org.eclipse.jdt.apt.core.prefs Enables APT for this module via the property
org.eclipse.jdt.apt.aptEnabled=true

.factorypath Specifies the annotation processor to be used
(JaxWsAnnotationProcessor) and dependent artifacts

18.4.4. Build webservice stubs and APT artifacts from console

Simply run mvn clean compile on the project. If you are experiencing some problems, run with -X
debug flag to get a more detailed error message.

18.4.5. Build webservice stubs and APT artifacts from within Eclipse IDE

In the Eclipse IDE, there are three ways to generate webservice stubs and APT artifacts.

156

http://www.mojohaus.org/jaxb2-maven-plugin/Documentation/v2.2/xjc-mojo.html
http://www.mojohaus.org/jaxb2-maven-plugin/Documentation/v2.2/xjc-mojo.html

1. the implicit way on behalf of the workspace build and m2e integration (automatically, but
sometimes not reliable)

2. the explicit but potentially slow way by doing a 'Update Maven Project' with 'clean projects'
checked (Alt+F5)

3. the explicit and faster way by running a Maven build for that project. Thereto, right-click on the
project or pom.xml, then select the menu 'Run As | Maven build…', then choose 'clean compile'
as its goal and check 'Resolve workspace artifacts', and finally click 'Run'. Afterwards, do not
forget to refresh the project by pressing F5.

If the webservice stub(s) or APT artifacts are not generated (anew or at all), delete the target folder
manually, and continue according to procedure number three. A possible reason might be the
presence of 'target\jaxws\wsartifact-hash'. Then, for each webservice, a 'hash file' is computed by
'wsimport', so that regeneration only occurs upon a change of WSDL or XSD files.

18.4.6. Exclude derived resources from version control

Stub and APT artifacts are derived resources, and should be excluded from version control. When
working with Eclipse IDE, this is done automatically by eGit, because it adds derived resources to
.gitignore (if configured to do so).

18.4.7. JaxWsAnnotationProcessor

JaxWsAnnotationProcessor is an annotation processor provided by Scout JAX-WS integration to
generate an entry point for an endpoint interface during compilation. The instructions how to
generate the entry point is given via a Java class or Java interface annotated with
WebServiceEntryPoint annotation.

18.5. Provide a webservice
In this chapter, you will learn how to publish a webservice provider via an entry point.

18.5.1. The concept of an Entry Point

An entry point implements the endpoint interface (or port type interface), and is published as the
webservice endpoint for that endpoint interface. The entry point itself is auto generated by
JaxWsAnnotationProcessor during compile time, based on instructions as given by the respective
class/interface annotated with WebServiceEntryPoint annotation. The entry point is responsible to
enforce authentication and to run the web request in a RunContext. In turn, the request is
propagated to the bean implementing the endpoint interface.

Figure 18 illustrates the endpoint’s class hierarchy and the message flow for a web request.

157

Figure 18. Interaction of entry point and port type

As you can see, both, entry point and port type implement the endpoint interface. But it is the entry
point which is actually installed as the webservice endpoint, and which receives web requests.
However, the webservice itself is implemented in the implementing bean, which typically is located
in server module. See Section 18.3 for more information. Upon a web request, the entry point
simply intercepts the web request, and then invokes the web method on the implementing bean for
further processing.

See an example of an implementing port type bean, which is invoked by entry point.

Do not forget to annotate the implementing bean with ApplicationScoped
annotation in order to be found by bean manager.

18.5.2. Generate an Entry Point as an endpoint interface

This section describes the steps required to generate an entry point. For demonstration purposes, a
simple ping webservice is used, which provides a single method 'ping' to accept and return a String
object.

See the WSDL file of ping webservice: Section 18.8.1
See the endpoint interface of ping webservice: Section 18.8.2

To generate an entry point for the webservice’s endpoint interface, create an interface as following
in your jaxws project.

@WebServiceEntryPoint(endpointInterface = PingWebServicePortType.class) ②
interface PingWebServiceEntryPointDefinition { ①
}

158

① Create an interface or class to act as an anchor for the WebServiceEntryPoint annotation. This
class or interface has no special meaning, except that it declares the annotation to be interpreted
by annotation processor.

② Reference the endpoint interface for which an entry point should be generated for. Typically, the
endpoint interface is generated by 'wsimport' and is annotated with WebService annotation.

It is important to understand, that the interface PingWebServiceEntryPointDefinition solely acts as
the anchor for the WebServiceEntryPoint annotation. This class or interface has no special meaning,
except that it declares the annotation to be interpreted by annotation processor. Typically, this class
is called Entry Point Definition.

If running mvn clean compile, an entry point is generated for that endpoint interface. See the entry
point as generated for ping webservice: Section 18.8.3

If you should experience some problems in the entry point generation, refer to Build webservice
stubs and APT artifacts from within Eclipse IDE, or Build webservice stubs and APT artifacts from
console.

18.5.3. Instrument the Entry Point generation

This section gives an overview on how to configure the entry point to be generated.

attribute description

endpointInterface
(mandatory)

Specifies the endpoint interface for which to generate an entry point
for.
An endpoint interface defines the service’s abstract webservice
contract, and is also known as port type interface. Also, the endpoint
interface is annotated with WebService annotation.

entryPointName Specifies the class name of the entry point generated. If not set, the
name is like the name of the endpoint interface suffixed with
EntryPoint.

entryPointPackage Specifies the package name of the entry point generated. If not set,
the package name is the same as of the element declaring this
WebServiceEntryPoint annotation.

serviceName Specifies the service name as declared in the WSDL file, and must be
set if publishing the webservice via auto discovery in an EE
container. Both, 'serviceName' and 'portName' uniquely identify a
webservice endpoint to be published.
See for valid service names in the WSDL: <wsdl:service
name="SERVICE_NAME">…</wsdl:service>

portName Specifies the name of the port as declared in the WSDL file, and
must be set if publishing the webservice via auto discovery in an EE
container. Both, 'serviceName' and 'portName' uniquely identify a
webservice endpoint to be published.
See for valid port names in the WSDL: <wsdl:service name="…
"><wsdl:port name="PORT_NAME" binding="…"/></wsdl:service>

159

attribute description

wsdlLocation Specifies the location of the WSDL document. If not set, the location
is derived from WebServiceClient annotation which is typically
initialized with the 'wsdlLocation' as provided to 'wsimport'.

authentication Specifies the authentication mechanism to be installed, and in which
RunContext to run authenticated requests. By default, authentication
is disabled. If enabled, an AuthenticationHandler is generated and
registered in the handler chain as very first handler. However, the
position of that handler can be changed via order field on
Authentication annotation.
See Section 18.5.3.1 for more information.

handlerChain Specifies the handlers to be installed. The order of the handlers is as
declared. A handler is looked up as a bean, and must implement
javax.xml.ws.handler.Handler interface.
See Section 18.5.5 for more information.

Besides the instructions which can be set via WebServiceEntryPoint annotation, it is further possible
to contribute other annotations to the entry point. Simply declare the annotation of your choice as a
sibling annotation to WebServiceEntryPoint annotation. In turn, this annotation will be added to the
entry point as well. This may be useful to enable some vendor specific features, or e.g. to enable
MTOM to efficiently send binary data to a client.
That also applies for WebService annotation to overwrite values as declared in the WSDL file.

Further, you can also provide your own handler chain binding file. However, handlers and
authentication as declared via WebServiceEntryPoint annotation are ignored then.

Handlers registered via handlerChain must be beans, meaning either annotated
with @Bean or @ApplicationScoped.

The binding to the concrete endpoint is done via 'endpointInterface' attribute. If a
WSDL declares multiple services, create a separate entry point definition for each
service to be published.

Annotate the Entry Point Definition class with `IgnoreWebServiceEntryPoint' to not
generate an entry point for that definition. This is primarily used while developing
an entry point, or for documenting purpose.

Some fields require you to provide a Java class. Such fields are mostly of the
annotation type Clazz, which accepts either the concrete Class, or its 'fully
qualified name'. Use the latter if the class is not visible from within jaxws module.
However, if ever possible specify a Class. Because most classes are looked up via
bean manager, this can be achieved with an interface located in 'jaxws' module,
but with an implementation in 'server' module.

160

Configure Authentication

The field 'authentication' on WebServiceEntryPoint configures what authentication mechanism to
install on the webservice endpoint, and in which RunContext to run authenticated webservice
requests. It consists of the IAuthenticationMethod to challenge the client to provide credentials, and
the ICredentialVerifier to verify request’s credentials against a data source.

By default, authentication is disabled. If enabled, an AuthenticationHandler is generated and
registered in the handler chain as very first handler. The position can be changed via order field on
Authentication annotation.

The following properties can be set.

method
(mandatory)

Specifies the authentication method to be used to challenge the
client to provide credentials. By default, NullAuthenticationMethod is
used to disable authentication.
See IAuthenticationMethod for more information.

verifier Specifies against which data source credentials are to be verified. By
default, ForbiddenCredentialVerifier is used to reject any webservice
request.
See ICredentialVerifier for more information.

order Specifies the position where to register the authentication handler in
the handler chain. By default, it is registered as the very first
handler.

principalProducer Indicates the principal producer to use to create principals to
represent authenticated users. By default, SimplePrincipalProducer
is used.

runContextProducer Indicates which RunContext to use to run authenticated webservice
requests. By default, ServerRunContextProducer is used, which is
based on a session cache, and enforces to run in a new transaction.

If using container based authentication (authentication enforced by the
application server), use ContainerBasedAuthenticationMethod as authentication
method, and do not configure a credential verifier.

18.5.4. Example of an Entry Point definition

161

Listing 124. Example configuration for an entry point definition

@WebServiceEntryPoint(
 endpointInterface = PingWebServicePortType.class, ①
 entryPointName = "PingWebServiceEntryPoint",
 entryPointPackage = "org.eclipse.scout.docs.ws.ping",
 serviceName = "PingWebService",
 portName = "PingWebServicePort",
 handlerChain = {②
 @Handler(@Clazz(CorrelationIdHandler.class)), ③
 @Handler(value = @Clazz(IPAddressFilter.class), initParams = { ④
 @InitParam(key = "rangeFrom", value = "192.200.0.0"),
 @InitParam(key = "rangeTo", value = "192.255.0.0")}),
 @Handler(@Clazz(LogHandler.class)), ⑤
 },
 authentication = @Authentication(⑥
 order = 2, ⑦
 method = @Clazz(BasicAuthenticationMethod.class), ⑧
 verifier = @Clazz(ConfigFileCredentialVerifier.class))) ⑨
@MTOM ⑩

① References the endpoint interface for which to generate an entry point for.

② Declares the handlers to be installed on that entry point. The order is as declared.

③ Registers the 'CorrelationIdHandler' as the first handler to set a correlation ID onto the current
message context. See Section 18.5.6 for more information about state propagation.

④ Registers the 'IpAddressFilter' as the second handler to filter for IP addresses. Also, this handler
is parameterized with 'init params' to configure the valid IP range.

⑤ Registers the LogHandler as the third handler to log SOAP messages.

⑥ Configures the webservice’s authentication.

⑦ Configures the 'AuthHandler' to be put at position 2 (0-based), meaning in between of
IpAddressFilter and LogHandler. By default, AuthHandler would be the very first handler in the
handler chain.

⑧ Configures to use BASIC AUTH as authentication method.

⑨ Configures to verify user’s credentials against 'config.properties' file.

⑩ Specification of an MTOM annotation to be added to the entry point.

This configuration generates the following artifacts:

Figure 19. generated artifacts

162

All artifacts are generated into the package 'org.eclipse.scout.docs.ws.ping', as specified by the
definition. The entry point itself is generated into 'PingWebServiceEntryPoint.java'. Further, for
each handler, a respective handler delegate is generated. That allows handlers to be looked up via
bean manager, and to run the handlers on behalf of a RunContext. Also, an AuthHandler is generated
to authenticate web requests as configured.

The handler-chain XML file generated looks as following. As specified, the authentication handler is
installed as the third handler.

Listing 125. PingWebServiceEntryPoint_handler-chain.xml

<handler-chains xmlns="http://java.sun.com/xml/ns/javaee">
 <handler-chain>
 <!-- Executed as 4. handler-->
 <handler>
 <handler-class>org.eclipse.scout.docs.ws.ping
.PingWebServiceEntryPoint_LogHandler</handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <!-- Executed as 3. handler-->
 <handler>
 <handler-class>org.eclipse.scout.docs.ws.ping
.PingWebServiceEntryPoint_AuthHandler</handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <!-- Executed as 2. handler-->
 <handler>
 <handler-class>org.eclipse.scout.docs.ws.ping
.PingWebServiceEntryPoint_IPAddressFilter</handler-class>
 </handler>
 </handler-chain>
 <handler-chain>
 <!-- Executed as 1. handler-->
 <handler>
 <handler-class>org.eclipse.scout.docs.ws.ping
.PingWebServiceEntryPoint_CorrelationIdHandler</handler-class>
 </handler>
 </handler-chain>
</handler-chains>

The following listing shows the beginning of the entry point generated. As you can see, the handler-
chain XML file is referenced via HandlerChain annotation, and the MTOM annotation was added as
well.

163

Listing 126. PingWebServiceEntryPoint.java

@WebService(name = "PingWebServicePortType",
 targetNamespace = "http://scout.eclipse.org/docs/ws/PingWebService/",
 endpointInterface =
"org.eclipse.scout.docs.snippets.JaxWsSnippet.PingWebServicePortType",
 serviceName = "PingWebService",
 portName = "PingWebServicePort")
@MTOM
@HandlerChain(file = "PingWebServiceEntryPoint_handler-chain.xml")
public class PingWebServiceEntryPoint implements PingWebServicePortType {

18.5.5. Configure JAX-WS Handlers

See listing for an example of how to configure JAX-WS handlers.

JAX-WS handlers are configured directly on the entry point definition via the array field
handlerChain. In turn, JaxWsAnnotationProcessor generates a 'handler XML file' with the handler’s
order preserved, and which is registered in entry point via annotation handlerChain.

A handler can be initialized with static 'init parameters', which will be injected into the handler
instance. For the injection to work, declare a member of the type Map in the handler class, and
annotate it with javax.annotation.Resource annotation.

Because handlers are looked up via bean manager, a handler must be annotated with
ApplicationScoped annotation.

If a handler requires to be run in a RunContext, annotate the handler with RunWithRunContext
annotation, and optionally specify a RunContextProducer. If the web request is authenticated upon
entering the handler, the RunContext is run on behalf of the authenticated user. Otherwise, if not
authenticated yet, it is invoked with the Subject as configured in scout.jaxws.provider.user.handler
config property.

164

Listing 127. Example of a JAX-WS Handler

@ApplicationScoped ①
@RunWithRunContext ②
public class IPAddressFilter implements SOAPHandler<SOAPMessageContext> {

 @Resource
 private Map<String, String> m_initParams; ③

 @Override
 public boolean handleMessage(SOAPMessageContext context) {
 String rangeForm = m_initParams.get("rangeFrom"); ④
 String rangeTo = m_initParams.get("rangeTo");
 // ...
 return true;
 }

 @Override
 public boolean handleFault(SOAPMessageContext context) {
 return true;
 }

 @Override
 public Set<QName> getHeaders() {
 return Collections.emptySet();
 }

 @Override
 public void close(MessageContext context) {
 }
}

① Annotate the Handler with ApplicationScoped annotation, so it can be looked up via bean
manager

② Optionally annotate the Handler with RunWithRunContext annotation, so the handler is invoked in
a RunContext

③ Declare a Map member annotated with Resource annotation to make injection of 'init parameters'
work

④ Access injected 'init parameters'

18.5.6. Propagate state among Handlers and port type

Sometimes it is useful to share state among handlers, and even with the port type. This can be done
via javax.xml.ws.handler.MessageContext. By default, a property put onto message context is only
available in the handler chain. To make it available to the port type as well, set its scope to
'APPLICATION' accordingly.

The following listings gives an example of how to propagate state among handlers and port type.

165

Listing 128. This handler puts the correlation ID onto message context to be accessible by subsequent
handlers and the port type.

@ApplicationScoped
public class CorrelationIdHandler implements SOAPHandler<SOAPMessageContext> {

 @Override
 public boolean handleMessage(SOAPMessageContext context) {
 context.put("cid", UUID.randomUUID().toString()); ①
 context.setScope("cid", Scope.APPLICATION); ②
 return true;
 }

 @Override
 public boolean handleFault(SOAPMessageContext context) {
 return true;
 }

 @Override
 public Set<QName> getHeaders() {
 return Collections.emptySet();
 }

 @Override
 public void close(MessageContext context) {
 }
}

① Put the 'correlation ID' onto message context.

② Set scope to APPLICATION to be accessible in port type. By default, the scope if HANDLER only.

166

Listing 129. This handler accesses the 'correlation ID' as set by the previous handler.

@ApplicationScoped
public class CorrelationIdLogger implements SOAPHandler<SOAPMessageContext> {

 @Override
 public boolean handleMessage(SOAPMessageContext context) {
 String correlationId = (String) context.get("cid"); ①
 // ...
 return true;
 }

 @Override
 public boolean handleFault(SOAPMessageContext context) {
 return true;
 }

 @Override
 public void close(MessageContext context) {
 }

 @Override
 public Set<QName> getHeaders() {
 return Collections.emptySet();
 }
}

① Get the 'correlation ID' from message context.

Listing 130. This port type accesses the 'correlation ID' as set by the previous handler.

@ApplicationScoped
public class CorrelationIdPortType implements PingWebServicePortType {

 @Override
 public String ping(String ping) {
 MessageContext currentMsgCtx = IWebServiceContext.CURRENT.get().getMessageContext
(); ①
 String correlationId = (String) currentMsgCtx.get("cid"); ②
 // ...
 return ping;
 }
}

① Get the current message context via thread local IWebServiceContext

② Get the 'correlation ID' from message context.

18.5.7. JAX-WS Correlation ID Propagation

Scout’s JAX-WS integration already provides complete support for reading a correlation ID from the

167

HTTP header named X-Scout-Correlation-Id of the incoming web service request and propagates it
to the RunContext that executes the actual service operation. A new correlation ID is created if the
HTTP header is empty or missing.

The CorrelationIdHandler example above just illustrates the capabilities of a
SOAPHandler.

You have to implement your own handler if the consumer provides a correlation
ID in another header parameter or as part of the request’s payload.

Listing 131. Add Scout’s WsProviderCorrelationIdHandler to the handler chain

@WebServiceEntryPoint(
 endpointInterface = PingWebServicePortType.class,
 entryPointName = "PingWebServiceEntryPoint",
 entryPointPackage = "org.eclipse.scout.docs.ws.ping2",
 serviceName = "PingWebService",
 portName = "PingWebServicePort",
 handlerChain = {
 @Handler(@Clazz(WsProviderCorrelationIdHandler.class)), ①
 @Handler(@Clazz(LogHandler.class)),
 },
 authentication = @Authentication(
 method = @Clazz(BasicAuthenticationMethod.class),
 verifier = @Clazz(ConfigFileCredentialVerifier.class)))

① Add the correlation ID handler at the beginning of the handler chain to ensure that all handlers
can use its value (especially the LogHandler has to be added after the correlation ID handler).

18.5.8. Registration of webservice endpoints

The registration of webservice endpoints depends on the implementor you use, and whether you
are running in an EE container with webservice auto discovery enabled.

When running in an EE container, webservice providers are typically found by their presence. In
order to be found, such webservice providers must be annotated with WebService annotation, and
must have the coordinates 'serviceName' and 'portName' set. Still, most application servers allow
for manual registration as well. E.g. if using Oracle WebLogic Server (WLS), endpoints to be
published can be registered directly in 'web.xml' as a Servlet. However, this is vendor specific.
Refer to the container’s documentation for more information.

If not running in an EE container, the registration is implementor specific. In the following, an
example for JAX-WS METRO and Apache CXF is given.

JAX-WS METRO

During startup, JAX-WS METRO looks for the file '/WEB-INF/sun-jaxws.xml', which contains the
endpoint definitions.

168

Listing 132. WEB-INF/sun-jaxws.xml

<jws:endpoints xmlns:jws="http://java.sun.com/xml/ns/jax-ws/ri/runtime" version="2.0">

 <!-- PingWebService -->
 <jws:endpoint
 name="PingService"
 implementation="org.eclipse.scout.docs.ws.ping.PingWebServiceEntryPoint"
 service="{http://scout.eclipse.org/docs/ws/PingWebService/}PingWebService"
 port="{http://scout.eclipse.org/docs/ws/PingWebService/}PingWebServiceSOAP"
 url-pattern="/jaxws/PingWebService"/>
</jws:endpoints>

Apache CXF

During startup, Apache CXF looks for the config file as specified in 'web.xml' via 'config-location'.
See Listing 116 for more information.

Listing 133. WEB-INF/cxf-jaxws.xml

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:jaxws="http://cxf.apache.org/jaxws"
 xsi:schemaLocation=" http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://cxf.apache.org/jaxws http://cxf.apache.org/schemas/jaxws.xsd">
 <import resource="classpath:META-INF/cxf/cxf.xml" />

 <!-- PingWebService -->
 <jaxws:endpoint id="PingWebService"
 implementor="org.eclipse.scout.docs.ws.ping.PingWebServiceEntryPoint"
 address="/PingWebService" />
</beans>

As the webservice endpoint, specify the fully qualified name to the entry point,
and not to the implementing port type.

Depending on the implementor, a HTML page may be provided to see all
webservices published.
For JAX-WS METRO, enter the URL to a concrete webservice, e.g.
http://localhost:8080/jaxws/PingWebService.
For Apache CXF, enter the base URL where the webservices are published, e.g.
http://localhost:8080/jaxws.

18.6. Consume a webservice
Communication with a webservice endpoint is done based on the webservice’s port generated by
'wsimport'. Learn more how to generate a webservice stub from a WSDL file.

169

http://localhost:8080/jaxws/PingWebService
http://localhost:8080/jaxws

To interact with a webservice endpoint, create a concrete 'WebServiceClient' class which extends
from AbstractWebServiceClient, and specify the endpoint’s coordinates ('service' and 'port') via its
bounded type parameters.

Listing 134. Example of a WS-Client

public class PingWebServiceClient extends AbstractWebServiceClient<PingWebService,
PingWebServicePortType> { ①
}

① Specify 'service' and 'port' via bounded type parameters

A WS-Client can be configured with some default values like the endpoint URL, credentials,
timeouts and more. However, the configuration can also be set or overwritten later when creating
the InvocationContext.

See also Section 18.6.7.

170

Listing 135. Example of a WS-Client configuration

public class PingWebServiceClient1 extends AbstractWebServiceClient<PingWebService,
PingWebServicePortType> {

 @Override
 protected Class<? extends IConfigProperty<String>> getConfiguredEndpointUrlProperty
() {
 return JaxWsPingEndpointUrlProperty.class; ①
 }

 @Override
 protected Class<? extends IConfigProperty<String>> getConfiguredUsernameProperty() {
 return JaxWsPingUsernameProperty.class; ②
 }

 @Override
 protected Class<? extends IConfigProperty<String>> getConfiguredPasswordProperty() {
 return JaxWsPingPasswordProperty.class; ②
 }

 @Override
 protected Class<? extends IConfigProperty<Integer>>
getConfiguredConnectTimeoutProperty() {
 return JaxWsPingConnectTimeoutProperty.class; ③
 }

 @Override
 protected Class<? extends IConfigProperty<Integer>>
getConfiguredReadTimeoutProperty() {
 return JaxWsPingReadTimeoutProperty.class; ③
 }
}

① Specifies the endpoint URL

② Specifies credentials

③ Specifies timeouts

18.6.1. Invoke a webservice

A webservice operation is invoked on behalf of an invocation context, which is associated with a
dedicated port, and which specifies the data to be included in the web request. Upon a webservice
call, the invocation context should be discarded.

171

Listing 136. Example of a webservice call

PingWebServicePortType port = BEANS.get(PingWebServiceClient.class)
.newInvocationContext().getPort(); ①

port.ping("Hello world"); ②

① Obtain a new invocation context and port via WS-Client

② Invoke the webservice operation

Invoking newInvocationContext() returns a new context and port instance. The context returned
inherits all properties as configured for the WS-Client (endpoint URL, credentials, timeouts, …), but
which can be overwritten for the scope of this context.

The following listing illustrates how to set/overwrite properties.

Listing 137. Configure invocation context with data to be included in the web request

final InvocationContext<PingWebServicePortType> context = BEANS.get
(PingWebServiceClient.class).newInvocationContext();

PingWebServicePortType port = context
 .withUsername("test-user") ①
 .withPassword("secret")
 .withConnectTimeout(10, TimeUnit.SECONDS) ②
 .withoutReadTimeout() ③
 .withHttpRequestHeader("X-ENV", "integration") ④
 .getPort();

port.ping("Hello world"); ⑤

① Set the credentials

② Change the connect timeout to 10s

③ Unset the read timeout

④ Add a HTTP request header

⑤ Invoke the webservice operation

The WS-Client provides port instances via a preemptive port cache. This cache improves
performance because port creation may be an expensive operation due to WSDL/schema
validation. The cache is based on a 'corePoolSize', meaning that that number of ports is created on a
preemptively basis. If more ports than that number are required, they are created on demand, and
additionally added to the cache until expired, which is useful at a high load.

The JAX-WS specification does not specify thread safety of a port instance.
Therefore, a port should not be used concurrently among threads. Further, JAX-WS
API does not support to reset the Port’s request and response context, which is why
a port should only be used for a single webservice call.

172

18.6.2. Cancel a webservice request

The WS-Client supports for cancellation of webservice requests. Internally, every web request is
run in another thread, which the calling thread waits for to complete. Upon cancellation, that other
thread is interrupted, and the calling thread released with a WebServiceRequestCancelledException.
However, depending on the JAX-WS implementor, the web request may still be running, because
JAX-WS API does not support the cancellation of a web request.

18.6.3. Get information about the last web request

The invocation context allows you to access HTTP status code and HTTP headers of the last web
request.

final InvocationContext<PingWebServicePortType> context = BEANS.get
(PingWebServiceClient.class).newInvocationContext();

String pingResult = context.getPort().ping("Hello world");

// Get HTTP status code
int httpStatusCode = context.getHttpStatusCode();

// Get HTTP response header
List<String> httpResponseHeader = context.getHttpResponseHeader("X-CUSTOM-HEADER");

18.6.4. Propagate state to Handlers

An invocation context can be associated with request context properties, which are propagated to
handlers and JAX-WS implementor.

BEANS.get(PingWebServiceClient.class).newInvocationContext()
 .withRequestContextProperty("cid", UUID.randomUUID().toString()) ①
 .getPort().ping("Hello world"); ②

① Propagate the correlation ID

② Invoke the web operation

Learn more how to access context properties from within a handler in Listing 129.

18.6.5. Install handlers and provide credentials for authentication

To install a handler, overwrite execInstallHandlers and add the handler to the given List. The
handlers are invoked in the order as added to the handler-chain. By default, there is no handler
installed.

The method execInstallHandlers is invoked upon preemptive creation of the port. Consequently,
you cannot do any assumption about the calling thread.

If a handler requires to run in another RunContext than the calling context, annotate it with

173

RunWithRunContext annotation, e.g. to start a new transaction to log into database.

If the endpoint requires to authenticate requests, an authentication handler is typically added to
the list, e.g. BasicAuthenticationHandler for 'Basic authentication', or
WsseUsernameTokenAuthenticationHandler for 'Message Level WS-Security authentication', or some
other handler to provide credentials.

public class PingWebServiceClient2 extends AbstractWebServiceClient<PingWebService,
PingWebServicePortType> {

 @Override
 protected void execInstallHandlers(List<javax.xml.ws.handler.Handler<?>>
handlerChain) {
 handlerChain.add(new BasicAuthenticationHandler());
 handlerChain.add(BEANS.get(LogHandler.class));
 }
}

The credentials as provided via InvocationContext can be accessed via request
context with the property InvocationContext.PROP_USERNAME and
InvocationContext.PROP_PASSWORD.

18.6.6. JAX-WS Client Correlation ID Propagation

The current context’s correlation ID can be forwarded to the consumed web service. Scout provides
a handler that sets the X-Scout-Correlation-Id HTTP header on the outgoing request.

public class PingWebServiceClient3 extends AbstractWebServiceClient<PingWebService,
PingWebServicePortType> {

 @Override
 protected void execInstallHandlers(List<javax.xml.ws.handler.Handler<?>>
handlerChain) {
 handlerChain.add(new BasicAuthenticationHandler());
 handlerChain.add(BEANS.get(LogHandler.class));
 handlerChain.add(BEANS.get(WsConsumerCorrelationIdHandler.class)); ①
 }
}

① The handler can be at any position in the handler chain.

18.6.7. Default configuration of WS-Clients

The following properties can be set globally for all WS-Clients. However, a WS-Client can overwrite
any of this values.

174

property description default value

scout.jaxws.consumer.portC
ache.enabled

To indicate whether to use a preemptive port
cache for WS-Clients.
Depending on the implementor used, cached
ports may increase performance, because port
creation is an expensive operation due to WSDL
and schema validation. The cache is based on a
'corePoolSize', meaning that that number of
ports is created on a preemptive basis. If more
ports than that number is required, they are are
created on demand and also added to the cache
until expired, which is useful at a high load.

true

scout.jaxws.consumer.portC
ache.corePoolSize

Number of ports to be preemptively cached to
speed up webservice calls.

10

scout.jaxws.consumer.portC
ache.ttl

Maximum time in seconds to retain ports in the
cache if the 'corePoolSize' is exceeded. That
typically occurs at high load, or if 'corePoolSize'
is undersized.

15 minutes

scout.jaxws.consumer.conne
ctTimeout

Connect timeout in milliseconds to abort a
webservice request, if establishment of the HTTP
connection takes longer than this timeout. A
timeout of null means an infinite timeout.

infinite

scout.jaxws.consumer.readT
imeout

Read timeout in milliseconds to abort a
webservice request, if it takes longer than this
timeout for data to be available for read. A
timeout of null means an infinite timeout.

infinite

18.7. XML adapters to work with java.util.Date and
java.util.Calendar
Scout ships with some XML adapters to not have to work with XMLGregorianCalendar, but with
java.util.Date instead.
It is recommended to configure your global binding file accordingly. See Listing 121 for an example.

See the adapter’s JavaDoc for more detailed information.

Table 3. UTC Date adapters

adapter description

UtcDateAdapter Use this adapter to work with UTC xsd:dates. A UTC date is also
known as 'zulu' date, and has 'GMT+-00:00'. Unlike
UtcDateTimeAdapter, this adapter truncates hours, minutes,
seconds and milliseconds.

175

adapter description

UtcTimeAdapter Use this adapter to work with UTC xsd:times. A UTC time is also
known as 'zulu' time, and has 'GMT+-00:00'. Unlike
UtcDateTimeAdapter, this adapter sets year, month and day to the
epoch, which is defined as 1970-01-01 in UTC.

UtcDateTimeAdapter Use this adapter to work with UTC xsd:dateTimes. A UTC time is
also known as 'zulu' time, and has 'GMT+-00:00'.

This adapter converts xsd:dateTime into UTC milliseconds, by
respecting the timezone as provided. If the timezone is missing,
the date is interpreted as UTC-time, and not local to the default
JVM timezone. To convert a Date into xsd:dateTime, the date’s
milliseconds are used as UTC milliseconds from the epoch, and
are formatted as 'zulu' time.

Table 4. Calendar adapters

adapter description

CalendarDateAdapter Use this adapter to work with Calendar xsd:dates without
loosing timezone information. Unlike
CalendarDateTimeAdapter, this adapter truncates hours,
minutes, seconds and milliseconds.

CalendarTimeAdapter Use this adapter to work with Calendar xsd:times without
loosing timezone information. Unlike
CalendarDateTimeAdapter, this adapter sets year, month and
day to the epoch, which is defined as 1970-01-01 in UTC.

CalendarDateTimeAdapter Adapter to convert a xsd:dateTime to a Calendar and vice versa.
For both directions, the timezone information is not lost. Use
this adapter if you expect to work with dates from various
timezones without loosing the local time. If the UTC (Zulu-time)
is sufficient, use UtcDateTimeAdapter instead.

Table 5. Default timezone Date adapters

adapter description

DefaultTimezoneDateAdapter Use this adapter to work with xsd:dates in the default timezone
of the Java Virtual Machine. Depending on the JVM installation,
the timezone may differ: 'GMT+-XX:XX'. Unlike
DefaultTimezoneDateTimeAdapter, this adapter truncates hours,
minutes, seconds and milliseconds.
Whenever possible, use UtcDateAdapter or CalendarDateAdapter
instead.

176

adapter description

DefaultTimezoneTimeAdapter Use this adapter to work with xsd:times in the default timezone
of the Java Virtual Machine. Depending on the JVM installation,
the timezone may differ: 'GMT+-XX:XX'. Unlike
DefaultTimezoneDateTimeAdapter, this adapter sets year,
month and day to the epoch, which is defined as 1970-01-01 in
UTC.
Whenever possible, use UtcTimeAdapter or CalendarTimeAdapter
instead.

DefaultTimezoneDateTimeAdapte
r

Use this adapter to work with xsd:dateTimes in the default
timezone of the Java Virtual Machine. Depending on the JVM
installation, the timezone may differ: 'GMT+-XX:XX'.
Whenever possible, use UtcDateTimeAdapter or
CalendarDateTimeAdapter instead.

18.8. JAX-WS Appendix

18.8.1. PingWebService.wsdl

177

<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<wsdl:definitions name="PingWebService"
 targetNamespace="http://scout.eclipse.org/docs/ws/PingWebService/"
 xmlns:tns="http://scout.eclipse.org/docs/ws/PingWebService/"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <wsdl:types>
 <xsd:schema targetNamespace="http://scout.eclipse.org/docs/ws/PingWebService/">
 <xsd:element name="pingRequest" type="xsd:string"/>
 <xsd:element name="pingResponse" type="xsd:string"/>
 </xsd:schema>
 </wsdl:types>
 <wsdl:message name="pingRequest">
 <wsdl:part element="tns:pingRequest" name="ping" />
 </wsdl:message>
 <wsdl:message name="pingResponse">
 <wsdl:part element="tns:pingResponse" name="parameters" />
 </wsdl:message>
 <wsdl:portType name="PingWebServicePortType">
 <wsdl:operation name="ping">
 <wsdl:input message="tns:pingRequest" />
 <wsdl:output message="tns:pingResponse" />
 </wsdl:operation>
 </wsdl:portType>
 <wsdl:binding name="PingWebServiceSOAP" type="tns:PingWebServicePortType">
 <soap:binding style="document"
 transport="http://schemas.xmlsoap.org/soap/http" />
 <wsdl:operation name="ping">
 <soap:operation soapAction="
http://scout.eclipse.org/docs/ws/PingWebService/ping" />
 <wsdl:input>
 <soap:body use="literal" />
 </wsdl:input>
 <wsdl:output>
 <soap:body use="literal" />
 </wsdl:output>
 </wsdl:operation>
 </wsdl:binding>
 <wsdl:service name="PingWebService">
 <wsdl:port binding="tns:PingWebServiceSOAP" name="PingWebServiceSOAP">
 <soap:address location="http://scout.eclipse.org/docs/ws/PingWebService/" />
 </wsdl:port>
 </wsdl:service>
</wsdl:definitions>

18.8.2. PingWebServicePortType.java

178

@FunctionalInterface
@WebService(name = "PingWebServicePortType", targetNamespace =
"http://scout.eclipse.org/docs/ws/PingWebService/")
@SOAPBinding(parameterStyle = ParameterStyle.BARE)
public interface PingWebServicePortType {

 @WebMethod(action = "http://scout.eclipse.org/docs/ws/PingWebService/ping")
 @WebResult(name = "pingResponse", targetNamespace =
"http://scout.eclipse.org/docs/ws/PingWebService/", partName = "parameters")
 String ping(@WebParam(name = "pingRequest", targetNamespace =
"http://scout.eclipse.org/docs/ws/PingWebService/", partName = "ping") String ping);
}

18.8.3. PingWebServicePortTypeEntryPoint.java

179

@Generated(value = "org.eclipse.scout.jaxws.apt.JaxWsAnnotationProcessor", date =
"2016-01-25T14:22:58:583+0100", comments = "EntryPoint to run webservice requests on
behalf of a RunContext")
@WebService(name = "PingWebServicePortType", targetNamespace =
"http://scout.eclipse.org/docs/ws/PingWebService/", endpointInterface =
"org.eclipse.scout.docs.ws.pingwebservice.PingWebServicePortType")
public class PingWebServicePortTypeEntryPoint implements org.eclipse.scout.docs.ws
.pingwebservice.PingWebServicePortType {

 @Resource
 protected WebServiceContext m_webServiceContext;

 @Override
 public String ping(final String ping) {
 try {
 return lookupRunContext().call(new Callable<String>() {
 @Override
 public final String call() throws Exception {
 return BEANS.get(PingWebServicePortType.class).ping(ping);
 }
 }, DefaultExceptionTranslator.class);
 }
 catch (Exception e) {
 throw handleUndeclaredFault(e);
 }
 }

 protected RuntimeException handleUndeclaredFault(final Exception e) {
 throw BEANS.get(JaxWsUndeclaredExceptionTranslator.class).translate(e);
 }

 protected RunContext lookupRunContext() {
 return BEANS.get(JaxWsRunContextLookup.class).lookup(m_webServiceContext);
 }
}

18.8.4. PingWebServicePortTypeBean.java

@ApplicationScoped
public class PingWebServicePortTypeBean implements PingWebServicePortType {

 @Override
 public String ping(String ping) {
 return "ping: " + ping;
 }
}

180

18.8.5. .settings/org.eclipse.jdt.core.prefs file to enable APT in Eclipse IDE

...
org.eclipse.jdt.core.compiler.processAnnotations=enabled
...

18.8.6. .settings/org.eclipse.jdt.apt.core.prefs file to enable APT in Eclipse
IDE

org.eclipse.jdt.apt.aptEnabled=true
org.eclipse.jdt.apt.genSrcDir=target/generated-sources/annotations
org.eclipse.jdt.apt.processorOptions/consoleLog=true
org.eclipse.jdt.apt.reconcileEnabled=true

18.8.7. .factorypath file to enable APT in Eclipse IDE

<!-- Replace 'XXX-VERSION-XXX' by the respective Scout RT version -->
<factorypath>
 <factorypathentry kind="VARJAR" id=
"M2_REPO/org/eclipse/scout/rt/org.eclipse.scout.jaxws.apt/XXX-VERSION-
XXX/org.eclipse.scout.jaxws.apt-XXX-VERSION-XXX.jar" enabled="true" runInBatchMode=
"false"/>
 <factorypathentry kind="VARJAR" id=
"M2_REPO/org/glassfish/jaxb/codemodel/2.3.3/codemodel-2.3.3.jar" enabled="true"
runInBatchMode="false"/>
 <factorypathentry kind="VARJAR" id=
"M2_REPO/org/eclipse/scout/rt/org.eclipse.scout.rt.platform/XXX-VERSION-
XXX/org.eclipse.scout.rt.platform-XXX-VERSION-XXX.jar" enabled="true" runInBatchMode=
"false"/>
 <factorypathentry kind="VARJAR" id=
"M2_REPO/org/eclipse/scout/rt/org.eclipse.scout.rt.server.jaxws/XXX-VERSION-
XXX/org.eclipse.scout.rt.server.jaxws-XXX-VERSION-XXX.jar" enabled="true"
runInBatchMode="false"/>
 <factorypathentry kind="VARJAR" id="M2_REPO/jakarta/servlet/jakarta.servlet-
api/4.0.4/jakarta.servlet-api-4.0.4.jar" enabled="true" runInBatchMode="false"/>
 <factorypathentry kind="VARJAR" id="M2_REPO/org/slf4j/slf4j-api/1.7.30/slf4j-api-
1.7.30.jar" enabled="true" runInBatchMode="false"/>
 <factorypathentry kind="VARJAR" id="M2_REPO/jakarta/jws/jakarta.jws-
api/2.1.0/jakarta.jws-api-2.1.0.jar" enabled="true" runInBatchMode="false"/>
 <factorypathentry kind="VARJAR" id="M2_REPO/jakarta/annotation/jakarta.annotation-
api/1.3.5/jakarta.annotation-api-1.3.5.jar" enabled="true" runInBatchMode="false"/>
 <factorypathentry kind="VARJAR" id="M2_REPO/jakarta/xml/ws/jakarta.xml.ws-
api/2.3.3/jakarta.xml.ws-api-2.3.3.jar" enabled="true" runInBatchMode="false"/>
</factorypath>

181

18.8.8. Authentication Method

The authentication method specifies the protocol to challenge the webservice client to provide
credentials.
Scout provides an implementation for BASIC and WSSE_UsernameToken. You can implement your
own authentication method by implementing IAuthenticationMethod interface.

BasicAuthenticationMethod

Authentication method to apply Basic Access Authentication. This requires requests to provide a
valid user name and password to access content. User’s credentials are transported in HTTP
headers. Basic authentication also works across firewalls and proxy servers.

However, the disadvantage of Basic authentication is that it transmits unencrypted base64-encoded
passwords across the network. Therefore, you only should use this authentication when you know
that the connection between the client and the server is secure. The connection should be
established either over a dedicated line or by using Secure Sockets Layer (SSL) encryption and
Transport Layer Security (TLS).

WsseUsernameTokenMethod

Authentication method to apply Message Level WS-Security with UsernameToken Authentication.
This requires requests to provide a valid user name and password to access content. User’s
credentials are included in SOAP message headers.

However, the disadvantage of WSSE UsernameToken Authentication is that it transmits
unencrypted passwords across the network. Therefore, you only should use this authentication
when you know that the connection between the client and the server is secure. The connection
should be established either over a dedicated line or by using Secure Sockets Layer (SSL)
encryption and Transport Layer Security (TLS).

ContainerBasedAuthenticationMethod

Use this authentication method when using container based authentication, meaning that
webservice requests are authenticated by the application server, or a Servlet filter.

18.8.9. Credential Verifier

Verifies user’s credentials against a data source like database, config.properties, Active Directory, or
others.
Scout provides an implementation for verification against users in config.properties. You can
implement your own verifier by implementing ICredentialVerifier interface.

If you require to run in a specific RunContext like a transaction for user’s
verification, annotate the verifier with RunWithRunContext annotation, and specify a
RunContextProducer accordingly.

182

ConfigFileCredentialVerifier

Credential verifier against credentials configured in config.properties file.

By default, this verifier expects the passwords in 'config.properties' to be a hash produced with
SHA-512 algorithm. To support you in password hash generation, ConfigFileCredentialVerifier
provides a static Java main method.

Credentials are loaded from property scout.auth.credentials. Multiple credentials are separated
with the semicolon, username and password with the colon. If using hashed passwords (by default),
the password’s salt and hash are separated with the dot.

To work with plaintext passwords, set the property scout.auth.credentialsPlaintext to true.

Example of hashed passwords: scott:SALT.PASSWORD-HASH;jack:SALT.PASSWORD-
HASH;john:SALT.PASSWORD-HASH Example of plaintext passwords: scott:*;jack:;john:*

183

Chapter 19. SmtpHelper
The org.eclipse.scout.rt.mail.smtp.SmtpHelper is an @ApplicationScoped Bean that provides means
of sending emails described by javax.mail.internet.MimeMessage objects via SMTP. The SMTP
connection can either be provided as a org.eclipse.scout.rt.mail.smtp.SmtpServerConfig object
containing all the required connection parameters or as an already created javax.mail.Session
object. The SmtpHelper also supports pooling of SMTP connections as described in the section
Section 19.4.

19.1. SmtpServerConfig
The org.eclipse.scout.rt.mail.smtp.SmtpServerConfig class allows to specify details of an SMTP
connection to be made. It supports the following properties:

Property Description Example

host The hostname or ip address of
the SMTP server to use.

localhost or 192.168.10.199.

port The TCP port the SMTP server
listens on.

E.g. 25 or 465.

username The username to use for
authentication.

-

password The password to use for
authentication.

-

useAuthentication Whether to use authentication
or not. This setting is only
effective, if a username has
been provided.

-

useSmtps If true, the protocol will be
'smtps', else the protocol will be
'smtp'.

-

useStartTls If true, STARTTLS will be used
to create the connection to the
SMTP server.

-

sslProtocols Limits the SSL protocols to
support when connecting to the
SMTP server. The value is a
space separated list of protocol
names returned by the
javax.net.ssl.SSLSocket.getSup
portedProtocols() method.

E.g. "TLSv1.1 TLSv1.2"

184

Property Description Example

additionalSessionProperties Can be used to specify any other
property for the
javax.mail.Session that is
created from
org.eclipse.scout.rt.mail.smtp
.SmtpServerConfig. These
additional properties are
applied after all the other
properties, thus may override
already specified properties.

"mail.smtp.socketFactory.class":
"com.example.net.SocketFactor
y"

poolSize Allows to specify the size of the
connection pool for this
SmtpServerConfig. The Default
value is 0 which effectively
deactives connection pooling.

4

maxMessagesPerConnection Allows to specify the max
number of messages to be sent
per connection when using
connection pooling (poolSize >
0). The default value is 0 which
effectively disables limiting the
maximum number of messages
sent per connection. You should
consult with the operator of the
SMTP server you are using to
define this value. Local mail
servers probably allow less
than 20 messages per
connection, bigger white
mailers may allow up to 100 or
even more.

20

Listing 138 demonstrates how to use the SmtpServerConfig class.

Listing 138. Create and configure an instance of org.eclipse.scout.rt.mail.smtp.SmtpServerConfig

@SuppressWarnings("unused")
SmtpServerConfig smtpServerConfig = BEANS.get(SmtpServerConfig.class)
 .withHost("mail.example.com")
 .withPort(465)
 .withUsername("smtpuser")
 .withPassword("smtpuserpwd")
 .withUseAuthentication(true)
 .withUseSmtps(true)
 .withUseStartTls(true);

185

19.2. Sending messages
Messages can be sent using the sendMessage Methods of the SmtpHelper class. In Order to prepare the
message to be sent, Scout provides a number of classes and helpers:

Class Description

org.eclipse.scout.rt.mail.MailMessage Encapsulates all the information about a single
mail message (sender, recipient, carbon-copy
recipients, subject, body, attachments, etc.).

org.eclipse.scout.rt.mail.MailParticipant Defines email address and name of a mail
participant. A participant can be a recipient, a
carbon-copy recipient, a blind-carbon-copy
recipient, the sender and a replyTo contact.

org.eclipse.scout.rt.mail.MailAttachment Contains information about an email
attachment.

org.eclipse.scout.rt.mail.MailHelper Provides various helper methods around email
bodies, attachments, etc.

Listing 139 shows the usage of the mentioned classes Scout provides in order to create a
MimeMessage object.

Listing 139. Create org.eclipse.scout.rt.mail.CharsetSafeMimeMessage object

// create BinaryResource for an attachment.
BinaryResource screenshotResource = BinaryResources.create()
 .withFilename("screenshot.jpg")
 .withContentType("image/jpeg")
 .withContent(bytes)
 .build();

// wrap BinaryResource in MailAttachment
MailAttachment screenshotAttachment = new MailAttachment(screenshotResource);

// prepare Scout MailMessage
MailMessage mailMessage = BEANS.get(MailMessage.class)
 .withSender(BEANS.get(MailParticipant.class).withName("sender").withEmail(
"me@example.com"))
 .addToRecipient(BEANS.get(MailParticipant.class).withName("recipient").withEmail(
"somebody@example.com"))
 .withAttachment(screenshotAttachment)
 .withSubject("Screenshot")
 .withBodyPlainText("Dear recipient,\n\nPlease have a look at my screenshot!\n
\nRegards,\nsender");

// convert MailMessage to MimeMessage
CharsetSafeMimeMessage mimeMessage = BEANS.get(MailHelper.class).createMimeMessage
(mailMessage);

186

In order to send the message you can either use a org.eclipse.scout.rt.mail.smtp.SmtpServerConfig
object or an existing javax.mail.Session object as demonstrated in Listing 140 and Listing 141.

Listing 140. Send email using an org.eclipse.scout.rt.mail.smtp.SmtpServerConfig object.

BEANS.get(SmtpHelper.class).sendMessage(smtpServerConfig, mimeMessage);

Listing 141. Send email using an existing javax.mail.Session object.

// The password has to be provided additionally as it is not stored in the session
object.
BEANS.get(SmtpHelper.class).sendMessage(session, password, mimeMessage);

19.3. SmtpHelper Configuration
The SmtpHelper provides some config properties that allow to modify certain behaviour.

Key Description Example

scout.smtp.debugReceiverEmail If this property is set, the
SmtpHelper sends all emails to
the specified email address
instead of the recipients
specified in the MimeMessage
object. This is useful for
development and testing
environments.

debug-receiver@example.com

scout.smtp.connectionTimeout Specifies the connection
timeout for SMTP connections
in milliseconds. Default is 60
seconds.

30000

scout.smtp.readTimeout Specifies the read timeout for
SMTP connections in
milliseconds. Default is 60
seconds.

30000

19.4. Connection Pooling
Normally, the SmtpHelper opens a new connection for every email which is then closed after the
email has been sent. If you want to send a lot of emails, this behaviour is rather inefficient as
opening a new SMTP connection takes a long time compared to sending the email especially when
using encrypted connections. To mitigate this overhead, the SmtpHelper supports pooling of SMTP
connections which is activated using the poolSize property of SmtpServerConfig objects. If you set
the pool size property to a value > 0, the SmtpHelper will create parallel connections up to the
specified number. This means, that connection pooling is not possible when you use the sendMessage
method accepting an already prepared javax.mail.Session object.

187

mailto:debug-receiver@example.com

Pooling in this context means the following:

• All SMTP server connections sharing the same SmtpServerConfig object (by same meaning being
equal according to SmtpServerConfig.equals()) belong to the same pool

• For each different SmtpServerConfig object (again using SmtpServerConfig.equals()) up to the
specified pool size connections are created

• Connections are not immediately closed after an email has been sent, instead they are returned
to the pool as idle connections.

• Before creating new connections, idle connections are reused.

• When trying to send an email while all the SMTP connections are currently in use and the pool
size has already been reached, the calling thread is blocked until a connection is returned as
idle to the pool or as soon as the wait-for-connection-timeout has exceeded.

• As long as connections are open, a background job monitors their state and closes idle and old
connections.

19.5. SmtpConnectionPool Configuration
The following config properties allow to modify the behavior of the connection pool
implementation at the global level:

key Description Example

scout.smtp.pool.maxIdleTime Specifies how long in seconds a
connection can be idle before it
is closed by the background
cleanup job. Default is 60
seconds.

30

scout.smtp.pool.maxConnection
Lifetime

Specifies how long in seconds a
connection can be open before
it is closed. This is to prevent
connections from being open
forever when sending emails on
a regular basis. Default is 1h.

7200

scout.smtp.pool.waitForConnect
ionTimeout

Max. wait time for SMTP
connection in seconds. If the
value is 0, callers will wait
infinitely long for SMTP
connections. Default is 300
seconds.

100

188

Chapter 20. Scout JS
Scout JS is the technology used by Scout to render your application. The client model defined using
Java code is sent to the browser where Scout JS comes into action by taking that model and
generating HTML elements.

But Scout JS is a lot more: it can be used to create applications without having a Java based client
model at all. You can find out more about Scout JS and its concepts in the Technical Guide for Scout
JS.

189

https://eclipsescout.github.io/11.0/technical-guide-js.html
https://eclipsescout.github.io/11.0/technical-guide-js.html

Chapter 21. How-Tos
This chapter provides various small technical guides to very specific Scout subjects.

21.1. SmartField: how to apply colors and styles from a
lookup-row
When a user selects a lookup-row from the proposal chooser in Scout versions ⇐ 6.0, the properties
foregroundColor, backgroundColor, font and tooltipText have been automatically copied from the
lookup-row to the field. In some cases this was exactly what a specific application needed, but in
other cases it was hard to implement a specific behavior without overriding internal methods from
the SmartField. For instance it was not possible to have a lookup-row with background-color red in
the proposal-chooser and at the same time avoid the background-color of the field changing to red,
when that row was being selected.

Since that automatic behavior didn’t fit every business requirement, we removed it completely.
This means a programmer must now implement specific code to read properties from the lookup-
row and set them on the field. The following example is from the Scout widgets app. It changes the
background-color of the field.

Listing 142. Java example, set the background-color of the lookup-row on the field

@Override
protected void execChangedValue() {
 updateFieldBackgroundColor();
}

/**
 * Sets the color of the field to the color of the selected lookup row.
 */
protected void updateFieldBackgroundColor() {
 ILookupRow<?> lookupRow = getLookupRow();
 String bgColor = lookupRow == null ? null : lookupRow.getBackgroundColor();
 setBackgroundColor(bgColor);
}

Since Scout 8.0 the property cssClass from the lookup-row is automatically applied to the .form-
field DIV. This gives the programmer the flexibility to style either both, lookup-row and field, or
only the lookup-row in the proposal-chooser via CSS/LESS.

Here’s a LESS example from the Scout widget app that sets the background-color of lookup-row and
field. It is used for the EventTypeCodeType which defines 3 codes with the CSS classes public, private
and external:

190

Listing 143. LESS example, style lookup-row and field with the same CSS class

.form-field.public > .field, .table-row.public {
 background-color: @palette-green-0;
}

.form-field.private > .field, .table-row.private {
 background-color: @palette-orange-1;
}

.form-field.external > .field, .table-row.external {
 background-color: @palette-gray-3;
}

Conclusion: older Scout apps that rely on the automatic behavior for the properties mentioned
above, should use CSS classes instead of the properties back-/foregroundColor or font. If that’s not
possible you should implement logic as shown in the example above where required, possibly
moving that code in a class that extends AbstractSmartField, if the same code is required in multiple
places.

21.2. How to Create a Chart
This cheat sheet shows how to create your own chart for a Scout application. In this example we
will visualize the sold scoops of an ice cream shop. We assume the ice cream shop already has a
running Scout application and a place where it wants to create the chart.

21.2.1. Prerequisites

Everything related to charts has its own Maven and npm modules and is not part of Scout core.
Therefore, the following Maven dependencies need to be added to the client-, shared- or ui.html
-module of the ice cream shop app.

<dependency>
 <groupId>org.eclipse.scout.rt</groupId>
 <artifactId>org.eclipse.scout.rt.chart.client</artifactId>
</dependency>

<dependency>
 <groupId>org.eclipse.scout.rt</groupId>
 <artifactId>org.eclipse.scout.rt.chart.shared</artifactId>
</dependency>

191

<dependency>
 <groupId>org.eclipse.scout.rt</groupId>
 <artifactId>org.eclipse.scout.rt.chart.ui.html</artifactId>
</dependency>

A npm dependency to @eclipse-scout/chart needs to be added in the package.json of the ice cream
shop app and in addition, an import needs to be added to the entry-files icecream.js,

import * as chart from '@eclipse-scout/chart';
Object.assign({}, chart); // workaround so that the imports are not unused

icecream-theme.less and icecream-theme-dark.less.

@import "~@eclipse-scout/chart/src/index";

@import "~@eclipse-scout/chart/src/index-dark";

21.2.2. Minimal Code for a New Chart

The chart is created using an AbstractChartField and placed inside a GroupBox.

public class ChartField extends AbstractChartField<Chart> {
 public class Chart extends AbstractChart {
 }
}

21.2.3. Add data to the chart

The ice cream shop has sold the following amount of scoops:

Table 6. Table Scoops per month and flavor

Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sept. Oct. Nov. Dec.

Vanill
a

0 0 0 94 162 465 759 537 312 106 0 0

Choco
late

0 0 0 81 132 243 498 615 445 217 0 0

Straw
berry

0 0 0 59 182 391 415 261 75 31 0 0

We create a data object and pass it to the chart.

192

ChartData data = new ChartData();

List<IChartAxisBean> axis = new ArrayList<>();
Stream.of("Jan.", "Feb.", "Mar.", "Apr.", "May", "Jun.", "Jul.", "Aug.", "Sept.",
"Oct.", "Nov.", "Dec.")
 .forEach(label -> axis.add(new ChartAxisBean(label, label)));

data.getAxes().add(axis);

MonupleChartValueGroupBean vanilla = new MonupleChartValueGroupBean();
vanilla.setGroupName("Vanilla");
IntStream.of(0, 0, 0, 94, 162, 465, 759, 537, 312, 106, 0, 0)
 .forEach(value -> vanilla.getValues().add(new BigDecimal(value)));
data.getChartValueGroups().add(vanilla);

MonupleChartValueGroupBean chocolate = new MonupleChartValueGroupBean();
chocolate.setGroupName("Chocolate");
IntStream.of(0, 0, 0, 81, 132, 243, 498, 615, 445, 217, 0, 0)
 .forEach(value -> chocolate.getValues().add(new BigDecimal(value)));
data.getChartValueGroups().add(chocolate);

MonupleChartValueGroupBean strawberry = new MonupleChartValueGroupBean();
strawberry.setGroupName("Strawberry");
IntStream.of(0, 0, 0, 59, 182, 391, 415, 261, 75, 31, 0, 0)
 .forEach(value -> strawberry.getValues().add(new BigDecimal(value)));
data.getChartValueGroups().add(strawberry);

chart.setData(data);

The chart will now look like this:

193

It looks like this, because the default type is pie, the default value of maxSegments is 5 and the first
three segments in each dataset are 0.

21.2.4. Chart configuration

Let’s change it to a bar chart and use another color scheme:

IChartConfig config = BEANS.get(IChartConfig.class)
 .withType(IChartType.BAR)
 .withColorScheme(ColorScheme.RAINBOW);

chart.setConfig(config);

Now we add labels to the scales and set some custom colors.

vanilla.setColorHexValue("#fdf2d1");
chocolate.setColorHexValue("#94654c");
strawberry.setColorHexValue("#f89fa1");

config.withAutoColor(false)
 .withXAxisLabelDisplay(true)
 .withXAxisLabel("Month")
 .withYAxisLabelDisplay(true)
 .withYAxisLabel("Scoops");

chart.setData(data);
chart.setConfig(config);

194

Finally, we want to make the chart interactive.

chart.extendConfig(BEANS.get(IChartConfig.class)
 .withClickable(true)
 .withCheckable(true)
 .withLegendClickable(true), true);

The chart is now clickable and checkable and datasets can be hidden via the legend.

Figure 20. The dataset "Vanilla" is hidden and some segments are checked.

21.2.5. Events

Each time a segment is clicked an event is triggered. This event can be handled by overriding
execValueClick on the chart.

195

@Override
protected void execValueClick(BigDecimal xIndex, BigDecimal yIndex, Integer
datasetIndex) {
 System.out.println("Segment clicked\n" +
 " - datasetIndex: " + datasetIndex + "\n" +
 " - xIndex: " + xIndex + "\n" +
 " - yIndex: " + yIndex);
}

21.2.6. Change colors using CSS

Even if some charts are rendered on a <canvas>-element the colors can be changed via CSS. We add
a custom grey color scheme for the bubble chart, which is rendered on a <canvas>. To achieve this,
we need to add a LESS file with the following content:

@chart-grey-1: #191919;
@chart-grey-2: #4C4C4C;
@chart-grey-3: #737373;
@chart-grey-4: #999999;
@chart-grey-5: #BFBFBF;
@chart-grey-6: #D8D8D8;

.color-scheme-grey > .bubble-chart {
 & > .elements {
 > .label {
 fill: black;
 }

 > .grid {
 fill: lightslategrey;
 }

 > .tooltip-background {
 fill: slategrey;
 }

 > .tooltip-border {
 fill: black;
 }

 #scout.chart-auto-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3, @chart-grey-
4, @chart-grey-5, @chart-grey-6,
 @opacity: 20);
 #scout.chart-auto-stroke-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3,
@chart-grey-4, @chart-grey-5, @chart-grey-6);
 #scout.chart-auto-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3, @chart-grey-
4, @chart-grey-5, @chart-grey-6,
 @opacity: 35, @additional-classes: ~".hover");
 #scout.chart-auto-stroke-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3,

196

@chart-grey-4, @chart-grey-5, @chart-grey-6,
 @darken: 10, @additional-classes: ~".hover");

 #scout.chart-auto-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3, @chart-grey-
4, @chart-grey-5, @chart-grey-6,
 @additional-classes: ~".legend");
 }

 &.checkable > .elements {
 #scout.chart-auto-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3, @chart-grey-
4, @chart-grey-5, @chart-grey-6,
 @additional-classes: ~".checked");
 #scout.chart-auto-colors(@chart-grey-1, @chart-grey-2, @chart-grey-3, @chart-grey-
4, @chart-grey-5, @chart-grey-6,
 @darken: 10, @additional-classes: ~".hover.checked");
 }
}

This color scheme can now be used in a config object:

BEANS.get(IChartConfig.class)
 .withType(IChartType.BUBBLE)
 .withColorScheme(() -> "color-scheme-grey");

Figure 21. A checkable bubble chart using the custom grey color scheme.

 Do you want to improve this document? Have a look at the sources on GitHub.

197

https://github.com/eclipse-scout/scout.docs/blob/releases/11.0/docs/build/technical_guide/src/docs/technical-guide.adoc

	Eclipse Scout Technical Guide
	Table of Contents
	Introduction
	Chapter 1. Overview
	Chapter 2. Scout Platform
	2.1. Application Lifecycle
	2.2. Class Inventory
	2.3. Bean Manager
	2.4. Configuration Management
	2.5. Scout Config Properties

	Chapter 3. Client Model
	3.1. Desktop
	3.2. Multiple Dimensions Support

	Chapter 4. Texts
	4.1. Text properties files
	4.2. Text Provider Service

	Chapter 5. Icons
	5.1. Using a custom icon font
	5.2. How to create a custom icon font

	Chapter 6. Lookup Call
	6.1. Description
	6.2. Input
	6.3. Members
	6.4. Type of lookup calls

	Chapter 7. Code Type
	7.1. Description
	7.2. Using a CodeType
	7.3. Static CodeType
	7.4. Dynamic CodeType

	Chapter 8. Working with exceptions
	8.1. Scout Throwables
	8.2. Exception handling
	8.3. Exception translation
	8.4. Exception Logging

	Chapter 9. JobManager
	9.1. Functionality
	9.2. Job
	9.3. Scheduling a Job
	9.4. JobInput
	9.5. IFuture
	9.6. Job states
	9.7. Future filter
	9.8. Event filter
	9.9. Job cancellation
	9.10. Subscribe for job lifecycle events
	9.11. Awaiting job completion
	9.12. Uncaught job exceptions
	9.13. Blocking condition
	9.14. ExecutionSemaphore
	9.15. ExecutionTrigger
	9.16. Stopping the platform
	9.17. ModelJobs
	9.18. Configuration
	9.19. Extending job manager
	9.20. Scheduling examples

	Chapter 10. RunContext
	10.1. Factory methods to create a RunContext
	10.2. Properties of a RunContext
	10.3. Properties of a ServerRunContext
	10.4. Properties of a ClientRunContext

	Chapter 11. RunMonitor
	Chapter 12. Client Notifications
	12.1. Examples
	12.2. Data Flow
	12.3. Push Technology
	12.4. Components
	12.5. Publishing
	12.6. Handling

	Chapter 13. Extensibility
	13.1. Overview
	13.2. Extensions
	13.3. Contributions
	13.4. Move elements
	13.5. Migration

	Chapter 14. Mobile Support
	14.1. Responsive and Touch Capable Widgets
	14.2. Device Transformation
	14.3. Adapt Specific Components
	14.4. User Agent
	14.5. Best Practices

	Chapter 15. Security
	15.1. Default HTTP Response Headers
	15.2. Session Cookie (JSESSIONID Cookie) Configuration Validation
	15.3. Secure Output
	15.4. Authorization (Granting)

	Chapter 16. Data Objects
	16.1. Data Object Definition
	16.2. Marshalling
	16.3. Ignoring an Attribute
	16.4. Handling of DoEntity Attributes
	16.5. Abstract Data Objects & Polymorphism
	16.6. Rename an attribute of a data object in a subclass
	16.7. Interfaces to Data Objects
	16.8. Equals and Hashcode
	16.9. Generic DoEntity
	16.10. Map of objects
	16.11. IDataObject Interface - Data Objects with unknown structure
	16.12. Ad-Hoc Data Objects
	16.13. Maven Dependencies
	16.14. Data Object Inventory
	16.15. Extending with custom serializer and deserializer
	16.16. Enumerations within Data Objects
	16.17. Typed IDs within Data Objects
	16.18. Unit Testing

	Chapter 17. REST
	17.1. REST Resource Conventions
	17.2. REST Resource Provider
	17.3. Dependency Management
	17.4. REST Client
	17.5. REST Cancellation Support

	Chapter 18. Webservices with JAX-WS
	18.1. Functionality
	18.2. JAX-WS implementor and deployment
	18.3. Modularization
	18.4. Build webservice stubs and artifacts
	18.5. Provide a webservice
	18.6. Consume a webservice
	18.7. XML adapters to work with java.util.Date and java.util.Calendar
	18.8. JAX-WS Appendix

	Chapter 19. SmtpHelper
	19.1. SmtpServerConfig
	19.2. Sending messages
	19.3. SmtpHelper Configuration
	19.4. Connection Pooling
	19.5. SmtpConnectionPool Configuration

	Chapter 20. Scout JS
	Chapter 21. How-Tos
	21.1. SmartField: how to apply colors and styles from a lookup-row
	21.2. How to Create a Chart

