

[image: PIC]

 Eclipse Scout

Frontend Development

Matthias Zimmermann

Version of 2015-03-04

Contents

 Preface

 1 Introduction

 1.1 What is Scout?

 1.1.1 End User Perspective

 1.1.2 Management Perspective

 1.1.3 Developer Perspective

 1.2 Why Scout?

 1.3 What should I read?

 1.3.1 I know Java

 1.3.2 I know tons of both Java and Eclipse

 1.3.3 I am a manager

 2 ”Hello World” Tutorial

 2.1 Installation and Setup

 2.2 Create a new Project

 2.3 Run the Initial Application

 2.4 The User Interface Part

 2.5 The Server Part

 2.6 Add the Rayo Look and Feel

 2.7 Exporting the Application

 2.8 Deploying to Tomcat

 3 ”Hello World” Background

 3.1 Create a new Project

 3.2 Walking through the Initial Application

 3.2.1 Desktop

 3.2.2 Form

 3.2.3 Form Handler

 3.2.4 Form Services and Form Data Objects

 3.3 Run the Initial Application

 3.3.1 The Launcher Boxes

 3.3.2 Eclipse Product Files

 3.3.3 Eclipse Configuration Files

 3.3.4 Scout Desktop Client Applications

 3.3.5 Scout Web, Tablet and Mobile Clients

 3.4 The User Interface Part

 3.5 The Server Part

 3.5.1 Scout Services

 3.5.2 Scout Proxy Services

 3.6 Add the Rayo Look and Feel

 3.7 Exporting the Application

 3.8 Deploying to Tomcat

 4 Shared Components

 4.1 Texts / i18n / NLS Support

 4.2 Icons

 4.3 Code Types and Codes

 4.3.1 A Simple Example

 4.3.2 Hierarchical Code Types

 4.3.3 Loading Codes Dynamically

 4.4 Lookup Calls and Services

 4.5 Permissions

 4.6 Form Data Objects

 4.6.1 Data Binding

 4.6.2 Automatic Updates by the Scout SDK

 4.6.3 Manual Form Data Updates

 5 Client components

 5.1 Client Model

 5.2 Splash Screen

 5.3 Login Box

 5.4 Client Session

 5.5 Desktop

 5.5.1 Info Dialog

 5.5.2 Toolbar

 5.5.3 Status Line

 5.6 Menus

 5.7 Outlines

 5.8 Tools

 5.9 Forms

 5.10 Form Fields

 5.10.1 Common Aspects

 5.11 Trees

 5.12 Pages

 5.13 Search Forms

 5.14 Tables

 5.14.1 Image Columns

 5.14.2 HTML inside Table Cells

 5.14.3 Table Status Bar

 5.14.4 Injecting Columns at Runtime

 5.15 Workflows and Wizards

 6 The Widgets Demo Application

 6.1 The User Interface

 6.2 Client Only Architecture

 7 Simple Widgets

 7.1 Label Fields

 7.2 String Fields

 7.3 Number Fields

 7.4 Decimal Fields

 7.5 Date and Time Fields

 7.6 Checkbox Fields

 7.7 Radio Button Fields

 7.8 Buttons and Links

 7.9 Message Boxes

 8 Advanced Widgets

 8.1 List Box

 8.2 Tree Box

 8.3 Smart Field

 8.3.1 Menus

 8.4 Tree Field

 8.5 Table Field

 8.6 Image Field

 8.7 SVG Field

 8.8 HTML Field

 8.9 Browser Field

 8.10 Calendar Field

 9 Layout Widgets

 9.1 Group Box

 9.2 Tab Box

 9.3 Sequence Box

 9.4 Split Box

 9.5 Page Field

 9.6 File Chooser Field

 9.7 Master Slave Fields

 10 Custom Fields

 11 Template Fields

 12 Layouting

 12.1 The Desktop

 12.2 Form Layout

 13 Bookmarks

 14 Client Notification

 15 File Upload and Download

 16 Application Branding

 16.1 Rayo Look and Feel

 16.2 Branding the Swing Client

 16.3 Branding the SWT Client

 16.4 Branding the Webclient

 17 Advanced Topics

 17.1 Modifying the UI at Runtime

 17.2 Focus Handling

 17.3 Keyboard Control

 17.4 Master Detail Pages

 17.5 Client Only Applications

 17.6 Headless Client

 17.7 Client Startup

 17.7.1 Config.ini File

 17.8 Client Shutdown

 17.9 Threading and Jobs

 17.10 Caching

 I Appendices

 A Licence and Copyright

 A.1 Licence Summary

 A.2 Contributing Individuals

 A.3 Full Licence Text

 B Scout Installation

 B.1 Overview

 B.2 Download and Install a JDK

 B.3 Download and Install Scout

 B.4 Add Scout to your Eclipse Installation

 B.5 Verifying the Installation

 C Apache Tomcat Installation

 C.1 Platform Specific Instructions

 C.2 Directories and Files

 C.3 The Tomcat Manager Application

 D Scout Utilities

 D.1 StringUtility

 D.2 DateUtility

 D.3 FileUtility

 E Java Basics

 E.1 Java SE Basics

 E.1.1 Learning Java

 E.1.2 Advanced Java SE Concepts

 E.1.3 JAR Files

 E.2 Java EE Basics

 E.2.1 Servlets

 E.2.2 Servlet Filters

 E.2.3 WAR Files

 F Eclipse Basics

 F.1 Eclipse as an IDE

 F.1.1 Project Workspace

 F.1.2 Perspectives

 F.2 OSGi and Equinox

 F.3 Eclipse

 F.4 Eclipse Plugins

 Bibliography

 Index

Preface

Today, the Java platform is widely seen as the primary choice for implementing enterprise
applications. While many successful frameworks support the development of persistence layers and
business services, implementing front-ends in a simple and clean way remains a challenge.
This is exactly where Eclipse Scout fits in. The primary goal of Scout is to make your life as
a developer easier and to help organisations to save money and time. For this, the Scout
framework covers most of the recurring front-end aspects such as user authentication, client-server
communication and the user interface. This comprehensive scope reduces the amount of necessary
boiler plate code, and let developers concentrate on understanding and implementing business
functionality.

 The purpose of this book is to get the reader familiar with the Scout framework. In this book Scout’s
core features are introduced and explained using many practical examples. And as both the Scout
framework and Scout applications are written in Java, we make the assumption that you are familiar with
the language too. Ideally, you have worked with Java for some time now and feel comfortable with the
basic language features.

 In the first part of the book a general introduction into the runtime part of the framework and the
tooling - the Scout SDK - is provided. After the mandatory ”Hello World!” application, the book walks
you though a complete client server application including database access. The focus of the book’s second
part is on the front-end side of Scout applications. First, an overview of the Scout client model is
introduced before Scout’s most important UI components are described based on the Scout widget demo
application. To cover the the server-side of Scout applications, an additional part of the book
is planned to be released jointly with version 5.0 of the Scout framework. And finally, we
intend to amend the book regarding building, testing and continuous integration for Scout
applications.

 Last but not least, we thank you for your interest in Scout, for being part of our community and for
your friendly support of new community members. To allow for contributions to this book, the technical
setup and the book’s licence have been selected to minimize restrictions. According to the terms of the
Creative Commons (CC-BY) license, you are allowed to freely use, share and adapt this book. All source
files of the book including the Scout projects described in the book are available on github. For the first
edition of this book, we did already receive a number of bug reports and comments that
were pointing out mistakes, inconsistencies and suggestions for changes. This feedback is very
valuable to us as it helps to improve both the book’s content and the quality for all future
readers. We hope that this book helps you to get started quickly and would love to get your
feedback.

Chapter 1
Introduction

 1.1 What is Scout?

Scout is an open source framework for building business applications. The Scout framework covers most
recurring aspects of a classical client server architecture with a strong focus on the application’s
front-end. With its multi-device capability, a Scout client applications may run simultaneously as a rich
client, in the browser and on mobile and tablet devices.

 To different groups of people, Scout means different things. End users are interested in a
good usability, the management cares about the benefits a new framework can offers to the
organisation and developers want to know if a framework is simple to use and helps them to solve
practical issues. This is why the text below describes Scout from the perspective of these three
roles.

1.1.1 End User Perspective

End users of enterprise applications care about friendly user interfaces (UI) and well designed
functionality that support them in their everyday work. Depending on the current context/location of an
end user, either desktop, web or mobile clients work best. If working in the office, a good integration of
the enterprise software with Lotus Notes or Microsoft Office often help to boost the users productivity. As
office software is typically installed locally on the users PC, integrating this software also requires a
desktop client for the enterprise application. When a user is working on a computer outside of his
company where the enterprise client is not installed (or the user lacks the permissions to install
any software), the natural choice is to work with a web application. And when the user is
on the move or sitting in a meeting, the only meaningful option is to work with a mobile
device.

[image: PIC]

Figure 1.1: The desktop client of a Scout enterprise application.

 To provide a concrete example, we briefly describe a real world enterprise application based on
Scout. A first screenshot of a Scout desktop client is provided in Figure 1.1. The screenshot
provides an overview of the layout of a customer relationship management (CRM) solution. On
the left hand side, an entity class such as companies can be selected. Once an entity such is
selected, a form is presented on the right hand side to enter the search criteria. After entering
”eclipse” into the company search field, the list of matching companies is presented. Using the
context menu on a specific company, the corresponding company dialog can be opened for
editing.

[image: PIC]

Figure 1.2: A Scout enterprise application running in a web browser.

 In Figure 1.2 a screenshot of the web client of the CRM Scout application is shown. When
comparing the screenshots of the desktop client with the web application it is interesting to note how
Scout applications offer a consistent look and feel for the two clients. This is important as it makes the
end user feel ”at home” on the web client.

[image: PIC]

Figure 1.3: The same Scout enterprise application running on a mobile device.

 Finally, Figure 1.3 provides a screenshot of the now familiar CRM application. In contrast to
desktop and web applications, most tablets and mobile phones are controlled using touch features instead
of mouse clicks. In addition, less elements may be presented on a single screen compared to desktop
devices. These two aspects makes it impractical to directly reuse the desktop user interface on mobile
devices. The look and feel still relates to the desktop and web clients but is optimized to the different
form factor of the mobile device. And the end user benefits from the identical behaviour and the the
known functionality of the application.

 Comparing the company table shown in the background of Figure 1.1 with Figure 1.3 it can be
observed that the multi-column table of the desktop client has been transformed into a list on the mobile
device. In addition, the context menu ”New company” is now provided as a touch button. As the
navigation in the application and the offered choices remain the same for Scout desktop and
mobile applications, the end user feels immediately comfortable working with Scout mobile
applications.

1.1.2 Management Perspective

For the management, Scout is best explained in terms of benefits it brings to the organisation in question.
This is why we are going to concentrate on a (typical) application migration scenario here. Let us assume
that to support the company’s business, a fairly large landscape of multi-tier applications has to be
maintained and developed. Including host systems, client server applications with desktop clients, as well
as applications with a web based front-end.

[image: PIC]

Figure 1.4: A typical application landscape including a service bus and a Scout application.

 Usually, these applications interact with each other through a service bus as shown in Figure 1.4.
Often, some of the applications that are vital to the organisation’s core business have grown historically
and are based on legacy technologies. And for technologies that are no longer under active development it
can get difficult to find staff having the necessary expertise or motivation. Sometimes, the
organisation is no longer willing to accept the costs and technology risks of such mission critical
applications.

[image: PIC]

Figure 1.5: The integration of a Scout application in a typical enterprise setup.

 In this situation, the company needs to evaluate if it should buy a new standard product or if the old
application has to be migrated to a new technology stack. Now let us assume, that available products do
not fit the company’s requirements well enough and we have to settle for the migration scenario.
In the target architecture, a clean layering similar to the one shown in Figure 1.5 is often
desirable.

 While a number of modern and established technologies exist that address the backend side (data
bases, data access and business services), the situation is different for the UI layer and the
application layer. The number of frameworks to develop web applications with Java is excessively
large1 ,
but the choice between desktop application technologies in the Java domain is restricted to three options
only. Swing, SWT and JavaFX. Both Eclipse SWT and Java Swing are mature and well established but
Swing is moving into ’maintenance only’ mode and will be replaced by JavaFX. However, the maturity of
the new JavaFX technology in large complex enterprise applications is not yet established. Obviously,
deciding for the right UI technology is a challenge and needs to be made very carefully. Reverting this
decision late in a project or after going into production can get very expensive and time
consuming.

 Once the organisation has decided for a specific UI technology, additional components and
frameworks need to be evaluated to cover client server communication, requirements for the application
layer, and integration into the existing application landscape. To avoid drowning in the integration effort
for all the elements necessary to cover the UI and the application layer a ’lightweight’ framework is
frequently developed. When available, this framework initially leads to desirable gains in productivity.
Unfortunately, such frameworks often become legacy by themselves. Setting up a dedicated team to
actively maintain the framework and adapt to new technologies can reduce this risk. But then again, such
a strategy is expensive and developing business application frameworks is usually not the core business of
a company.

 Can we do better? To implement a business application that covers the UI and the application layer
as shown in Figure 1.5, Eclipse Scout substantially reduces both risk and costs compared to the inhouse
development presented above. First or all, Scout is completely based on Java and Eclipse. Chances are,
that developers are already familiar with some of these technologies. This helps in getting developers up
to speed and keeping training costs low.

 On the UI side, Scout’s multi-device support almost allows to skip the decision for a specific UI
technology. Should a particular web framework become the de-facto standard in the next years, it
will be the responsibility of the Scout framework to provide the necessary support. Existing
Scout applications can then switch to this new technology with only minimal effort. This is
possible because the Scout developers are designing and building the UI of an application using
Scout’s client model. And this client model is not linked to any specific UI technology. Rather,
specific UI renderers provided by the Scout framework are responsible to draw the UI at
runtime.

 As Scout is an open source project, no licence fees are collected. Taking advantage of the growing
popularity of Scout, free community support is available via a dedicated forum. At the same time,
professional support is available if the organisation decides for it.

 As the migration of aging applications to current technology is always a challenge, it surely helps to
have Scout in the technology portfolio. Not only is it a low risk choice, but also boosts developer
productivity and helps to motivate the development team. Additional reasons on why Scout helps to drive
down cost and risks are discussed in Section 1.2.

1.1.3 Developer Perspective

From the perspective of application developers, Scout offers a Java based framework that covers the
complete client server architecture. This implies that – once familiar with the Scout framework – the
developer can concentrate on a single framework language (Java) and a single set of development
tools.

 As Scout is completely based on Java and Eclipse, Scout developers can take full advantage of
existing knowledge and experience in these domains. And to make learning Scout as simple as possible,
Scout includes a comprehensive software development kit (SDK), the Scout SDK. The Scout SDK helps
to create a robust initial project setup for client server applications and includes a large set of wizards for
repetitive and error prone tasks.

 On the client-side Scout’s flexible client model allows the developer to create a good user experience
without having to care about specific UI technologies. The reason for this can be found in Scout’s
client architecture that cleanly separates the UI model from the UI technology. In Scout
(almost) every UI component is implemented four times. First the implementation of the UI
model component and then, three rendering components for each UI technology supported by
Scout. For desktop clients these are the Swing and the SWT technologies, and for the web
and mobile support this is Eclipse RAP which in turn takes care of the necessary JavaScript
parts.

 Not having to worry about Swing, SWT or JavaScript can significantly boost the productivity. With
one exception. If a specific UI widget is missing for the user story to be implemented, the Scout developer
first needs to implement such a widget. Initially, this task is slightly more complex than not
working with Scout. For custom widgets the Scout developer needs to implement both a model
component and a rendering component for a specific UI technology. But as soon as the client
application needs to be available on more than a single frontend, the investment already pays off.
The developer already did implement the model component and only needs to provide an
additional rendering component for the new UI technology. In most situations the large set of
Scouts UI components provided out-of-the box are sufficient and user friendly applications are
straight forward to implement. Even if the application needs to run on different target devices
simultaneously.

 Client-server communication is an additional aspect where the developers is supported by Scout.
Calling remote services in the client application that are provided by the Scout server looks identical to
the invocation of local services. The complete communication including the transfer of parameter objects
is handled fully transparent by the Scout framework. In addition, the Scout SDK can completely manage
the necessary transfer objects to fetch data from the Scout server that is to be shown in dialog forms
on the Scout client. The binding of the transferred data to the form fields is done by the
framework.

 Although the Scout SDK wizards can generate a significant amount of code, there
is no one-way code generation and no meta data in a Scout application. Just the Java

code2 .
Developers preferring to write the necessary code manually, may do so. The Scout SDK parses the
application’s Java code in the background to present the updated Scout application model to the
developers preferring to work with the Scout SDK.

 Finally, Scout is an open source framework hosted at the Eclipse foundation. This provides a number
of interesting options to developers that are not available for closed source frameworks. First of all,
it is simple to get all the source code of Scout and the underlying Eclipse platform. This
allows for complete debugging of all problems and errors found in Scout applications. Starting
from the application code, including the Scout framework, Eclipse and down to the Java
platform.

 Scout developer can also profit from an increasing amount of free and publicly available
documentation, such as this book or the Scout Wiki pages. And problems with Scout or questions that
are not clearly addressed by existing documentation can be discussed in the Scout forum. The
forum is also a great place for Scout developers to help out in tricky situation and learn from
others. Ideally, answered questions lead to improved or additional documentation in the Scout
Wiki.

 At times, framework bugs can be identified from questions asked in the forum. As all other
enhancement requests and issues, such bugs can be reported in Bugzilla by the Scout developer. Using
Bugzilla, Scout developers can also contribute bug analysis and patch proposals to solve the reported
issue. With this process, Scout developers can actively contribute to the code base of Eclipse Scout. This
has the advantage, that workarounds in existing Scout applications can be removed when an upgrade of
the Scout framework is made.

 Having provided a significant number of high quality patches and a meaningful involvement in the Scout
community, the Scout project can nominate a Scout developer as a new Scout committer. Fundamentally,
such a nomination is based on the trust of Scout committers in the candidate. To quote the official
guidelines3
for nominating and electing a new committer:

 A Committer gains voting rights allowing them to affect the future of the Project.
 Becoming a Committer is a privilege that is earned by contributing and showing discipline and
 good judgment. It is a responsibility that should be neither given nor taken lightly, nor is it a
 right based on employment by an Eclipse Member company or any company employing existing
 committers.

After a successful election process (existing committers voting for and not against the candidate) the

Scout developer effectively becomes a Scout committer. With this new status, the Scout developer then
gets write access to the Eclipse Scout repositories and gains voting rights and the possibility to shape the
future of Scout.

1.2 Why Scout?

Most large organizations develop and maintain enterprise applications that have a direct impact on the
success of the ongoing business. And at the same time, those responsible for the development and
maintenance of these applications struggle with this task. It is a big challenge to adapt to
changing business demands and complying with the latest legal requirements in time. And the
increasing pressure to lower recurring maintenance costs does not make the situation any
easier.

 It often seems that too many resources are required to keep a heterogeneous set of legacy
technologies alive. In this situation, modernizing mission critical applications can help to improve over the
current situation. For the target platform stack, Java is a natural choice as it is mature, widely adopted
by in the industries and unlikely to become legacy in the foreseeable future. While for the back-end side
of enterprise applications well-known and proven frameworks do exist, the situation on the client
side is less clear. Unfortunately, user interface (UI) technologies often have lifetimes that are
substantially shorter than the lifetimes of larger mission critical applications. This is particularly true
for the web, where many of today’s frameworks will no longer be relevant in five or more
years.

 Enter Eclipse Scout. This open source framework covers most of the recurring needs that are relevant
to the front-end development of business applications. And Scout forces a clean separation between the
user interface and the specific UI technology used for rendering. This has two major benefits. First, Scout
developers implement the user interface against an abstraction layer, which helps to focus on the business
functionality and saves development time. And second, long term maintenance costs are lower, as the
Scout code remains valid even when the rendering technology needs to be exchanged. Therefore, Scout
helps to improve the productivity of the development teams and reduces the risk of major application
rewrites.

 To provide a first impression on the scope and goals of the Scout framework, a number of scenarios
where Scout typically contributes to your projects success are listed below .

 	You are looking for a reasonable client side framework for your business application.

 	You need an application that works on the desktop, in browsers and on mobiles devices.

 	You don’t have the time to evaluate and learn a new UI technology.

 	You need a working prototype application by the end of the week.

 	Your application’s expected lifespan is 10 years or more.

That Scout should help in the last two situations mentioned above seems to be contradictory at first but
is just based on a simple principle. Where possible, the Scout framework provides abstractions for
areas/topics4
that need to be implemented for business applications again and again. And for each of these
abstractions Scout provides a default implementation out of the box. Typically, the default
implementation of such an abstraction integrates a framework or technology that is commonly
used.

 When needing a working prototype application by the end of the week, the developer just
needs to care about the desired functionality. The necessary default implementations are then
automatically included by the Scout tooling into the Scout project setup. The provided Scout SDK
tooling also helps to get started quickly with Scout. It also allows to efficiently implement
application components such as user interface components, server services or connections to
databases.

 In the case of applications with long lifespans, the abstractions provided by Scout help the developer
to stay productive and concentrate on the actual business functionality. At the same time, this keeps the
code base as independent of specific technologies and frameworks as possible. This is a big advantage
when individual technologies incorporated in the application reach their end of life. As all the
implemented business functionality is written against abstractions only, no big rewrite of the application
is necessary. Instead, it is sufficient to exchange the implementation for the legacy technology with a new
one. And often, an implementation for a new technology/framework is already provided by a more recent
version of Scout.

1.3 What should I read?

The text below provides guidelines on what to read (or what to skip) depending on your
existing background. We first address the needs of junior Java developers that like to learn
more about developing enterprise applications. Then, we suggest a list of sections relevant for
software wizards that already have a solid understanding of the Eclipse platform, Java enterprise
technologies, and real world applications. Finally, the information needs of IT managers are
considered.

1.3.1 I know Java

The good news first. This book is written for you! For the purpose of this book we
do not assume any significant understanding of the Java Enterprise Edition (Java

EE)5 and the
Eclipse Platform6 .

 Of course, having prior experience in client server programming with Java is helpful. And having
used the Eclipse IDE for Java development before — please do not mistake the IDE with the Eclipse
platform7 is
certainly of benefit.

 The “bad” news is, that writing Scout applications requires a solid understanding
of Java. To properly benefit from this book, we assume that you have been developing
software for a year or more. And you should have mastered the Java Standard Edition (Java
SE)8 to a significant
extent. To be more explicit, you are expected to be comfortable with all material required for the Java Programmer Level I
Exam9 and most of the
material required for Level II10 .

 We now propose to start downloading and installing Scout as described in Appendix B and do some
actual coding. To do so, please continue with the “Hello World” example provided in Chapter 2. You
can expect to complete this example in less than one hour including the necessary download
and installation steps. Afterwards, you might want to continue with the remaining material
in “Getting Started”. Working through the complete book should take no more than two
days.

 Once you work with the Scout framework on a regular basis, you might want to ask questions in the Scout

forum11 .
When your question gets answered, please ask yourself if your initial problem could have been solved by better
documentation. In that case, you might want to help the Scout community by fixing or amending the Scout wiki
pages12 .
Or this book. If you find a bug in Eclipse Scout that makes your life miserable you can report it or even
propose a patch. And when your bug is fixed, you can test the fix. All of these actions will add to the
healthy grow of the Scout community.

1.3.2 I know tons of both Java and Eclipse

This means that you are one of these software wizards that get easily bored. You prefer to get a quick
impression before deciding to dig deeper and hate going through lengthy descriptions. In that case let us
assume that you are prepared to spend two hours to grasp the scope of Eclipse Scout and get an
impression of its strengths and limitations. The list below suggests a sequence of sections to digest
including a brief motivation for each one.

 	Chapter 2 ”Hello World” Tutorial. Download and installation of the Scout package should
 take less than 30 minutes, going through the ”Hello World” takes another 15 minutes.

 	Section 3.2 “Walking through the Initial Application” Read about some key elements used
 in every Scout client application including integration of server services and data binding.

 	Chapter ?? “Scout Tooling”. Browse through the tooling chapter to get an impression on the
 tooling provided with Scout. Make sure you understand that the Scout SDK is supporting
 the developer without restricting the developer.

 	Chapter ?? “The My Contacts Application”. Check out the slightly larger demo application.
 In case you are not yet running out of time, download the demo app as described in the Scout
 wiki13.

1.3.3 I am a manager

Being a manager and actually reading this book may indicate one of the following situations:

 	Your developer tried to convince you that Eclipse Scout can help you with implementing
 business applications in a shorter time and for less money. And you did not understand why
 (again) a new technology should work better than the ones you already use.

 	Your are a product manager of a valuable product that is based on legacy technology. And
 you are now evaluating options to modernize your product.

 	Think about your current situation. There must be a reason why you are checking out this
 book.

 To learn about Scout and about its benefits first go through Section 1.1 and Section 1.2. Then, flip
through Section ?? to get an impression of the ”My Contacts” application. In case you like the idea that
your developers should be able to build such an application in a single day, you might want to talk to
us14 .

Chapter 2
”Hello World” Tutorial

The ”Hello World” chapter walks you through the creation of an Eclipse Scout client server
application. When the user starts the client part of this application, the client connects to the
server1
and asks for some text content that is to be displayed to the user. Next, the server retrieves the desired
information and sends it back to the client. The client then copies the content obtained from the server
into a text field widget. Finally, the client displays the message obtained from the server in a text field
widget.

 The goal of this chapter is to provide a first impression of working with the Scout framework using
the Scout SDK. We will start by building the application from scratch and then we’ll deploy the
complete application to a Tomcat web server. Except for a single line of code in the server part
of the ”Hello World” application, we will only be using the tooling provided by the Scout
SDK.

 Based on this simple ”Hello World” applications a large number of Scout concepts
can be illustrated. Rather than including such background material in this tutorial, this
information is provided separately in Chapter 3. This tutorial is also available in the Scout
wiki2 .

2.1 Installation and Setup

Before you can start with the ”Hello World” example you need to have a complete and working Scout
installation. For this, see the step-by-step installation guide provided in Appendix B. Once you have
everything installed, you are ready to create your first Scout project.

2.2 Create a new Project

Start your Eclipse IDE and select an empty directory for your workspace. This workspace directory will
then hold all the project code for the ”Hello World” application. Once the Eclipse IDE is running it will
show the Scout perspective with the ”Scout Explorer” view and an empty ”Scout Object Properties”
view. To create a new Scout project select the New Scout Project... context menu as shown in
Figure 2.1.

[image: PIC]

Figure 2.1: Create a new Scout project using the Scout SDK perspective.

 In the New Scout Project wizard enter a name for your Scout project. As we are creating a ”Hello
World” application, use org.eclipsescout.helloworld for the Project Name field according to
Figure 2.2. Then, click the Finish button to let the Scout SDK create the initial project code for
you.

[image: PIC]

Figure 2.2: The new Scout project wizard.

 Once the initial project code is built, the Scout SDK displays the application model in the Scout
Explorer as shown in Figure 2.3. This model is visually presented as a tree structure covering both the
client and the server part of the application. The Scout Explorer view on the left hand side displays the
top level elements of the complete Scout application. Under the orange node the Scout client components
are listed. Components that are needed in both the Scout client and the Scout server are collected under
the green node. And the Scout server components are listed below the blue node in the Scout Explorer
view.

[image: PIC]

Figure 2.3: The Scout SDK showing the tree representation of our ”Hello World” application in
the Scout Explorer. The Scout Object Properties contain the product launchers for the server and
the available clients.

 2.3 Run the Initial Application

After the initial project creation step we are ready to start the server and the clients of the still
empty Scout application. For this, we switch to the Scout Explorer and select the root node
org.eclipse.scout.helloworld. Selecting the application’s org.eclipse.scout.helloworld node in the Scout
Explorer displays the product launchers in the Scout Object Properties. As we can see in Figure 2.4, we
have product launchers for four different development products.

 	Server	The Scout server application

	RAP 	The RAP server application for web and mobile clients

	Swing 	The Scout Swing desktop client application

	SWT 	The Scout SWT desktop client application

	

[image: PIC]

Figure 2.4: Starting the web client in the Scout SDK using the provided RAP product launcher.
Make sure to start the server before starting any client product.

 Each product launcher box provides a link to the corresponding Eclipse product
file3 , the
configuration file4 ,
as well as three launcher icons to start and stop the corresponding application. The green Circle icon
starts the product in normal mode. The Bug icon just below, starts a product in debug mode. To
terminate a running product, the red Square icon is provided. Alternatively, you can also stop products
by clicking on the same red icon in the console view. This is shown on the right hand side of Figure 2.4.
Client products may also be stopped by closing the client’s main window or using the provided
File—Exit menu.

 Before any of the client products is started, we need to start the server product using the green circle
or the bug launcher icon. During startup of the Scout server you should see console output
similar to the one shown on the right hand side of Figure 2.4. Once the server is running,
you may start the web client as shown in Figure 2.4, the Swing client, or the SWT client in
the same way. And with a running RAP product, the Scout web client can be opened in a
web browser. Just click on the provided Automatic Device Dispatch link or open a a browser
and manually type the address http://localhost:8082/web into the browser’s navigation
bar.

[image: PIC] [image: PIC] [image: PIC]

Figure 2.5: Running the three client applications. Each client displays an empty desktop form.
From left to right: The web client, the Swing client, and the SWT client

 Having started the Scout server and all client products, the client applications should become visible
as shown in Figure 2.5.

2.4 The User Interface Part

The project creation step has created a Scout client that displays an empty desktop form. We
will now add widgets to the client’s desktop form that will later display the ”Hello World!”
message.

 To add any widgets to the desktop form, navigate to the DesktopForm in the Scout Explorer. For
this, click on the orange client node in the Scout Explorer view. Then, expand the Forms folder by
clicking on the small triangle icon, and further expand the DesktopForm. As a result, the MainBox
element becomes visible below the desktop form as shown in Figure 2.6. With a click of the right mouse
button over the MainBox, the available context menus are displayed. To start the form field wizard select
the New Form Field ... menu.

[image: PIC]

Figure 2.6: Using the New Form Field ... menu to start the form field wizard provided by the
Scout SDK.

 In the first step of the form field wizard shown on in Figure 2.7 choose GroupBox as the form field
type and click on the Next button. In the second wizard step, enter ’Desktop’ into the Class Name field
before you close the wizard with the Finish button. The Scout SDK will then add the necessary Java
code for the DesktopBox in the background.

[image: PIC] [image: PIC]

Figure 2.7: Adding the DesktopBox field with the Scout SDK form field wizard.

 We can now add the text field widget to the group box just created. To do this, expand the MainBox
in the Scout Explorer view to access the newly created DesktopBox element. On the DesktopBox use the
New Form Field ... menu again. In the first wizard step, select StringField as the form field type
according to Figure 2.8. To select the StringField type you can either scroll down the list of available
types or enter ”st” into the field above the field type list. In the second wizard step, enter
’Message’ into the Label field. As we do not yet have the text ’Message’ available in our ”Hello
World” application the wizard prompts the user with the proposal New Translated Text
....

[image: PIC] [image: PIC]

Figure 2.8: Adding a StringField and providing a new translation entry.

 With a double click on this option a new text entry can be added to the application as
shown in Figure 2.9. Once an initial translation for the message label is provided, close the
translation dialog with the Ok button. Finally, close the form field wizard using the Finish
button.

[image: PIC]

Figure 2.9: Adding a new translation entry.

 By expanding the DesktopBox element in the Scout Explorer, the new message field becomes visible.
Now, double click on the message field element to load the corresponding Java code into an
editor and displays the message field’s properties in the Scout Object Properties as shown in
Figure 2.10. This is a good moment to compare your status with this screenshot. Make sure
that both the Java code and the project structure in the Scout Explorer look as shown in
Figure 2.10.

[image: PIC]

Figure 2.10: Scout SDK showing the MessageField

 Having verified your status of the ”Hello World” application start the start the server and a client of
the application as described in the previous section. The client applications will then display your
message widget. However, the text widget is still empty, as we did not yet load any initial content into
this field. This is the topic of the next section.

2.5 The Server Part

The responsibility of the Scout server in our ”Hello World” application is to provide an initial
text content for the message field in the client’s user interface. We implement this behaviour
in the load method of the server’s DesktopService. An empty stub for the load method
of the DesktopService service has already been created during the initial project creation
step.

 To navigate to the implementation of the desktop service in the Scout SDK, we first expand the blue
top-level server node in the Scout Explorer. Below the server node, we then expand the Services folder
which shows the DesktopService element. Expanding this DesktopService node, the load method becomes
visible as shown in Figure 2.11.

[image: PIC]

Figure 2.11: The Scout Explorer showing the blue server node expanded with the Services folder.
In this folder the load method of DesktopService is selected and its initial implementation is shown
in the editor on the right side.

 The DesktopService represents the server service corresponding to the DesktopForm on the client
side. This initial setup represents Scout’s default where client forms and server services typically come in
pairs. Whenever the client’s user interface displays a form to the user, the client connects to the server
and calls the load method of the corresponding server service. We just need to add our business logic to
the load method of the server’s DesktopService.

 According to the signature of the load method, a formData object is passed into this method that is
then handed back in the return statement. To complete the implementation of the load method it is
sufficient to assign the text ’hello world!’ to the message field part of the form data according to the
following line.

formData.getMessage().setValue(”Hello World!”);

 The complete implementation of the load method is provided below. With this last element we have
completed the Scout ”Hello World” application.

@Override
public DesktopFormData load(DesktopFormData formData)
 throws ProcessingException {
 formData.getMessage().setValue(”Hello World!”);
 return formData;
}

 2.6 Add the Rayo Look and Feel

[image: PIC] [image: PIC]

Figure 2.12: The ”Hello World” client application with the Rayo look and feel. The desktop client
is shown on the left and the web client on the right hand side.

 For Eclipse Scout applications a slick look and feel called Rayo is available in the Eclipse
Marketplace5 .
And in this (optional) part of the ”Hello World” tutorial we will add Rayo to our ”Hello World” Swing
client application. As a result, we will get a Scout desktop application that looks the same as the
corresponding Scout web client as shown in Figure 2.12.

[image: PIC] [image: PIC]

Figure 2.13: Adding the Rayo Swing look and feel. The Rayo checkbox to activate the look and
feel is highlighted on the left hand side. The dialog on the right hand side shows the changes in
the Swing plugin and the target file that will be made by the Scout SDK.

 To add Rayo in the Scout SDK to our ”Hello World” project, switch to the Scout Explorer and
select the top-level org.eclipse.scout.helloworld node. Then, according to Figure 2.13, select
the checkbox Rayo Swing Look and Feel for Eclipse Scout under the Technologies section
of the Scout Object Properties. This brings up a dialog showing the proposed changes to
application’s target file and the Swing plugin of the ”Hello World” application. These changes
need to be confirmed with the OK button. The first time the user adds the Rayo feature in
the Scout SDK, Eclipse needs to download the package from the Eclipse Marketplace. This
download and subsequent installation of Rayo will make you to go through the following
steps.

 	Accept Licence: GPL with Classpath Exception

 	Accept unsigned content

 After the successful download and installation of the Rayo package, start the Swing client using the
procedure described in Section 2.3. When we also start the web client of the ”Hello World” application
using the RAP product launcher, we can compare the result side by side.

2.7 Exporting the Application

We are now ready to move the finished ”Hello World” application from our development environment to a
productive setup. The simplest option to move our application into the ’wild’ is to use the Export Scout
Project wizard provided by the Scout SDK. Using the default settings, the export wizard produces two WAR
files6
that contain the complete Scout server and the desktop and mobile client applications.

 To deploy the application to a web server the WAR files generated by the wizard are the only
artefacts needed. The first WAR file contains the Scout server including a zipped desktop client for
downloading. In the second WAR file, the RAP server application that provides both the web client and
the client for mobile devices.

[image: PIC]

Figure 2.14: Starting the Export Scout Project wizard in the Scout SDK with the context menu.
In the first wizard step, the target directory for the WAR files and the artefacts to export are
specified.

[image: PIC]

Figure 2.15: The first dialog of the Export Scout Project wizard. Here, the target directory for
the WAR files that will be generated by the wizard is specified.

 To start the export wizard, we start the Scout SDK with the ”Hello World” Scout project. In the
Scout Explorer we then select the corresponding Export Scout Project... context menu on the ”Hello
World” top level application node as shown in Figure 2.14. In the first wizard dialog shown in Figure 2.15,
the target directory for the WAR files needs to be specified. You may choose any directory as the target
directory7 .
After clicking Next button the second wizard step proposes the server product file that specifies the
artefacts to be exported including the file name for the WAR file for the ”Hello World” server
application. Typically, the proposed default values are fine. Move to the third dialog with Next
button.

[image: PIC]

Figure 2.16: The third dialog of the Export Scout Project wizard defines the client application to
be included in the helloworld_server.war file. In the last step of the export wizard the RAP
sever is exported to the specified file name (right).

 In the third dialog of the Export Scout Project wizard the desktop client to be included in the WAR
file needs to be specified. The default selection is set to the SWT client application. For the ”Hello
World” example, we want to include the Swing client application with the Rayo Look and Feel. For this,
we need to change the selected product to helloworld-swing-client.product (production) according to
Figure 2.16. With Next button we move to the last wizard step.

[image: PIC]

Figure 2.17: The last dialog of the Export Scout Project wizard defines the export of the RAP
server. Normally, the proposed field values do not need any adjustments.

 In the last wizard dialog shown in Figure 2.17, the RAP server product and the corresponding WAR
file name are specified. Normally, the proposed field values are fine and we can close the wizard with
Finish button. After this last step, the Scout SDK is assembling the necessary artefacts and building the
two ”Hello World” WAR files. These two WAR files are the only items needed for deploying the ”Hello
World” application to a web server

2.8 Deploying to Tomcat

As the final step of this tutorial, we deploy the two WAR files representing our ”Hello World”
application to a Tomcat web server. For this, we first need a working Tomcat installation. If you do
not yet have such an installation you may want to read and follow the instructions provided
in Appendix C. To verify a running Tomcat instance, type http://localhost:8080/ into
the address bar of the web browser of your choice. You should then see the page shown in
Figure 2.18.

[image: PIC]

Figure 2.18: The Tomcat shown after a successful installation. After clicking on the ”Manager
App” button (highlighted in red) the login box is shown in front. A successful login shows the
”Tomcat Web Application Manager”.

[image: PIC]

Figure 2.19: The ”Tomcat Web Application Manager”. The WAR files to be deployed can then
be selected using button ”Choose File” highlighted in red.

 Once the web browser displays the successful running of your Tomcat instance, switch to its
”Manager App” by clicking on the button highlighted in Figure 2.18. After entering user name and
password the browser will display the ”Tomcat Web Application Manager” as shown in Figure 2.19. If
you don’t know the correct username or password you may look it up in the file tomcat-users.xml as
described in Appendix C.2.

 After logging successfully into Tomcat’s manager application, you can select the WAR file(s) to be
deployed using button ”Choose File” according to the right hand side of Figure 2.19. After picking your
helloworld_server.war and helloworld.war file and closing the file chooser, click on button ”Deploy”
(located below button ”Choose File”) to deploy the application to the Tomcat web server. This will copy
the selected WAR file into Tomcats webapps directory and unpack its content into a subdirectory with
the same name. Deploying the file helloworld.war will extract its contents into a subdirectory
named helloworld. And the file helloworld_server.war will be extracted into subdirectory
helloworld_server. You can now connect to the deployed application using the browser of your choice
and enter the following address.

 http://localhost:8080/helloworld_server/

[image: PIC]

Figure 2.20: The ”Hello World” home page, providing a link to download the desktop client.

 You will then see the home page of the server of your ”Hello World” application shown in
Figure 2.20. From here you can download the zipped client application that can be saved in a
directory of your choice. After unpacking the zip file, you may start the executable file named
helloworld. This will start the ”Hello World” client application as shown on the left hand side of
Figure 2.21. To start the ”Hello World” web application, open a browser and enter the following
address.

 http://localhost:8080/helloworld/

[image: PIC] [image: PIC] [image: PIC]

Figure 2.21: The ”Hello World” client application running on the desktop, in the browser and on
a mobile device.

 Depending on the device your browser is running on you will be redirected to helloworld/web on a
desktop or laptop computer, to helloworld/mobile on a mobile device or to helloworld/mobile if you
are connecting from a tablet device. Figure 2.21 shows screenshots for a desktop client, the web
application and the same application in a mobile browser. As demonstrated in these screenshots
helloworld/web and helloworld/mobile lead to a different presentation of the same UI optimized to
the target form factors of desktop browsers, tablets, and mobile phones.

Chapter 3
”Hello World” Background

The previous ”Hello World” tutorial has been designed to cover the creation of a complete client server
application in a minimal amount of time. In this chapter, we will take a deeper look at the
”Hello World” and provide background information along the way. The goal is to explain
many of the used concepts in the context of a concrete Scout application to allow for a well
rounded first impression of the Eclipse Scout framework and the tooling provided by the Scout
SDK.

 The structure of this chapter is closely related to the ”Hello World” tutorial. As you will notice, the
order of the material presented here exactly follows the previous tutorial and identical section titles are
used where applicable. In addition to Chapter 2, we include Section 3.2 to discuss the initial application
generated by the Scout SDK.

3.1 Create a new Project

The first thing you need for the creation of a new Scout project is to select a new workspace. For Eclipse,
a workspace is a directory where Eclipse can store a set of projects in a single place. As Scout projects
typically consist of several Eclipse plugin projects the default (and recommended) setting is to use a
single workspace for a single Scout project.

[image: PIC] [image: PIC]

Figure 3.1: The Eclipse plugin projects of the ”Hello World” application shown by the Package
Explorer in the Scout SDK on the left hand side. The corresponding view in the Scout Explorer is
provided on the right hand side.

 In the case of the ”Hello World” application, the workspace contains seven plugin projects
as shown on the left side of Figure 3.1. In the expanded source folder of the client plugin
org.eclipse.scout.helloworld.client the organisation of the Java packages is revealed. The Scout Explorer
provided on the right side of Figure 3.1 shows three colored top level nodes below the main project
org.eclipse.scout.helloworld.

 In the Scout Explorer, the main project node expands to the orange client node
org.eclipse.scout.helloworld.client, the green shared node org.eclipse.scout.helloworld.client and the blue
server node org.eclipse.scout.helloworld.server. The client node first presents the white user interface (UI)
nodes org.eclipse.scout.helloworld.client.ui.* indicating the supported UI technologies. Next, the client
mobile node org.eclipse.scout.helloworld.client.mobile is shown. It is responsible for adapting the layout of
the user interface suitably for mobile and tablet devices. Finally, after the ClientSession node and the
Desktop node, component specific folders allow for a simple navigation to the various client
parts.

 Comparing the Package Explorer with the Scout Explorer a couple of aspects are notable.
First, the number and names of the Eclipse plugin projects is identical in both the Package
Explorer and the Scout Explorer view. However, the Scout Explorer recognizes the Scout project
structure and explicitly renders the relation between the different Eclipse plugins. In addition,
individual node colors are used to indicate the role of each plugin project. Second, the focus of the
Scout Explorer lies on the business functionality of the complete client server application.
Artefacts only necessary to the underlying Eclipse platform are not even accessible. Third, on the
individual elements rendered in the Scout Explorer, the Scout SDK provides menus to start
wizards useful to the selected context. In the case of the ”Hello World” tutorial we could
create the complete application (except for a single line of Java code) using these wizards
.

 When we revisit the New Scout Project wizard in Figure 2.2, it now becomes trivial to explain how
the Project Name field org.eclipse.scout.helloworld was used as the common prefix for plugin
project names and Java package names. Based on the project name, the last part helloworld was used
for the Project Alias field. As we have seen in Section 2.7, this project alias is used by the Scout SDK
to build the base names of the WAR files in the export step. In turn, after deploying the
WAR files as described in Section 2.8, the RAP server application becomes available under
the URL http://localhost:8080/helloworld. Should you have a catchy naming for you
application in mind, com.mycompany.mycatchyname is therefore a good choice for the Project Name
field.

3.2 Walking through the Initial Application

In this section, we will walk you through the central Scout application model components of the ”Hello
World” example. As each of these components is represented by a Java class in the Scout framework, we
can explain the basic concept using the available ”Hello World” source code. Below, we will introduce the
following Scout components.

 	Desktop

 	Form

 	Form handler

 	Service

 	MainBox

 	Form data

 	Form field

 Please note that most of the Java code was initially generated by Scout SDK. In many cases this
code can be used ”as is” and does not need to be changed. Depending on your requirements, it might very
well be that you want to adapt the provided code to fit your specific needs. However, a basic
understanding of the most important Scout components should help you to better understand the
structure and working of Scout applications.

3.2.1 Desktop

The desktop is the central container of all visible elements of the Scout client application. It inherits from
Scout class AbstractDesktop and represents the empty application frame with attached elements, such
as the applications menu tree. In the ”Hello World” application, it is the Desktop that is first opened
when the user starts the client application.

 To find the desktop class in the Scout Explorer, we first navigate to the orange client node and
double click the Desktop node just below. This will open the associated Java file Desktop.java in the
editor view of the Scout SDK. Of interest is the overwritten callback method execOpened shown in
Listing 3.1.

 Listing 3.1:
 Creating
 and
 starting
 a
 form
 in
 the
 client’s
 Desktop
 callback
 method
 execOpened.

 @Override
 protected void execOpened() throws ProcessingException {
 //If it is a mobile or tablet device, the DesktopExtension in the mobile plugin takes care of starting the correct forms.
 if (!UserAgentUtility.isDesktopDevice()) {
 return;
 }
 DesktopForm desktopForm = new DesktopForm();
 desktopForm.setIconId(Icons.EclipseScout);
 desktopForm.startView();
 }

 Method execOpened is called by the Scout framework after the desktop frame becomes visible. The only
thing that happens here is the creation of a desktopForm object, that gets assigned an icon before it is started
via method startView. This desktop form object holds the Message field text widget that is displayed to the
user1 .
More information regarding form elements are provided in the next section.

3.2.2 Form

Scout forms are UI containers that hold form field widgets. A Scout form always inherits from Scout class
AbstractForm and can either be displayed as a dialog in its own window or shown as a view inside of
another UI container. In the ”Hello World” application a DesktopForm object is created and displayed as
a view inside of the desktop element.

 To find the desktop form class in the Scout Explorer, expand the orange client
node2 .
Below this node, you will find the Forms folder. Expand this folder to show the DesktopForm as shown in
Figure 3.2. In the Scout Object Property window in the screenshot, we can also see the Display Hint
property. Its value is set to ’View’ to display the desktop form as a view and not as a dialog in its own
frame.

[image: PIC]

Figure 3.2: Scout SDK showing the DesktopForm’s ViewHandler in the Scout Explorer and the
properties of the DesktopForm in the Scout Object Properties.

 Expand the DesktopForm to show its children: Variables, MainBox and Handlers. The Variables sub
folder contains variables. They are invisible to the application user. The ”Hello World” application is so
simple, it does not need variables. The sub folder MainBox contains form fields. These are the visible user
interface elements. The main box of our DesktopForm holds the DesktopBox containing the
MessageField added with the New Form Field wizard. Finally, the Handlers sub folder contains all
available form handlers. The view handler shown in Figure 3.2 has been added in the initial project
creation step.

3.2.3 Form Handler

Form handlers are used to manage the form’s life cycle. Scout form handlers inherit from
AbstractFormHandler and allow the implementation of desired behaviour before a form is opened, or
after it is closed. This is achieved by overwriting callback methods defined in AbstractFormHandler. The
necessary wiring is provided by the Scout framework, either by the initial project creation step or when
using one of the provided Scout SDK wizards.

 Listing 3.2:
 Class
 DesktopForm
 with
 its
 view
 handler
 and
 startView
 method.
 Other
 inner
 classes
 and
 methods
 are
 omitted
 here.

public class DesktopForm extends AbstractForm {
 public class ViewHandler extends AbstractFormHandler {

 @Override
 protected void execLoad() throws ProcessingException {
 IDesktopService service = SERVICES.getService(IDesktopService.class);
 DesktopFormData formData = new DesktopFormData();
 exportFormData(formData);
 formData = service.load(formData);
 importFormData(formData);

 }
 }

 public void startView() throws ProcessingException {
 startInternal(new ViewHandler());
 }
}

 In the ”Hello World” application, it is the overwritten execLoad method in the ViewHandler that
defines what will happen before the desktop form is shown to the user. The corresponding source code is
provided in Listing 3.2. It is this execLoad method where most of the behaviour relevant to the ”Hello
World” application is implemented. Roughly, this implementation is performing the following
steps.

 	Get a reference to the forms server service running on the server.

 	Create a data transfer object (DTO)3

 	Pass the empty DTO to the load service method (ask the server for some data).

 	Update the DTO with the content provided by the service load method.

 	Copy the updated information from the DTO into the desired form field.

 To open the ViewHandler class in the Java editor of the Scout SDK, double click on the
ViewHandler in the Scout Explorer. Your Scout SDK should then be in a state similar to Figure 3.2. In
the lower part of Listing 3.2 we can see the wiring between the desktop form and the view
handler in method startView. Further up, we find method execLoad of the view handler
class.

 Before we discuss this method’s implementation, let us examine when and how execLoad is actually
called. As we have seen in the Desktop class (see Listing 3.1), the form’s method startView is executed
after the desktop form is created. Inside method startView (see Listing 3.2), the desktop form is
started/opened using startInternal. In method startInternal a view handler is then
created and passed as a parameter. This eventually leads to the call of our execLoad custom
implementation.

 We are now ready to dive into the implementation of method execLoad of the desktop form’s view
handler. First, a reference to a form service identified by IDesktopService is obtained using
SERVICES.getService. Then, a form data object (the DTO) is created and all current form field values
are exported into the form data via method exportFormData. Strictly speaking, the exportFormData is
not necessary for the use case of the ”Hello World” application. But, as this is generated code, there is no
benefit when we manually delete the exportFormData command. Next, using the load service method
highlighted in Listing 3.2, new form field values are obtained from the server and assigned to the form
data object. Finally, these new values are imported from the form data into the form via the
importFormData method. Once the desktop form is ready, showing it to the user is handled by the
framework.

 To add some background to the implementation of the execLoad above, the next section introduces
services and form data objects.

3.2.4 Form Services and Form Data Objects

Form services and form data objects are used in the Scout framework to exchange information between
the Scout client and server applications. When needed, a service implemented on the server side
can register a corresponding proxy service on the client. This proxy service is invoked by
the client as if it were implemented locally. In fact, when we get a service reference using
SERVICES.getService, we do not need to know if this service runs locally on the client or remotely on
the server.

 In the ”Hello World” example application, the client’s desktop form has an associated desktop
service running on the server. This correspondence between forms and form services is also
reflected in the Links section of the Scout Object Properties of the desktop form. As shown in
Figure 3.2, links are provided not only for the desktop form, but for its desktop form data, the
corresponding desktop form service as well as for the service interface IDesktopService. On
the client, this interface is used to identify and register the proxy service for the desktop
service.

 To transfer data between the client and the server, the ”Hello World” application uses a
DesktopFormData object as a DTO. This form data object holds all form variables and values for all the
form fields contained in the form. Taking advantage of this correspondence, the Scout framework provides
the convenience methods exportFormData and importFormData. As a result, the developer
does not need to deal with any mapping code between the form data object and the form
fields.

 The actual implementation of the desktop form service in class DesktopService is implemented on
the server side. As the class DesktopService represents an ordinary Scout service it inherits from
AbstractService. It also implements its corresponding IDesktopService interface used for registering
both the actual service as well as the proxy service.

3.3 Run the Initial Application

3.3.1 The Launcher Boxes

To run a Scout application the Scout SDK provides launcher boxes in the Scout Object Properties as
described in Section 2.3. These object properties are associated to the top level project node in the Scout
Explorer. Using the Edit icon provided in the product launcher section of the Scout Object Properties,
the list of launcher boxes can be specified as shown in Figure 3.3.

[image: PIC] [image: PIC]

Figure 3.3: Using the Edit Content... icon shown on the left hand side, the product selection
dialog shown on the right side is opened. Using this product selection dialog, the list of launcher
boxes can be specified.

 3.3.2 Eclipse Product Files

The available products shown on the right side of Figure 3.3 represent the
Eclipse product files created in the initial project creation step. Product
files4
are used in Eclipse to specify the configuration and content of an executable application. In the
case of the ”Hello World” project, four executable applications — with two Eclipse product
files for each application — have been defined by the Scout SDK. The four applications, one
for the server application and one for each client technology, have already been discussed in
Section 2.3.

[image: PIC] [image: PIC]

Figure 3.4: The production and development launcher boxes associated with the ”Hello World”
server application are shown on the left side. In the Package Explorer shown on the right side, the
production and development products are located under the products folder in the server plugin
project.

 We assume that Scout applications will be run in at least two different environments. Once
from within the Eclipse IDE in the development environment, and once by the actual end
users outside the Eclipse IDE. This second environment is named production environment.
Depending on the complexity of deployment processes there might be some more environments to
consider, such as testing and integration environments. This is the reason that the Scout SDK
initially creates two product files that are associated with the development and the production
environment.

 Even in the case of the simple ”Hello World” example, the Scout application is started in two target
environments. The development environment defines the product in the context of the Scout SDK. To
export and run the Scout application outside of the Scout SDK, the production product files are used to
define the application when it is to be started on a Tomcat web server. Figure 3.4 illustrates this
situation for the ”Hello World” server application. On the left side, the blue server node is selected in
the Scout Explorer. This opens the two server launcher boxes for the production and the
development environment. On the right side of Figure 3.4, the corresponding plugin project
org.eclipse.scout.helloworld.server is expanded to show the file based organisation of the two product
definitions.

[image: PIC]

Figure 3.5: The Eclipse product file editor showing file helloworld-server-dev.product of the
”Hello World” application. In the Dependencies tab shown above, the list of Eclipse plugins that
are required for the server application are shown.

 For the case of the ”Hello World” example we did not need to edit or change the product files
generated by the Scout SDK. However, if your requirements are not met by the provided
product files, you may use the Eclipse product file editor. A screenshot of this editor is shown
in Figure 3.5 with the tab Dependencies opened. In the tab Dependencies, the complete
list of necessary plugins is provided. Example plugins visible in Figure 3.5 include the
”Hello World” server and shared plugins, Scout framework plugins, and Jetty plugins. The
Jetty5
plugins are only needed to run the ”Hello World” server application inside the Scout SDK.
Consequently, Jetty plugins are not listed as a dependency in the Scout server’s production product
file.

3.3.3 Eclipse Configuration Files

[image: PIC]
[image: PIC]
[image: PIC]

Figure 3.6: Above, the definition of the products config.ini in tab Configuration of the product
file editor. Below, the content of the configuration file of the ”Hello World” server application is
provided in a normal text editor.

 Switching to tab Configuration in the product file editor, shows the selected radio button Use an
existing config.ini file and the link to the configuration file provided in the File field as shown in the
upper part of Figure 3.6. Below, a part of the server’s config.ini file is shown. Both the entry in the
product file pointing to the configuration file, and the content of the config.ini file has been generated
by the Scout SDK during the initial project creation step. As shown in the lower part of Figure 3.6,
Eclipse configuration files have the format of a standard property file. The provided key value pairs are
read at startup time if the config.ini file can be found in folder configuration by the Eclipse
runtime.

3.3.4 Scout Desktop Client Applications

Having introduced Eclipse product files and configuration files based on the ”Hello World”
server application, we will now look at the different client applications in turn. With Swing
applications6 and
SWT applications7 ,
two alternative UI technologies are currently available to build Scout desktop client applications. More recently,
JavaFX8 is
promoted as a successor to Swing and it is therefore likely, that Scout will provide JavaFX client
applications in the future.

 When we compare the product files for the Swing and the SWT client applications, it is apparent
that both client applications share a large number of plugins. Most importantly, the complete UI model
and the business logic is identical for both client applications. In other words, the value created by
the Scout developer is contained in the two plugins org.eclipse.scout.helloworld.client and
org.eclipse.scout.helloworld.shared. To create an executable client application, we only need to combine
these two plugins with a set of plugins specific to the desired UI technology.

 After starting the ”Hello World” Swing client or the corresponding SWT client application, the client
application first reads the startup parameters from its config.ini file. Among other things, this client
configuration file contains the parameter server.url to specify the URL to the ”Hello World” server.
After the startup of the ”Hello World” client application, it can then connect to the ”Hello World” server
application using this address.

3.3.5 Scout Web, Tablet and Mobile Clients

For Scout web, tablet and mobile clients, the Eclipse RAP
framework9 is used.
The RAP framework provides an API that is almost identical to the one provided by SWT and allows to use Java for
server-side Ajax10 .
This setup implies that Scout tablet and mobile clients are not native clients but browser
based11 .

 Comparing the product file of the SWT client applications with the RAP application, we observe
that the RAP development product does not include any SWT plugins, but a set of RAP and
Jetty plugins. In addition, the RAP product also contains the Scout mobile client plugins
org.eclipse.scout.rt.client.mobile and org.eclipse.scout.helloworld.client.mobile. These two plugins are
responsible for transforming the UI model defined in the ”Hello World” client plugin to the different form
factors of tablet computers and mobile phones.

 If you start the ”Hello World” RAP application in your Scout SDK, you are launching a second
server application in a Jetty instance on a different port than the ”Hello World” server application. As in
the case of the desktop client applications, the RAP or Ajax server application knows how to connect to
the ”Hello World” server application after reading the parameter server.url from its config.ini
file.

3.4 The User Interface Part

Using the UI of the ”Hello World” application we explain in this section how the Scout UI
form model is represented in Java. We also describe how this representation is exploited by
the Scout SDK to automatically manage the form data objects used for data transfer
between Scout client and Scout server applications. Finally, will have a brief look at
internationalization12
support of Scout for texts.

 Listing 3.3:
 The
 DesktopForm
 with
 its
 inner
 class
 MainBox
 containing
 the
 desktop
 box
 and
 message
 field

@FormData(value = DesktopFormData.class, sdkCommand = FormData.SdkCommand.CREATE)
public class DesktopForm extends AbstractForm {
 @Order(10.0)
 public class MainBox extends AbstractGroupBox {

 @Order(10.0)
 public class DesktopBox extends AbstractGroupBox {

 @Order(10.0)
 public class MessageField extends AbstractStringField {

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Message”);
 }
 }
 }
 }
}

 As discussed in Section 3.2.2 Scout forms consist of variables, the main box and a number of form
handlers. The main box represents the visible part of Scout’s form model. It may holds any number
of form fields. Using container fields such as group boxes, it is possible to define complex
structures such as hierarchical UI models containing multiple levels. In the Scout framework
the forms structure is represented in the form of inner classes that are located inside of the
MainBox class. And the New Form Field wizard of the Scout SDK fully supports this pattern.
Listing 3.3 provides the concrete example using the the desktop form of the ”Hello World”
tutorial.

 Using inner Java classes to model a form’s content is a central aspect of the UI part of the Scout
application model. It allows the Scout SDK to easily parse the form’s Java code on the fly and directly
reflect changes to the form model in the Scout Explorer and the Scout Property View. However, this is
not the only benefit for the Scout SDK. As form data objects hold all form variables and the values of all
form fields contained in the form, the Scout SDK can keep the form data classes in sync with the forms of
the application. It is important to note that this mechanism only depends on the Java code of the form
field class. In consequence, the Scout SDK can update form field classes in the background even
when form fields are manually coded into the form’s Java class. This includes adding all the
necessary getter and setter methods to access the values of all the fields defined on a form. As a
result, Scout developers don’t need to manually update form data objects when the UI model
of a form is changed. The Scout SDK takes care of this time consuming and error prone
task.

 Listing 3.4:
 The
 HelloworldTextProviderService
 class.
 Its
 getter
 method
 provides
 the
 path
 and
 the
 base
 name
 for
 the
 text
 property
 files

public class HelloworldTextProviderService extends AbstractDynamicNlsTextProviderService {
 @Override
 protected String getDynamicNlsBaseName() {
 return ”resources.texts.Texts”;
 }
}

[image: PIC]

Figure 3.7: The NLS editor provided by the Scout SDK. This editor is opened via the Open NLS
Editor ... link in the Scout Object Properties of the HelloworldTextProviderService node.

 When we did add the Message field to the desktop form of the ”Hello World” application we had to enter
a new translation entry for the label of the message field as shown in Figure 2.8. The individual translation
entries are then stored in language specific text property files. To modify translated texts we can use the NLS
editor13
provided by the Scout SDK as shown in Figure 3.7.

 To access the translated label field entry in the application, the Scout SDK generated the
implementation of getConfiguredLabel using TEXTS.get("Message") as shown in Listing 3.3. In the
default Scout project setup, calling TEXTS.get uses the DefaultTextProviderService in the
background. This text provider service then defines the access path for the text property files to use for
the translation. To resolve the provided key, the user’s locale settings are used to access the correct text
property file.

3.5 The Server Part

In this background section we take a closer look at Scout services and calling service methods remotely.
We will first discuss the setup of an ordinary Scout service. Then, the additional components to call
service methods remotely are considered. To explain the concepts in a concrete context, we use the setup
of the DesktopService of our ”Hello World” example.

3.5.1 Scout Services

Scout services are OSGi services14
which in turn are defined by standard Java classes or interfaces. Scout is just adding a convenience layer
to cover typical requirements in the context of client server applications. To support Scout developers as
much as possible, the Scout SDK offers wizards that generate the necessary classes and interfaces and
also take care of service registration.

 Listing 3.5:
 The
 server
 service
 class
 DesktopService.

public class DesktopService extends AbstractService implements IDesktopService {

 @Override
 public DesktopFormData load(DesktopFormData formData) throws ProcessingException {
 formData.getMessage().setValue(”Hello World!”);
 return formData;
 }
}

 All Scout services need to extend Scout’s AbstractService class and implement their own
corresponding interface. This also applies to the ”Hello World” desktop service according to Listing 3.5.
As shown in Figure 2.11, this service can be located in the Scout Explorer under the blue server node in
the Services folder.

 Before Scout services can be accessed and used, they need to be explicitly registered as a service in
the correct place. For this registration mechanism, Scout is using Eclipse extension points and
extensions15
which are conceptually similar to electrical outlets and plugs. And in order to work, as in the case of
outlets and plugs, the plug must fit to the outlet. In our ”Hello World” example, the extension (plug)
is represented by class DesktopService and the service extension point (outlet) is named
org.eclipse.scout.service.services. What makes the desktop service fit to the service
extension point is the fact that its interface IDesktopService extends Scout’s IService
interface.

[image: PIC]

Figure 3.8: The Eclipse plugin editor for plugin.xml files. In the tab Extensions the ”Hello World”
desktop service is registered under the extension point org.eclipse.scout.service.services.

 Listing 3.6:
 The
 registration
 of
 the
 DesktopService
 in
 the
 server’s
 plugin.xml
 configuration
 file.
 The
 remaining
 content
 of
 the
 file
 has
 been
 omitted.

<?xml version=”1.0” encoding=”UTF-8”?>
<plugin>

 <extension
 name=””
 point=”org.eclipse.scout.service.services”>
 <service
 factory=”org.eclipse.scout.rt.server.services.ServerServiceFactory”
 class=”org.eclipse.scout.helloworld.server.services.DesktopService”
 session=”org.eclipse.scout.helloworld.server.ServerSession”>
 </service>
 </extension>

</plugin>

 The registration of the desktop service under the service extension point is then defined in the
plugin.xml file of the ”Hello World” server plugin. As shown in Figure 3.8, the plugin.xml file is
located in the root path of plugin org.eclipse.scout.helloworld.server. To modify a plugin.xml,
you can either use the Eclipse plugin editor or your favorite text editor. In Figure 3.8, the registration of
the desktop service is shown in the Extensions tab of the plugin editor. For the corresponding XML
representation in the plugin.xml file, see Listing 3.6.

3.5.2 Scout Proxy Services

In the ”Hello World” application the load method of the desktop service is called remotely from the
client. But so far, we have only seen how the desktop service is implemented and registered in the server
application. To call server service methods remotely from Scout client applications, the Scout framework
provides client proxy services and the service tunnel. As the name implies, a client proxy service acts as a
local proxy service (running in the Scout client application) of a server service (running remotely in the
Scout server application).

 Listing 3.7:
 The
 registration
 of
 the
 IDesktopService
 proxy
 service
 in
 the
 client
 plugin
 of
 the
 ”Hello
 World”
 application.
 This
 is
 the
 complete
 content
 of
 the
 client’s
 plugin.xml
 file.

<?xml version=”1.0” encoding=”UTF-8”?>
<plugin>

 <extension
 name=””
 point=”org.eclipse.scout.service.services”>
 <proxy
 factory=”org.eclipse.scout.rt.client.services.ClientProxyServiceFactory”
 class=”org.eclipse.scout.helloworld.shared.services.IDesktopService”>
 </proxy>
 </extension>

</plugin>

 Client proxy services are defined by a Java interface located in the shared plugin of the Scout
application. As shown in Listing 3.5 of the desktop service, this service interface is also implemented by
the desktop service class in the server plugin. Corresponding to the registration of the desktop service in
the server plugin, client proxy services need to be registered in the client’s plugin.xml file. The content
of the ”Hello World” client plugin configuration file is provided in Listing 3.7. To create proxy services in
Scout clients, the ClientProxyServiceFactory is used. This is also reflected in the extension defined in
Listing 3.7. Internally, this service factory then uses the service tunnel to create the local proxy
services.

 To call a remote service method from the Scout client application, we first need to obtain a
reference to the proxy service. Using the SERVICES.getService method with the interface
IDesktopService, we can obtain such a reference as shown in Listing 3.2 for the view handler of the
desktop form. With this reference to the client’s proxy service, calling methods remotely works
as if the service would be running locally. Connecting to the server, serializing the method
call including parameters (and de serializing the return value) is handled transparently by
Scout.

3.6 Add the Rayo Look and Feel

Rayo has been designed in 2009 by BSI for its
CRM16
application and contact center solution. Since then, Rayo has been copied for Scout web applications and
also adapted to work on touch/mobile devices.

 The implementation of Rayo for desktop clients is based on the Java Synth look and
feel17 .
However, in a few cases it was necessary to adjust some of the synth classes.
In order to do this, the adapted classes are copied form the OpenJDK
implementation18
As OpenJDK is licenced under the GNU General Public Licence (GPL) with a linking exception it is not
possible to distribute Rayo under the Eclipse Public Licence. That is why Rayo is not initially
contained in the Eclipse Scout package but needs to be downloaded from the Eclipse Marketplace.
Fortunately, there is still no restriction to use Rayo in commercial products. The only remaining

restriction applies to modifying Rayo for commercial products. In this case you will be obliged
to redistribute your modified version of Rayo under the same licence (GPL with classpath
exception).

 With Eclipse Scout 3.8 (Juno), the Scout framework also allows to build web clients based on Eclipse
RAP. Great care has been taken to ensure, that the look and feel for Scout web applications matches the
look and feel of the desktop as closely as possible. As RAP is already distributed under the EPL licence
the Rayo for web apps is directly contained in the Scout package. TODO: Describe what to change to use
RAP default look and feel

 A similar approach was chosen for Rayo on tablets and mobile devices that are supported with
Eclipse Scout 3.9 (Kepler). For such devices optimized components are used to take into account the
smaller screens and the absence of a mouse (no context menus!) But as far as possible, the Rayo
look and feel also applies to touch devices. TODO: Pointer to more info regarding mobile
devices.

3.7 Exporting the Application

In this background section we look at the content and organisation of the two WAR files generated by the
Scout SDK Export Scout Project wizard. The first WAR file holds the Scout server including a landing
page to download the Scout desktop client. The desktop client is provided in the form of a standalone ZIP
file. In the second WAR file, the Ajax server based on Eclipse RAP is contained. This Ajax server
provides the URLs that can be accessed by web browsers running on desktop computers or tablet and
mobile devices.

[image: PIC] [image: PIC]

Figure 3.9: The organisation of the ”Hello World” server WAR file. The right side reveals the
location of the config.ini file and the application’s plugin files

 The content and its organisation of the exported WAR files was not specifically
designed for Scout applications. Rather, it is defined according to server-side
Equinox19 ,
the typical setup for running Eclipse based server applications on a web server. Using file
helloworld_server.war as a concrete example, we will first describe the general organisation of the
WAR file. Then, we introduce individual artefacts of interest that are contained in this WAR
file.

 The explicit organisation of the server WAR file is shown in Figure 3.9. From the left
hand side of the figure we can see that on the top level only folder WEB-INF exists in the
WAR file. This folder contains all files and directories that are private to the web application.
Inside, the web deployment descriptor file web.xml as well as the directories lib and eclipse
are located. While the web.xml file and directory lib are standard for servlet based based
applications20 ,
directory eclipse contains all necessary artefacts for servlet based Eclipse
applications21 .
Such as Eclipse Scout server applications.

 On the right hand side of Figure 3.9 the eclipse specific content of the WAR file is shown. From top to
bottom we find the configuration file config.ini introduced in Section 3.3.3. In folder plugins the necessary
plugins that constitute the eclipse application are located where the plugins are available in the form of JAR
files22 .
This includes plugins for servlet management, the eclipse platform including the servlet bridge, the scout
framework parts and of course our ”Hello World” server and shared plugin. These ”Hello World” jar files
exactly match with the plugin projects discussed in Section 3.1.

[image: PIC]

Figure 3.10: The content of the ”Hello World” server plugin contained in the
helloworld_server.war file. The necessary files for the download page including the zipped client
application are in the resources/html directory.

 Listing 3.8:
 The
 configuration
 of
 the
 server’s
 resource
 servlet
 in
 the
 plugin.xml
 configuration
 file.
 The
 remaining
 content
 of
 the
 file
 has
 been
 omitted.

<?xml version=”1.0” encoding=”UTF-8”?>
<plugin>
 <extension
 name=””
 point=”org.eclipse.equinox.http.registry.servlets”>
 <servlet
 alias=”/”
 class=”org.eclipse.scout.rt.server.ResourceServlet”>
 <init-param
 name=”bundle-name”
 value=”org.eclipse.scout.helloworld.server”>
 </init-param>
 <init-param
 name=”bundle-path”
 value=”/resources/html”>
 </init-param>
 </servlet>
 </extension>

</plugin>

 In Figure 3.10 some of the content of the ”Hello World” server plugin is shown. The first thing to
note is that the plugin file conforms to the JAR file format including a META-INF/MANIFEST.MF file and
the directory tree containing the Java class files, as the DesktopService.class implemented in
Section 2.5 of the ”Hello World” tutorial. In folder resources/html the necessary files for the
download page shown in Figure 2.20 including the zipped desktop client are contained. To
access this download page the Scout server’s resource servlet ResourceServlet is responsible.
It is registered under the servlet registry as shown in Listing 3.8. With setting ”/” of the
alias parameter the download page becomes available under the root path of the Scout server
application. For the mapping to the contents resources/html the parameter bundle-path is
used.

[image: PIC]

Figure 3.11: The ”Hello World” server plugin shown in the Eclipse package explorer. The files for
the download page are located under resources/html.

 Revisiting the ”Hello World” server plugin project in the Eclipse package explorer as shown in
Figure 3.11, we can see how the plugin project elements are transformed and copied into the JAR
file. Examples files are plugin.xml and MANIFEST.MF as well as static HTML content of the
download page (files index.html and scout.gif). The zipped client is missing of course. It
is assembled, zipped and added into the Scout server JAR file by the Export Scout Project
wizard of the Scout SDK. In case you need to change/brand/amend the download page for the
desktop client, you have now learned where to add and change the corresponding HTML
files.

3.8 Deploying to Tomcat

In this section we will discuss two common pitfalls when working with the Scout IDE and Tomcat. The
symptoms linked to these problems are Scout server applications that are not starting or Scout
applications that fail to properly update.

 In usual culprit behind Scout server applications that fail to start is a blocked port 8080. This setting
can be created when we try to run both the Jetty web server inside the Scout SDK and the local Tomcat
instance. In consequence, either Jetty or Tomcat is not able to bind to port 8080 at startup which makes
it impossible for a client to connect to the right server. To avoid such conflicts, make sure that you always
stop the Scout server application in the Scout SDK (effectively killing Jetty) before you restart your
Tomcat server. Alternatively, you can assign two different ports to your Jetty webserver and your Tomcat
webserver.

 To modify Jetty’s port number in the Scout SDK you have to update the corresponding
properties in the config.ini files of the development products of your Scout server application
and all client applications. In the Scout server’s config.ini file the property is named
org.eclipse.equinox.http.jetty.http.port, in the client config.ini files the relevant
property is called server.url. To change the port number to 8081 for the ”Hello World”
example in the Scout SDK you could use the following lines in the individual config.ini
files.

 	Scout Server 	org.eclipse.equinox.http.jetty.http.port=8081

	Scout Desktop Client	server.url=http://localhost:8081/helloworld_server/process

	Scout Ajax Server 	server.url=http://localhost:8081/helloworld_server/ajax

 The second pitfall is connected to a web application that seems to refuse to update to the content of
a freshly generated WAR file. At times it seems that your changes to a deployed WAR file do not find
their way to the application actually running. In many cases this is caused by a cached instance of the
previous version of your application located in Tomcat’s working directory. To save yourself much
frustration, it often helps just to clear Tomcat’s working directory and restart Tomcat. For this, you may
follow the following procedure.

 	Stop the Tomcat web server

 	Go to folder work/Catalina/localhost

 	Verify that you are not in Tomcat’s webapps folder

 	Delete all files and directories in folder work/Catalina/localhost

 	Start the Tomcat web server

 How you start and stop Tomcat depends on the platform you are running it. If you have installed
Tomcat on a Windows box according to Appendix C it will be running as a service. This
means that to stop the Tomcat web server you need to stop the corresponding Windows
service. For starting and stopping Tomcat on Mac/Linux/Unix systems, you can use the
command line script files startup.sh and shutdown.sh located in Tomcat’s subdirectory
bin.

 For those interested in more advanced aspects of Apache Tomcat we recommend the article ”More about the Cat” by
Chua Hock-Chuan23 .

Chapter 4
Shared Components

In this chapter deals with the content of the shared plugin of any Scout application. As the name ”shared
already indicates, this plugin contains code and resources that need to be available to both the Scout
client and the server application.

 The chapter starts with the internationalization of texts in Scout and icon resources. Then, the less
visible components are introduced. These include permissions, code types, lookup calls and form data
objects.

4.1 Texts / i18n / NLS Support

needs text

Existing Documentation

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/Texts

 	forum: http://www.eclipse.org/forums/index.php/t/319136/

 	forum: http://www.eclipse.org/forums/index.php/t/326343/

 	forum: overwriting texts provided by scout
 http://www.eclipse.org/forums/index.php/t/308273/

 	forum: additional text provider service
 http://www.eclipse.org/forums/index.php/t/317565/

 	forum: changing default language for scout apps
 http://www.eclipse.org/forums/index.php/t/367177/

 	forum: export/import not possible:
 http://www.eclipse.org/forums/index.php/t/326320/

 	forum: usage counts for text entries:
 http://www.eclipse.org/forums/index.php/t/261235/

4.2 Icons

needs text

Existing Documentation

 	how-to wiki http://wiki.eclipse.org/Scout/HowTo/3.8/Add_an_icon

 	how-to wiki http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images

4.3 Code Types and Codes

Code types and codes are widely used in business applications. In general, any fixed set of named entities
can be seen as a code type. Code types can be used to model the organisational structure of companies,
to represent business units or to categorise or segment entities. Frequently, enumerations or enumerated
types1
are used as synonyms for code types. The individual named entities in a code type are called codes in
Scout.

 Both code types and codes have associated names (translated texts) and IDs. As in the case of
standard Java enumerations, Scout codes can also have associated values. A set of additional features
enhances Scout code types over simple Java enumerations:

 	Code types can be organized hierarchically

 	Code types support multitenancy for individual codes

 	Code types and codes can be accessed through a code service

 	Codes can by added from external sources dynamically at runtime

 	Codes are cached on both client and server side

 The text below first introduces the basic features of code types and codes using a simple example
with static codes. Then, hierarchical code types and the dynamic loading of codes from external sources is
explained.

4.3.1 A Simple Example

As a simple example we assume that an event managing organization works with an application to
plan events for customers. To distinguish public and private events it is natural to define a

corresponding code type. Both the code type and all its elements will have an assigned ID
and associated translated texts. See Listing 4.1 for a possible implementation of such a code
type.

 Listing 4.1:
 A
 code
 type
 with
 associated
 codes.

import org.eclipse.scout.rt.shared.TEXTS;
import org.eclipse.scout.rt.shared.services.common.code.AbstractCode;
import org.eclipse.scout.rt.shared.services.common.code.AbstractCodeType;

/**
* @author mzi
*/
public class EventTypeCodeType extends AbstractCodeType<Long, Long> {

 private static final long serialVersionUID = 1L;
 public static final Long ID = 10000L;

 public EventTypeCodeType() throws ProcessingException {
 super();
 }

 @Override
 protected String getConfiguredText() {
 return TEXTS.get(”EventType”);
 }

 @Override
 public Long getId() {
 return ID;
 }

 @Order(10.0)
 public static class PublicCode extends AbstractCode<Long> {

 private static final long serialVersionUID = 1L;
 public static final Long ID = 10010L;

 @Override
 protected String getConfiguredText() {
 return TEXTS.get(”Public”);
 }

 @Override
 public Long getId() {
 return ID;
 }
 }

 @Order(20.0)
 public static class PrivateCode extends AbstractCode<Long> {

 private static final long serialVersionUID = 1L;
 public static final Long ID = 10020L;

 @Override
 protected String getConfiguredText() {
 return TEXTS.get(”Private”);
 }

 @Override
 public Long getId() {
 return ID;
 }
 }
}

 The code type class and its codes shown in Listing 4.1 have been created using the creation wizards
provided by the Scout SDK as described in Section ??. In Scout, code type classes are derived from class
AbstractCodeType<CODE_TYPE_ID, CODE_ID>. In the provided example, both the code type ID and the
code ID are typed with Long. The value of the event code type ID is assigned by Long ID =
10000L. The contained codes for public and private events are realized by the inner classes
PublicCode and PrivateCode that are derived from Scout’s AbstractCode<CODE_ID> class.
Their individual IDs then have assigned the numbers 10010 and 10020 respectively. This
pattern follows the convention to leave an ample number space between any two code type IDs.
This space can then be used for the individual codes of a code type that need ID values as
well.

 In the above example the types for the ID values are defined by the generic parameter <Long>. And
other classes from the package java.lang work well too. In fact, any Java class may be used as a key
type for code types and codes as long as it satisfies the following requirements:

 	Key types implement Serializable

 	Key types correctly implement the equals and hashCode methods

 	Key types are available in the Scout server and the client application.

 Listing 4.2:
 A
 codes
 that
 is
 set
 to
 inactive.

 @Override
 public Long getId() {
 return ID;
 }
 }

 @Order(30.0)
 public static class ExternalCode extends AbstractCode<Long> {

 private static final long serialVersionUID = 1L;
 public static final Long ID = 10030L;

 @Override
 protected boolean getConfiguredActive() {
 return false;
 }

 @Override
 protected String getConfiguredText() {
 return TEXTS.get(”External”);

 To allow for language specific translations, the configuration method getConfiguredText is used for
both the names of code types and codes. A frequently used code property is the active flag to
mark obsolete codes. Setting individual codes to inactive is useful for codes that are still
linked with existing data but should not longer be used when entering new data into the
application. As shown in Listing 4.2, codes can be marked inactive by returning false in method
getConfiguredActive.

 A set of additional code properties is available to control the appearance of individual codes. Clicking
on an individual code in the Scout Explorer provides the list in the Scout Object Property
view.

4.3.2 Hierarchical Code Types

To explain the definition and use of hierarchical codes we use the Industry Classification
Benchmark as a concrete example. The Industry Classification Benchmark or
ICB2
allows to hierarchically classify companies and organisations into industries, super sectors, sectors and sub
sectors. Each organizational level has a unique number assigned and a name. This setup can easily be
transferred to a hierarchical Scout code type.

 Listing 4.3:
 A
 hierarchical
 code
 type
 for
 the
 Industry
 Classification
 Benchmark.

import org.eclipse.scout.commons.annotations.Order;
import org.eclipse.scout.commons.exception.ProcessingException;
import org.eclipse.scout.rt.shared.TEXTS;
import org.eclipse.scout.rt.shared.services.common.code.AbstractCode;
import org.eclipse.scout.rt.shared.services.common.code.AbstractCodeType;

public class IndustryICBCodeType extends AbstractCodeType<Long, Long> {

 private static final long serialVersionUID = 1L;
 public static final Long ID = 0000L;

 public IndustryICBCodeType() throws ProcessingException {
 super();
 }

 @Override
 protected boolean getConfiguredIsHierarchy() {
 return true;
 }

 @Override
 protected String getConfiguredText() {
 public Long getId() {

[image: PIC]

Figure 4.1: A hierarchical code type class shown in the Scout SDK.

 The corresponding code for the ICB code type is provided in Listing 4.3 where its hierarchical
nature is reflected by method getConfiguredIsHierarchy. The actual hierarchical codes are then
implemented as nested inner code classes that are derived from Scout class AbstractCode.
See Figure 4.1 for a screenshot of the partially expanded ICB code type class in the Scout
SDK.

4.3.3 Loading Codes Dynamically

Although codes types remain mostly static in their nature, they do evolve over time in any real world
application. Requiring that all codes are statically defined in the application’s code base would result in
the necessity to update the code base for every change of a code required by the business. Clearly, such a
setup is not sustainable and this is why Scout allows to dynamically update the set of codes contained in
a code type.

 Listing 4.4:
 Adding
 codes
 dynamically
 in
 method
 execLoadCodes.

import org.eclipse.scout.rt.shared.services.common.code.AbstractCodeType;
import org.eclipse.scout.rt.shared.services.common.code.CodeRow;
import org.eclipse.scout.rt.shared.services.common.code.ICodeRow;

/**
* @author mzi
*/
public class ColorsCodeType extends AbstractCodeType<Long, Color> {

 private static final long serialVersionUID = 1L;
 public static final Long ID = 20000L;

 public ColorsCodeType() throws ProcessingException {
 super();
 }

 @Override
 protected String getConfiguredText() {
 return TEXTS.get(”Colors”);
 }

 @Override
 public Long getId() {
 return ID;
 }

 @Override
 protected List<? extends ICodeRow<Color>> execLoadCodes(Class<? extends ICodeRow<Color>> codeRowType) throws ProcessingException {
 List<ICodeRow<Color>> codes = new ArrayList<ICodeRow<Color>>();

 codes.add(new CodeRow<Color>(Color.PINK, TEXTS.get(”Pink”)));
 }

 @Override
 public Color getId() {
 return ID;
 }
 }

 @Order(120.0)
 public static class YellowCode extends AbstractCode<Color> {
 private static final long serialVersionUID = 1L;
 public static final Color ID = Color.YELLOW;

 @Override
 protected String getConfiguredText() {
 return TEXTS.get(”Yellow”);
 }

 At startup of a Scout application the codes of all defined code types are loaded into memory. For
this, Scout internally calls method loadCodes for each code type class derived from class
AbstractCodeType. In this method Scout first creates objects representing the statically defined
codes and then dynamically adds additional codes in method execLoadCodes. By overriding
this method, a code type class can dynamically add codes from any external sources. An
example for the dynamic loading of codes is provided in Listing 4.4. Please note that this code
snipped only illustrates the principle and does therefore not access any external web services or
databases.

 As codes have IDs and can be defined both statically in code and dynamically from external data,
conflicting definitions of codes are inevitable. In the Scout framework these conflicts are resolved in
method execOverrideCode. In the default implementation provided by class AbstractCodeType, priority
is given to the dynamically defined code. Only attributes that are undefined for the dynamic code are
copied from the static code definition. This logic can be changed for any code type by simply overriding
method execOverrideCode with the desired behaviour. In the example provided in Listing 4.4 the code
with ID Color.YELLOW is defined both statically and dynamically. As a result, the translated text for key
"YellowDynamic" is shown in the user interface as it has priority over the statically defined text key
"Yellow".

 To have access to all codes at runtime, Scout provides the convenience accessor CODES.
This accessor encapsulates the access to the ICodeService and provides a number of useful
methods. At startup, all codes are loaded and cached in the applications client session using
method getAllCodeTypes. And for a class MyCodeType, all its codes can be retrieved by
CODES.getCodeType(MyCodeType.class).getCodes().

4.4 Lookup Calls and Services

Lookup calls are are used to look up lists of lookup rows in the form of key-text pairs. The list of lookup
rows returned is usually defined by some search criteria. When the look up is triggered by a
key, only a single element is returned. And when a string is provided as a search criteria,
the returned list typically contains the lookup rows that contain the given search text as a
substring.

 For lookup calls two main use cases exist. In the first case, the lookup data is locally available, not
too large and can be kept in memory. In this situation, the lookup data can be directly created in the call
itself. As an example, you may consider a lookup call where the lookup data is based on a code type. In
the other case, the lookup data is dynamic in nature, the amount of data is large and needs to be read
from some external source, such as a database or a web service. To access large amounts of external data,
a lookup call typically invokes a so called lookup service that is providing the necessary data.
This is exactly the scenario that was used in the ”My Contacts application of the book’s
first part in Section ??. In the contact form of that application, a company smart field is
used to let the user select a specific entry from a list of companies. And in turn, this smart
field uses a company lookup call that is backed by a company lookup service. This lookup
service then accesses a database to create the list of companies required for the company smart
field.

 in the text below (0) general aspects: * getDataByKey—Text—Rec?—All * additional properties as

constraints to the result set: master field * for a specific implementation additional properties can be
added with getters/setters ? -¿ yes as they are passed to services as bind variables (1) local lookup calls in
the client plugin (2) lookup calls in the shared plugin (3) lookup services are only mentioned here for
completeness. full discussion in book part 3 for scout server? or not? probably needs to be here
...

 Listing 4.5:
 A
 simple
 local
 lookup
 call
 defining
 it’s
 entries
 in
 method
 execCreateLookupRows.

import org.eclipse.scout.rt.shared.TEXTS;
import org.eclipse.scout.rt.shared.services.lookup.LocalLookupCall;
import org.eclipse.scout.rt.shared.services.lookup.LookupRow;

/**
* @author mzi
*/
public class FontStyleLookupCall extends LocalLookupCall<Integer> {

 private static final long serialVersionUID = 1L;

 @Override
 protected List<LookupRow<Integer>> execCreateLookupRows() throws ProcessingException {
 ArrayList<LookupRow<Integer>> rows = new ArrayList<LookupRow<Integer>>();

 Listing 4.6:
 A
 local
 code
 lookup
 call.
 This
 lookup
 removes
 inactive
 codes
 in
 the
 lookup
 data.

import org.eclipse.scout.commons.exception.ProcessingException;
import org.eclipse.scout.rt.shared.services.common.code.ICode;
import org.eclipse.scout.rt.shared.services.lookup.CodeLookupCall;
import org.eclipse.scout.rt.shared.services.lookup.ICodeLookupCallVisitor;
import org.eclipse.scout.rt.shared.services.lookup.ILookupRow;
import org.eclipsescout.demo.widgets.shared.services.code.EventTypeCodeType;

/**
* @author mzi
*/
public class EventTypeLookupCall extends CodeLookupCall<Long> {

 private static final long serialVersionUID = 1L;

 @Override
 protected List<? extends ILookupRow<Long>> execCreateLookupRows() throws ProcessingException {
 //TODO [mzi] Auto-generated method stub.
 return super.execCreateLookupRows();
 }

 /**
 * Visitor class that filters out inactive codes.

 TODO: fix Figure 4.2: MyLookupService extends AbstractLookupService and implements
IMyLookupService that extends ILookupService which

[image: PIC]

Figure 4.2: Implementing a lookup call with a corresponding lookup service. Scout framework
components are shown in orange, user code in blue.

Existing Documentation

 	presentation: http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-DiscoverThePotential.pdf

 	tutorial: https://wiki.eclipse.org/Scout/Tutorial/Lookup_Calls

 	tutorial minicrm: https://wiki.eclipse.org/Scout/Tutorial/4.0/Minicrm/Lookup_Calls_and_Lookup_Services

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/LookupCall

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/Lookup_Service

 	forum: http://www.eclipse.org/forums/index.php/t/279108/

 	javadoc lookupcall: https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LookupCall.java

 	javadoc lookuprow: https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LookupRow.java

 	javadoc codelookupcall https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/CodeLookupCall.java

 	javadoc locallookupcall https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LocalLookupCall.java

 	javadoc ilookupservice https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/ILookupService.java

 	javadoc lookupservices https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.server/src/org/eclipse/scout/rt/server/services/lookup/

 * lookup service * sqllookup service

4.5 Permissions

needs text, topic is relevant for client, server, and security. what to present where to be decided

Existing Documentation

 	how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Create_Permissions

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/Permission

 	forum: http://www.eclipse.org/forums/index.php/t/243966/

4.6 Form Data Objects

needs text, explain that form data objects are data transfer objects

Existing Documentation

 	form data/dto http://www.eclipse.org/forums/index.php/t/169334/

4.6.1 Data Binding

needs text, this is about Form Data Export and Import

4.6.2 Automatic Updates by the Scout SDK

needs text

4.6.3 Manual Form Data Updates

needs text

Chapter 5
Client components
 needs text
 5.1 Client Model

needs text

[image: PIC]

Figure 5.1: A class diagram for the Scout’s client model.

 5.2 Splash Screen

needs text

5.3 Login Box

needs text

5.4 Client Session

needs text

5.5 Desktop

needs text

Existing Documentation

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Desktop

5.5.1 Info Dialog

needs text

5.5.2 Toolbar

needs text

Existing Documentation

 	forum: feature request http://www.eclipse.org/forums/index.php/t/366440/

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Tool

5.5.3 Status Line

needs text

5.6 Menus

needs text

Existing Documentation

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Menu

 	forum: hard coded swt menues http://www.eclipse.org/forums/index.php/t/236071/.
 is this still an issue with scout kepler?

5.7 Outlines

needs text

Existing Documentation

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Outline

5.8 Tools

needs text

5.9 Forms

needs text

Existing Documentation

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Form

 	concept wiki form handlerhttp://wiki.eclipse.org/Scout/Concepts/Form_Handler

 	how-to wiki http://wiki.eclipse.org/Scout/HowTo/3.8/Open_a_Form_in_a_View

 	forum: layout manager http://www.eclipse.org/forums/index.php/t/404048/

 	forum: life cycle http://www.eclipse.org/forums/index.php/t/369890/

 * form validation

5.10 Form Fields

needs text

 Every Scout form contains one or several form fields. Form fields therefor represent the basic building
blocks of a forms content. Depending on their nature, form fields can display information, accept user
input or act as container holding inner form fields. As such container fields can hold inner container fields
it is possible to create forms that meet compolex requirements.

Existing Documentation

 	concept wiki (links)
 http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Form_fields

 	concept wiki screenshots http://wiki.eclipse.org/Scout/Concepts/Field

5.10.1 Common Aspects

needs text

Existing Documentation

 	forum: label position http://www.eclipse.org/forums/index.php/t/369109/

 * model component * ui component * extension point registration

 * model * label * value * exec methods * field validation

5.11 Trees

needs text

 * tree nodes * tree form * tree field

5.12 Pages

needs text

Existing Documentation

 	how-to wiki:
 http://wiki.eclipse.org/Scout/HowTo/3.8/Display_images_in_a_table_page

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/Page

 	forum: pages linking to forms http://www.eclipse.org/forums/index.php/t/367595/

 	forum: changing page icons http://www.eclipse.org/forums/index.php/t/262151/

 * page with table * page with nodes

5.13 Search Forms

needs text

Existing Documentation

 	forum: position of search form http://www.eclipse.org/forums/index.php/t/353895/

 	forum: statement builder stuff http://www.eclipse.org/forums/index.php/t/165805/

5.14 Tables

needs text

Existing Documentation

 	forum: editable column http://www.eclipse.org/forums/index.php/t/220019/

 	forum: default visibility of columns
 http://www.eclipse.org/forums/index.php/t/166052/

 	forum: row deletion http://www.eclipse.org/forums/index.php/t/210744/

 * context menues * editable tables * column types

5.14.1 Image Columns

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/369626/

5.14.2 HTML inside Table Cells

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/370714/

 	forum: summary row http://www.eclipse.org/forums/index.php/t/235749/

5.14.3 Table Status Bar

nees text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/367326/

5.14.4 Injecting Columns at Runtime

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/364715/

 	forum : dynamic columns http://www.eclipse.org/forums/index.php/t/216731/

5.15 Workflows and Wizards

Needs text

Existing Documentation

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Wizard

 	forum: http://www.eclipse.org/forums/index.php/t/391607/

 	forum: http://www.eclipse.org/forums/index.php/t/382579/

 	forum: http://www.eclipse.org/forums/index.php/t/366971/

Chapter 6
The Widgets Demo Application

This chapter introduces the ”Scout Widgets Demo App”. The purpose of this demo application is to
present Scout’s most commonly used UI widgets. Therefore, the application does not contain any
business logic but only serves as a hands-on reference on how to use and configure Scout UI
widgets.

 It is interesting to note that the widget demo application works out-of-the-box with any of the
currently supported UI technologies. This means that with the same code base the widget demo
application is capable to run as a native desktop application, as a web application in browsers, as well as
on touch-enabled mobile devices. Comparing individual aspects of the the desktop application with its
mobile/tablet version reveals the default strategies used to map desktop widgets to the substantially
different usage/form factor found on mobile devices. Please observe that for the complete widget
application only a handful of lines of code actually depend on a specific UI technology. The interested
reader can easily verify this by searching the application’s code for the occurrences of class
UserAgentUtility.

 In the text below the organisation of the widget demo application is first described in
Section 6.1. And in Section 6.2, the setup in the form of a Scout client only application is
explained.

6.1 The User Interface

The application is organized into separate outlines for thematic groups of widgets. Each of the
application’s outline then presents a list of widgets in a navigation tree. This is shown in Figure 6.1 for
the Simple Widgets outline that contains examples for simple UI widgets such as label fields or string
fields.

[image: PIC]

Figure 6.1: The ”Scout Widgets Demo App”. The widgets demo application features examples of
the most commonly used Scout widgets. For each widget shown, example use cases are presented
in a individual form. As shown in the screenshot, the corresponding Scout source code is made
available via the View Source on GitHub context menu.

 For each UI widget a corresponding example form presents a number of typical use cases and
configuration options. The example forms are designed to be independent from each other. It should
therefore be possible to read and understand the source code of each example form with minimal effort.
Via the Open in Dialog … context menu the content of the view is displayed in a modal scout form. As
shown in Figure 6.1, the complete source code for the selected form can be accessd via the View Source
on GitHub context menu.

[image: PIC]

Figure 6.2: The ”Scout Widgets Demo App” running as an SWT desktop application.

[image: PIC]

Figure 6.3: The ”Scout Widgets Demo App” running in the browser.

 The widget demo application can also be run as a native SWT desktop application. This is shown in
Figure 6.2. And the exact same application also runs in a browser as a web application shown in
Figure 6.3.

[image: PIC] [image: PIC] [image: PIC]

Figure 6.4: The ”Scout Widgets Demo App” running on a mobile device. On the left, all outlines
of the application are displayed on the home screen. The screens shown in the middle allows to
navigate through ”Simple Widgets” outline while the selected ”StringField” form is shown on the
right.

 In Figure 6.4, the content of the widget demo application is shown on a mobile device. On the home
screen of the mobile application, the available outlines are presented. When the user selects a specific
outline, the associated navigation tree is then shown as a scrollable list. Finally, when the user selects a
specific widget, the associated example form is shown.

6.2 Client Only Architecture

As the sole purpose of the widget demo application is to demonstrate the usage of the UI elements
provided by the Scout framework, no server side data access and/or business logic is required. Therefore,
the widget demo application has been designed as a client only application. As a side effect, the
architecture of this widget application may also be used as a template to build similar client only
applications with the Scout framework. It is important to note that this architecture can only be
recommended for very simple applications. For more complex software packages, for example
personal digital archives or private accounting software, it is not recommended to implement the
business logic and the access to the database in the application’s client plugin. A much cleaner
approach is to take advantage of the offline support provided by the Scout framework. As in
typical Scout client server projects, the presentation logic can be implemented in the client
plugin and business logic and access to a (local) database are located in the server plugin. A
detailed description of this setup including step-by-step instructions is available on the Scout
Wiki1 .
In the text below the client only setup of the widget demo application is explained by looking at the main
differences to the setup of the “Hello World” application introduced in Chapter 2.

 Listing 6.1:
 The
 setup
 of
 the
 client
 session
 in
 the
 Scout
 widget
 demo
 application.

import org.eclipse.scout.service.SERVICES;
import org.eclipsescout.demo.widgets.client.ui.desktop.Desktop;

public class ClientSession extends AbstractClientSession {
 private static IScoutLogger logger = ScoutLogManager.getLogger(ClientSession.class);

 private String m_product;
 private boolean m_footless;

 The most obvious difference of the widget demo application to the “Hello World” client server
example is the missing server (plugin). Consequently, the widget demo application also does not need a
service tunnel to handle client server communication. As the setup of this service tunnel is
typically initiated in method execLoadSession of the client’s ClientSession class, the setup of
the service tunnel has been commented out in the widget demo application according to
Listing 6.1.

 The next difference between typical Scout applications and the widget demo lies in the handling of
code types and codes. Accessing code types and codes is the responsibility of the server’s CodeService
class in Scout applications. As the widget demo does not have a server but we still want to
work with codes and code types, a LocalCodeService class has been added to the client’s
plugin.

 The last difference of note between the “Hello World” example and the widget demo application lies
in the implementation of the form handler classes. In the desktop form’s view handler of the “Hello
World” application the data to be displayed is retrieved via the server’s DesktopService as shown in
Listing 3.2. As the forms of the widget demo application do not load/persist any data from/to a
server, no such logic is required in the form handlers and the corresponding classes remain
empty.

Chapter 7
Simple Widgets

This chapter presents the most commonly used Scout widgets based on the widget demo application
introduced above. For each widget the most frequently observed use cases are presented and illustrated
with the widget specific example forms. And exemplary code snippets taken from the widget application
help to close the loop to the actual implementation of these widgets in the applications source
code.

7.1 Label Fields

Label fields are used to place a read only text anywhere in a Scout form. As shown in the configuration
section of Figure 7.1 such texts can occupy the typical area assigned to a label field on the left, the area
typically assigned to data entry on the right or on both sides. The form shown in Figure 7.1 is
implemented in class LabelFieldForm of the Scout widget application.

[image: PIC]

Figure 7.1: Scout fields and example use cases. In the examples section of the form the standard
usage of label fields is shown. To display text over the whole width of a column or in the area right
to the label use method setValue as shown in the configuration section of the form.

 To set the label text in the default area method getConfiguredLabel is used. If the label text is too
long for the reserved area the label gets truncated with trailing …. The complete label text is then shown
in a tooltip.

 As for any form field derived from AbstractFormField, a number of getConfigured* styling
properties exist for label fields. Most of these styling properties can directly be set in the Scout Object
Properties view. A subset of these properties are shown in the list below.

 	Label Position

 	Label Horizontal Alignment

 	Label Foreground Color

 	Label Background Color

 	Label Font

 Listing 7.1:
 A
 simple
 LabelField.

 @Order(10.0)
 public class LabelField extends AbstractLabelField {

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Default”);
 }
 }

 To display text in the right hand area an empty string can be used as label text and the text for the
value area of the label field can be set with method setValue in method execInitField according to
Listing 7.1.

 Listing 7.2:
 A
 label
 field
 displaying
 multi-line
 text
 that
 covers
 the
 whole
 width
 of
 a
 column.

 @Order(40.0)
 public class VeryLongLabelTextField extends AbstractLabelField {

 @Override
 protected int getConfiguredGridH() {
 return 2;
 }

 @Override
 protected boolean getConfiguredLabelVisible() {
 return false;
 }

 @Override
 protected boolean getConfiguredWrapText() {
 return true;
 }

 @Override
 protected void execInitField() throws ProcessingException {
 if (UserAgentUtility.isSwingUi()) {
 setValue(”<html>” + TEXTS.get(”Lorem”) + ”</html>”);
 }
 else {
 setValue(TEXTS.get(”Lorem”));
 }
 }
 }

 To display multiline text across both the label and the value area a combination of label field
properties has to be used. See Listing 7.2 for the configuration used in the last label field shown in
Figure 7.1.

7.2 String Fields

String fields are used to enter simple text strings. In addition, string fields are also useful to enter
multiline text or capture masked input. The form shown in Figure 7.2 is implemented in class
StringFieldForm of the Scout widget application.

[image: PIC]

Figure 7.2: String fields and example use cases. Text content shown in disabled fields can be read
and copied to the clipboard, but not edited. In multi line string fields the text can be displayed as
entered or the text may be wrapped to fit into the available column with.

 Some of the most typical use cases for string fields are represented in the examples section of
Figure 7.2. In the configuration section of the form a multiline text field is shown. As in the case of the
label text, font and color styling possibilities are available for the text shown in a string field. Clicking on
the Sample Format button and on the Sample Content button prefills some of the fields to create
the effect shown in Figure 7.2.

 In the case of multi line string fields, the field can be configured to either display text lines as they
have been entered or wrapped to fit into the available width of the field. This property can be set with
the string field’s method getConfiguredWrapText or dynamically with method setWrapText. Please note
that changing this property dynamically at runtime currently only works with the SWT and the Swing
rendering components.

 Listing 7.3:
 A
 masked
 string
 field.

 @Order(150.0)
 public class InputMaskedField extends AbstractStringField {

 @Override
 protected boolean getConfiguredInputMasked() {
 return true;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”InputMasked”);
 }
 }

 Additional use cases for the string field are shown in the right column of the configuration section of
the string field demo form. Specific string fields are located for the default case, a string field only
accepting upper case letters, and a masked field. To code to represent the masked string field is provided
in Listing 7.3. Independent of what the user is typing the masked field keeps the entered content visually
hidden. In contrast to all other forms of string fields, the content cannot be copied to the system
clipboard. It can only be accessed programmatically with the getValue method of the string
field.

 String fields also allow for the configuration of the maximum length of the text that can be entered
into the field. In its default configuration, a maximum number of 4’000 characters can be entered into a
string field. Using method setMaxLength this limit can be updated dynamically at runtime.
Alternatively, this limit can also be set in method getConfiguredMaxLength.

7.3 Number Fields

For entering numbers, Scout provides three different fields. Depending on the valid range of numbers that
may be entered, an integer field, a long field or a big integer field best matches the given use case.
These fields are represented by the classes AbstractIntegerField, AbstractLongField and
AbstractBigIntegerField, each one of them extinding class AbstractNumberField.

[image: PIC]

Figure 7.3: Number fields and example use cases. Distinct number fields are available for Integer,
a Long or a BigInteger value classes.

 The form NumberFieldsForm of the Scout widget application shown in Figure 7.3 contains
examples for all three number field types. Separate buttons are available to demonstrate
the use of the minimum and the maximum value a number field can hold. In the case of
the BigInteger field, arbitrarily large or small values may be entered. See Listing 7.4 for
the code corresponding to the input integer field in the configuration section of the example
form.

 Listing 7.4:
 A
 simple
 Integer
 field.

 @Order(10.0)
 public class InputField extends AbstractIntegerField {

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”IntegerFieldInput”);
 }
 }

 As already indicated by the class names of the three number fields, the fields serve to enter values
that fit into the ranges defined by the Java classes Integer, Long and BigInteger. To further
restrict the bounds of valid numbers you may use the methods getConfiguredMinValue and
getConfiguredMaxValue. The effect of setting such bounds can be tested by entering values into the
Minimum Value field and the Maximum Value field of the example form. If, for example, a
minimum value of 0 is entered in the Minimum Value field and the user tries to enter the
value -1 into one of the input fields, an error marker becomes visible on the input field. A
tooltip with the text ”The value is too small; must be between 0 …” further explains the
issue to the user. In such a case the value entered into the user interface is not propagated to
the number field’s value. This is why the read only getValue() field is not updated in such a
case.

 To textually format the entered numbers the grouping number field property can be used. In the
example form the Grouping checkbox can be used to control this property. Ticking/unticking this
checkbox will affect the three number input fields in the configuration section of the example
form.

 More extensive options to specify the formatting of the numbers is provided by the method
setFormat of class AbstractNumberField. Method setFormat is accepting an argument of the
Java class DecimalFormat. To demonstrate an example for such a format click on Sample
Format button in the example form. For more information please consult the Javadoc for class
DecimalFormat.

7.4 Decimal Fields

Scout provides two different form fields for entering decimal values. Depending on the required precision
and range of values to be entered a double field or a big decimal field can be used. The two field types
are represented by Scout’s classes AbstractDoubleField and AbstractBigDecimalField
and can hold values of the Java types Double and BigDecimal respectively. Both the double
and the big decimal field extend class AbstractDecimalField which in turn extends class
AbstractNumberField.

[image: PIC]

Figure 7.4: Decimal fields and example use cases. Distinct number fields are available for the
Double and BigDecimal value classes.

 The example form shown in Figure 7.4 demonstrates the usage and some of the available options to
configure Scout’s decimal fields. This example form is defined in class DecimalFieldsForm of the Scout
widget application.

 Listing 7.5:
 A
 styled
 decimal
 field
 holding
 Java
 Double
 values.
 Negative
 values
 are
 shown
 in
 red

 @Order(50.0)
 public class StyledField extends AbstractDoubleField {

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Styled”);
 }

 @Override
 protected void execChangedValue() throws ProcessingException {
 if (getValue() < 0) {
 setForegroundColor(”FF0000”);
 }
 else {
 setForegroundColor(null);
 }
 }

 @Override
 protected void execInitField() throws ProcessingException {
 setValue(-3.1415);
 setForegroundColor(”FF0000”);
 }
 }

 The styled double field in the example section of the form displays negative values in
red and postive values in the default black color. This behaviour is implemented in method
execChangedValue according to Listing 7.5. The sample value shown initially is provided in the
execInitField method. Setting the red foreground color explicitely is needed in method
execInitField as the execChangedValue is only triggered after the initial form is displayed on the
screen.

 For displaying and storing the fraction digits of decimal values three different properties exist. Two
of them, the getConfiguredMinFractionDigits and the getConfiguredMinFractionDigits affect the
optical representation of the decimal value. To configure the amount of fraction digits that is effectively
represented the property getConfiguredFractionDigits is used. The need for three different properties
might not be immediately clear. To illustrate the concept, let us look at an example use case
where a decimal field always has to display exactely 3 fraction digits. Should the user provide
more fraction digits we would like to capture this additional information up to 5 fraction
digits.

 To configure this behaviour the following settings for this decimal field may be used.

 	Min Fraction Digits: 3

 	Max Fraction Digits: 3

 	Fraction Digits: 5

 If the user enters the text ”3.141592653589793” into this field and tabs to the next field, the field will
then display the text ”4.142” but actually hold the value 3.14159. And if the user just enters a ”3”, the
field will display ”3.000” and hold the value 3.0.

 Decimal fields can also be configured to enter percentages in a convenient way. For this use
case the Multiplier property can be set to 100 and the Multiplier property to true. If the
user now enters ”5” into such a decimal field, it will show the text ”5%” and hold the value
0.05.

 As in the case of number fields more extensive options to specify the formatting of the numbers is
provided by setFormat method of the decimal field. Method setFormat is accepting an argument of the
Java class DecimalFormat. To demonstrate an example for such a format click on Sample
Format button in the example form. For more information please consult the Javadoc for class
DecimalFormat.

7.5 Date and Time Fields

To work with date and time values Scout offers three dinstinct form fields. The AbstractDateField
allows the user to enter a date and the AbstractTimeField is used to enter a time. The third field
AbstractDateTimeField combines date and time entry into a single form field. Both classes

AbstractTimeField and AbstractDateTimeField are extending the AbstractDateField
field.

[image: PIC]

Figure 7.5: Example use cases for a date, a time and a combined date/time field.

 The form DateTimeFieldsForm of the Scout widget application shown in Figure 7.5 contains
examples for the date and time fields of Scout. Separate buttons are available to provide samle values and
to demonstrate the formatting options for displaying date and time values. Displaying dates and times is
highly depending on the used locale. That is why the currently used locale is shown in the example
section of the form.

 To enter date and time values the user can either click on the date and time icons/buttons provided
by the fields or directly enter text into the fields. For entering dates the key arrows provide a number of
shortcuts. Entering the currnt date can be done by pressing the <Up>. Once a day is entered in a date or
a combined day time field, the <Up> and the <Down> can be used to step to the next/previous day.
Simultaneously pressing the <Shift> or the <Ctrl> allows to step to the next/previous month or
year.

 Listing 7.6:
 A
 disabled
 combined
 date
 time
 field
 initialized
 with
 the
 current
 time

 @Order(140.0)
 public class DateTimeDisabledField extends AbstractDateTimeField {

 @Override
 protected boolean getConfiguredEnabled() {
 return false;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Disabled”);
 }

 @Override
 protected void execInitField() throws ProcessingException {
 setValue(new Date());
 }
 }

 The code of the DateTimeDisabledField field shown in Listing 7.6 represents the disabled combined
date time in the example form. Before the form is opened Scout executes its execInitField method and
sets the fields value to the current date and time.

 In the configuration section the local can be used at runtime to test the effect of the locale to
displaying date and time fields. As changing the locale at runtime only works reliably in rich clients the
field is only editable in the Swing or the SWT client. To specify the exact formatting of the displayed
date and time values a specific format can be set in the getConfiguredFormat method of the date and
time fields. Internally, Scout is using the provided string to create a Java SimpleDateFormat
for formatting. Valid examples for the formatting are entered into the format fields of the
example dialog by pressing the Sample Formats button. The string ”EEEE” shown in
date field format field represents the day of the week as shown in configuration section of
Figure 7.5. As expected, the textual representation of the day of the week is depending on the used
locale.

7.6 Checkbox Fields

Check boxes can be used to enter/represent simple boolean values. In Scout, check boxes are derived from
class AbstractCheckBox.

[image: PIC]

Figure 7.6: Check box field and example use cases.

 In the Scout widget application the use of check boxes is demonstrated in the form CheckboxFieldForm
that is shown in Figure 7.6. To access the current value, Scout provides the method isChecked for check
box fields. This naming reflects the boolean state of a check boxes and differs from the other Scout value
fields that provide a getValue method.

 Listing 7.7:
 A
 disabled
 check
 box
 field
 initialized
 with
 a
 checked
 state

 @Order(20.0)
 public class DisabledField extends AbstractCheckBox {

 @Override
 protected boolean getConfiguredEnabled() {
 return false;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Disabled”);
 }

 @Override
 protected void execInitField() throws ProcessingException {
 setChecked(true);
 }
 }
 }

 A coding example is provided in Listing 7.7 for the disabled check box. The initial value is set in
method execInitField using the method setChecked.

7.7 Radio Button Fields

With radio buttons the user can select a single element out of a number of distinct choices. For this, a
number of radio buttons may be placed into a radio button group field where a radio button group
extends class AbstractRadioButtonGroup. The contained individual buttons are extending class
AbstractRadioButton.

[image: PIC]

Figure 7.7: Radio buttons in a radio button group field and example use cases. Assigning distinct
values to the individual radio buttons allows to query the selected radio button.

 Figure 7.7 demonstrates the use of radio button groups in Scout. It is implemented in class
RadioButtonGroupFieldForm of the Scout widget application. As shown in the example section of the
form, radio buttons may have labes and/or icons assigned.

 Listing 7.8:
 A
 radio
 button
 group
 defined
 by
 a
 code
 type

 protected String getConfiguredLabel() {
 return TEXTS.get(”Default”);
 }

 @Override
 protected Class<? extends ICodeType<?, Long>> getConfiguredCodeType() {
 return EventTypeCodeType.class;
 }

 @Override
 protected void execInitField() throws ProcessingException {
 setValue(EventTypeCodeType.ExternalCode.ID);
 }
 }

 @Order(20.0)
 public class DisabledGroup extends AbstractRadioButtonGroup<Long> {

 The simplest way to define the content of a radio button group is by using its configuration
properties getConfiguredCodeType or getConfiguredLookupCall. Listing 7.8 provides the
implementation of ”Default radio button group DefaultGroup. This radio button group is typed by the
generic parameter Long and the individual radio buttons are obtained from the code type
EventTypeCodeType specified in method getConfiguredCodeType. Please note that the Long type
matches the key type of the codes in the EventTypeCodeType. The generic parameter used in the
definition of a radio button group also determines the type that will be returned by the group’s getValue
method.

 Listing 7.9:
 A
 complete
 radio
 button
 group
 with
 two
 radio
 buttons
 with
 individual
 radio
 values
 assigned

 @Order(20.0)
 public class ErrorButton extends AbstractRadioButton {

 @Override
 protected String getConfiguredIconId() {
 return AbstractIcons.StatusError;
 }

 @Override
 protected Object getConfiguredRadioValue() {
 return Long.valueOf(-2L);
 }
 }
 }
 }

 @Order(20.0)
 public class ConfigurationBox extends AbstractGroupBox {

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Configure”);
 }

 @Override
 protected boolean getConfiguredLabelVisible() {
 return true;
 }

 @Order(10.0)
 public class RadioButtonGroup extends AbstractRadioButtonGroup<Long> {

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”RadioButtonGroup”);
 }

 @Override
 protected void execInitField() throws ProcessingException {

 Alternatively, the individual buttons in a radio button group can also be defined as inner classes.
This approach has been used for the ”Styled radio button group in the example section of
the RadioButtonGroupFieldForm. The corresponding code is provided in Listing 7.9. The
type of the value that is returned by the getValue method is defined on the radio button
group. In the provided listing, the StyledGroupBox is configured to return a value of the
type Long. Consequently, the individual radio buttons are returning radio values of the type
Long as well in the getConfiguredRadioValue methods. The field PlaceholderField in the
radio button group only serves layouting purposes. Without this place holder field, the two
radio buttons of the styled radio button group would be evenly distributed in the available
space.

7.8 Buttons and Links

Buttons and links are used to trigger actions in Scout. Buttons come in two variations, normal push
buttons and toggle buttons. While buttons have an associated label and/or icon, links can only have a
label. Buttons extend class AbstractButton and links extend AbstractLinkButton.

[image: PIC]

Figure 7.8: Buttons and links may be placed on a Scout form to initiate actions. Buttons may
have an associated icon and/or a label. Links only have a label.

 Example uses of buttons and links are shown in the form ButtonLinkFieldsForm of the Scout
widget application shown in Figure 7.8.

 Listing 7.10:
 A
 button
 with
 a
 label
 and
 an
 icon
 that
 horizontally
 stretches
 over
 the
 whole
 column

 @Order(80.0)
 public class StyledField extends AbstractButton {

 @Override
 protected boolean getConfiguredFillHorizontal() {
 return true;
 }

 @Override
 protected String getConfiguredIconId() {
 return AbstractIcons.WizardBackButton;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Styled”);
 }

 @Override
 protected boolean getConfiguredProcessButton() {
 return false;
 }
 }

 In it’s simplest form a button just extends class AbstractButton and overrides getConfiguredLabel
to set the label. The example in Listing 7.10 also has an icon assigned and stretches over the whole
column width. In addition, the example button overrides method getConfiguredProcessButton to
return false. This has the effect that buttons (and links) appear at the exact location where they are
defined in a field container. Otherwise, buttons (and links) are placed at the bottom of the container they
are defined in.

 Listing 7.11:
 A
 toggle
 button
 implementation
 that
 changes
 the
 label
 text
 depending
 on
 its
 toggled
 state

 @Order(100.0)
 public class ToggleButtonDefaultField extends AbstractButton {

 @Override
 protected int getConfiguredDisplayStyle() {
 return DISPLAY_STYLE_TOGGLE;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”PushToSelect”);
 }

 @Override
 protected boolean getConfiguredProcessButton() {
 return false;
 }

 @Override
 protected void execToggleAction(boolean selected) throws ProcessingException {
 if (selected) {
 setLabel(TEXTS.get(”Selected”));
 }
 else {
 setLabel(TEXTS.get(”PushToSelect”));
 }
 }
 }

 The code of the default toggle button in the example form of the widget application is
provided in Listing 7.11. To query the state of a toggle button method isSelected can be
used.

 In the configuration section of the example form the use of mnemonics using the character & is
demonstrated. Please note, that this feature is not identically available across the different supported UI
technologies. In the Swing UI shown in Figure 7.8 the label ”&Toggle” has the effect, that pressing the
<alt>+<T> key combination changes the toggle state of this button. In the case of the SWT UI the
<alt> key is not necessary. Pressing the <T> changes the toggle state. In contrast to the Swing UI the
letter ’T’ is not underlined. To optically indicate shortcut letters in the SWT UI it is recommended to
adapt the label from ”&Toggle” to ”[&T]oggle”. The RAP UI does not currently support mnemonics on
buttons.

7.9 Message Boxes

Message boxes are used to provide information to a user or ask the user simple yes/no questions. In
Scout, class MessageBox provides a number of static convenience methods for this purpose.
Additionally, message boxes are shown to the user in the case of a processing exception or a veto
exception1 .

[image: PIC]

Figure 7.9: Message boxes are available for different use cases. The message box shown in front
is defined by the properties entered in the configuration section.

 In the examples section of the MessageBoxForm form shown in Figure 7.9 a number of links is
provided. Clicking on any of these links opens a corresponding message box via the static convenience
methods available with class MessageBox. For example, calling MessageBox.showOkMessage(title,
header, info) opens a message box with a title, a header text and some additional information.

 Listing 7.12:
 Configuring
 and
 starting
 of
 a
 message
 box.

 @Override
 protected void execClickAction() throws ProcessingException {
 String title = getTitleField().getValue();
 String introText = getIntroTextField().getValue();
 String actionText = getActionTextField().getValue();
 String yesButtonText = getYesButtonTextField().getValue();
 String noButtonText = getNoButtonTextField().getValue();
 String cancelButtonText = getCancelButtonTextField().getValue();
 String hiddenText = getHiddenTextContentField().getValue();
 String iconId = getIconIdField().getValue();

 long autoCloseMillis = NumberUtility.nvl(getAutoCloseMillisField().getValue(), -1);
 int defaultReturnValue = NumberUtility.nvl(getDefaultReturnValueField().getValue(), IMessageBox.CANCEL_OPTION);

 MessageBox msgbox = new MessageBox(title, introText, actionText, yesButtonText, noButtonText, cancelButtonText, hiddenText, iconId);
 msgbox.setAutoCloseMillis(autoCloseMillis);

 int result = msgbox.startMessageBox(defaultReturnValue);
 getReturnValueField().setValue(result);
 }

 In addition to the static convenience methods, message boxes can be configured to meet specific
requirements by a number of parameters. These parameters are shown in Figure 7.9 in the
configuration section of the sample form MessageBoxForm of the Scout widget application.
Clicking on the Sample Content button will fill in example values for the message box
parameters. The configured message box can them be started by clicking on the Open the configured
MessageBox link. This behaviour is implemented in the link’s execClickAction method
according to Listing 7.12. The text below details the purpose of less evident message box
properties.

 Message box buttons only appear if an non-emtpy label text is assigned to the Yes Button Text
property, the No Button Text property and Cancel Button Text property. If the hidden text property has
a non-empty text assigned, an additional Copy button will be added to the message box. An example use
case is the case of elaborate error messages (or complete stack traces in cases where this does not
negatively impact the application’s security). Here the copy button allows to transport this text into the
system clipboard. From the clipboard the user may decides to paste this text into an email to the
companys help desk. The default return value property specifies the return value of the message box if the
box closes autmatically after the time provided in the auto close millisecond property has
passed. If the auto close millisecond property is set to -1, the message box will not clause
automatically.

 Once a message box is started with method startMessageBox the user interface is blocked until the
user chooses any of the options or clicks the dialog away. The selected option is the provided by the
method’s return value. If the user closes the message box by hitting the <esc> or clicking on the icon to
close a dialog, the start method of the message box will always return the value CANCEL_OPTION of the
IMessageBox interface.

Chapter 8
Advanced Widgets

This chapter presents some of the more complex widgets of the Scout framework. This set of widgets
includes fields to handle and display list, tree and table data. Also included in this chapter are
widgets to display images in both raster and vector formats. As in the previous chapter, for
each described widget, screenshots of example use cases and corresponding code snippets are
provided.

8.1 List Box

List boxes allow a user to select a subset of a predefined list of elements. The individual elements are
displayed in the form of checkable options. To check or uncheck a specific element, the user may click on a
element or press the <Space> when an element has the focus. To define the list of elements that are
presented in a list box, code types or a lookup calls can be used. Example use cases using both code
types and lookup calls for the definition of the presented elements are implemented in class
ListBoxForm of the Scout widget application. See Figure 8.1 for a screenshot of the example
form.

[image: PIC]

Figure 8.1: List boxes to select elements represented by code types and lookup calls.

 Listing 8.1:
 A
 simple
 ListBox
 field
 backed
 by
 a
 code
 type
 that
 returns
 elements
 of
 type
 Color.

 }

 @Order(20.0)
 public class DefaultField extends AbstractListBox<Color> {

 @Override
 protected Class<? extends ICodeType<?, Color>> getConfiguredCodeType() {
 return ColorsCodeType.class;
 }

 @Override
 protected int getConfiguredGridH() {
 return 5;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Default”);

 In the example section of Figure 8.1 the list boxes in the left column retrieve the elements to be
displayed from code types. And in the right column, the displayed elements are retrieved
from lookup calls. The implementation of the top left Default field is provided in Listing 8.1.
List boxes are derived from class AbstractListBox and parameterized by the type of keys
of the elements. Please note that the specified key type of a list box must match the key
type of the elements provided by code types or lookup calls. In our example, the list box
type Color matches the key type of the code type ColorsCodeType configured in method
getConfiguredCodeType.

 In the List Content field located on the right hand side of the configuration section of Figure 8.1 it is
also possible to enter user defined content. After entering some example data and pressing the <Tab>,
the user content is parsed and used to update the elements displayed in the ListBox field. To get the
initial example data shown in Figure 8.1, use the Sample Content button of the list box
example form. Basically, the content of each text row is parsed into a lookup row according to
the format provided in the first row of the sample content: # key;text;iconId;.... The
resulting lookup rows are then used to dynamically update the content of the lookup call
associated with the ListBox field. List boxes can be configured to only display the checked
elements. For this, the configuration method getConfiguredFilterCheckedNodes may be
used.

 Listing 8.2:
 Updating
 the
 getCheckedKeys
 field
 whenever
 the
 use
 changes
 the
 selection
 of
 elements

 protected void execClickAction() throws ProcessingException {
 getListBoxField().uncheckAllKeys();
 }
 }
 }

 @Order(30.0)
 public class GetCheckedKeysField extends AbstractStringField {

 @Override
 protected boolean getConfiguredEnabled() {
 return false;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”getCheckedKeys”);
 }

 @Override
 protected Class<? extends IValueField> getConfiguredMasterField() {
 return ListBoxForm.MainBox.ConfigurationBox.ListBoxField.class;
 }

 To access the currently selected elements of a list box method getCheckedKeys may be used. This is
demonstrated in Listing 8.2 using the getCheckedKeys field in the example form. In order to get
notified for every change of the list box field, the list box field is registered as the master in
method getConfiguredMasterField. The implementation of method execChangedMasterValue
is then called whenever the state of the master field is changed. In the case of Listing 8.2,
the list of selected keys can be retrieved from the list box and shown in the getCheckedKeys
field.

 To read or write the content of a list box field from or to a form data on the server side, methods
getValue andsetValue have to be used. Both methods work with typed sets, requiring the type defined
for the list box field.

8.2 Tree Box

Tree box fields allow a user to select a subset of a predefined list of elements. The difference to list boxes
lies in the organisation of the presented elements. Instead of presenting the elements as a list, a tree
structure is used with tree box fields.

 To check and uncheck a specific element, the user may click on a element or press the <Space>
when an element has the focus. In addition, tree boxes can also be configured to check or uncheck the
complete sub tree when clicking on an element. To define the trees presented in tree boxes, hierarchical
code types and lookup calls can be used. Example use cases for tree box fields are implemented in class
TreeBoxForm of the Scout widget application. A screenshot of the tree box example form is shown in
Figure 8.2.

[image: PIC]

Figure 8.2: Tree box fields displaying elements defined by hierarchical code types and lookup calls.

 Listing 8.3:
 A
 simple
 TreeBox
 field
 backed
 by
 a
 lookup
 call
 that
 returns
 element
 keys
 of
 type
 String.

 @Order(50.0)
 public class DefaultTreeBoxField extends AbstractTreeBox<String> {

 @Override
 protected int getConfiguredGridH() {
 return 5;
 }

 @Override
 protected String getConfiguredLabel() {
 return TEXTS.get(”Default”);
 }

 @Override
 protected Class<? extends ILookupCall<String>> getConfiguredLookupCall() {
 return YearsMonthsLookupCall.class;
 }
 }

 In the example section of Figure 8.2 the tree boxes in the left column retrieve the elements to be
displayed from hierarchical code types. And in the right column, the displayed elements are retrieved
from hierarchical lookup calls. The implementation of the top right Default field is provided in
Listing 8.3. Tree boxes are derived from class AbstractTreeBox and parameterized by the type of keys of
the tree elements. As in the case of list box fields, the the specified type of a tree box must
match the key type of the code type or the lookup call. In our example, the tree box type
String matches the type of the lookup call YearsMonthsLookupCall configured in method
getConfiguredLookupCall.

 In the configuration section of the form shown in Figure 8.2 the user may enter any tree data into
the Tree Content field. To get the initial tree data shown in Figure 8.2, use the Sample Content
button. Tree boxes can be configured in several ways. Using method getConfiguredAutoExpandAll, the
element tree will be initially expanded. Configuration method getConfiguredFilterCheckedNodes hides
all elements that are not checked. And with method getConfiguredAutoCheckChildNodes,
checking or unchecking a tree element automatically updates the elements in the subtree
accordingly.

 To access the currently selected elements, the tree box method getCheckedKeys returns a typed set
of keys. The type of the key set is determined by the type of the tree box. To read or write
the content of a tree box field on the server side, methods getValue andsetValue have to
be used. Both methods work with typed sets, requiring the type defined for the tree box
field.

8.3 Smart Field

Smart fields are used to select a single value from a set of named elements. As smart fields offer
”search-as-you-type functionality, the field works well for very large sets of elements. The content of smart
fields can either be provided by code types or lookup calls. Consequently, smart fields work with both
lists and hierarchical structures and the content may come from a static set of values or is dynamically
provided at runtime.

 To select an elements in a smart field the user can either use the mouse or the keyboard. Pressing the
<Up Arrow> or the <Down Arrow> in the field shows the list of entries when the smart field has
the focus. Alternatively, the use can click with the mouse on the smart field icon. By typing a part of the
name of the desired entry into the field, the ”search-as-you-type support kicks in and a filtered list of
elements is displayed. The selected entry can be confirmed by using the <Enter> or the
<Tab>.

[image: PIC]

Figure 8.3: Smart field examples. Smart fields support ”search-as-you-type and are used to select
a value from of a list of elements or a tree.

 Example use cases for smart fields are provided in class SmartFieldForm of the Scout widget
application and a screenshot of this example form is shown in Figure 8.3. The left hand side of the demo
form contains smart fields based on list content and on the right hand side smart fields backed with
hierarchical content are shown. In the example section of the demo form, some smart fields are backed by
code types and others by lookup calls. And in the configuration section the content shown in the smart
fields can be entered manually at runtime. To obtain the content shown in Figure 8.3, use the Sample
Content button.

Existing Documentation

 	presentation: http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-DiscoverThePotential.pdf

 	forum: http://www.eclipse.org/forums/index.php/t/369542/

 8.3.1 Menus

Each smart field can have menus attached. The menus will be shown when the user clicks on the arrow
symbol next to the smart field. Figure 8.4 shows an example of a smart field along with a set of menus.

[image: PIC]

Figure 8.4: Menus attached to a smart field.

 By default, the menus will only be shown if a value of the smart field has been selected. To show the
menus even if the smart field is empty, one has to override the menu’s getConfiguredEmptySpaceAction
method:

8.4 Tree Field

needs text

[image: PIC]

Figure 8.5: Tree fields and example use cases. More text.

 8.5 Table Field

needs text

[image: PIC]

Figure 8.6: Table fields and example use cases. More text.

[image: PIC]

Figure 8.7: An editable table field. More text.

Existing Documentation

 	wiki tutorial http://wiki.eclipse.org/Scout/Tutorial/3.8/Minicrm/Table_Field

 	forum: http://www.eclipse.org/forums/index.php/t/392053/

 	forum: load/save data http://www.eclipse.org/forums/index.php/t/253311/

 8.6 Image Field

needs text

[image: PIC]

Figure 8.8: Image fields are used to display images and icons.

Existing Documentation

 	forum: scrollbars http://www.eclipse.org/forums/index.php/t/291205/

 8.7 SVG Field

needs text

[image: PIC]

Figure 8.9: SVG fields and example use cases. More text.

Existing Documentation

 	wiki tutorial http://wiki.eclipse.org/Scout/Tutorial/3.8/SVG_Field

 8.8 HTML Field

needs text

8.9 Browser Field

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/414483/,

 	forum: http://www.eclipse.org/forums/index.php/t/369963/,

 	forum: mozilla as default: http://www.eclipse.org/forums/index.php/t/342433/

8.10 Calendar Field

needs text

Existing Documentation

 	forum: calendar field http://www.eclipse.org/forums/index.php/t/370052/

 	forum: execloaditems http://www.eclipse.org/forums/index.php/t/277447/

 	forum: filtering items http://www.eclipse.org/forums/index.php/t/285644/

 	forum: usage example http://www.eclipse.org/forums/index.php/t/265028/

Chapter 9
Layout Widgets

 9.1 Group Box

needs text

[image: PIC]

Figure 9.1: Group boxes and example use cases. More text.

 9.2 Tab Box

needs text

[image: PIC]

Figure 9.2: Tab boxes and example use cases. More text.

 9.3 Sequence Box

needs text

[image: PIC]

Figure 9.3: Sequence boxes and example use cases. More text.

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/414629/

 * exec methods * field validation

9.4 Split Box

needs text

[image: PIC]

Figure 9.4: Split boxes and example use cases. More text.

 9.5 Page Field

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/395360/

9.6 File Chooser Field

needs text

Existing Documentation

 	forum: file chooser field http://www.eclipse.org/forums/index.php/t/377581/

 	forum: open with default file name:
 http://www.eclipse.org/forums/index.php/t/351352/

 	how-to wiki: rap file chooser
 http://wiki.eclipse.org/Scout/HowTo/3.8/Add_FileChooser_support_for_RAP_UI

9.7 Master Slave Fields

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/366931/

Chapter 10
Custom Fields

As we have seen in the previous chapter, Scout already comes with a large amount of ready to use form
fields. However, real life projects often need to meet special business requirements that can
not be covered by the existing Scout form fields. For such situations the flexibility of the
Scout framework allows the project to extend the exiting set of form fields with custom form
fields.

 Custom form fields concists of a couple of components. Modeling and UI and registration and
extension point?

Existing Documentation

 	how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Add_a_custom_GUI_component

 	forum: wrap existing javaview.de swing component
 http://www.eclipse.org/forums/index.php/t/262755/

 * concept * showcase: drawing application

Chapter 11
Template Fields
 needs text
Existing Documentation

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/Template

 	forum: form data for template fields
 http://www.eclipse.org/forums/index.php/t/261235/

 	forum: form ”modularisation” http://www.eclipse.org/forums/index.php/t/245857/

Chapter 12
Layouting
 needs text
Existing Documentation

 	concept wiki http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Layouting

 12.1 The Desktop

needs text

12.2 Form Layout

needs text

Chapter 13
Bookmarks
 needs text

Chapter 14
Client Notification
 needs text
Existing Documentation

 	presentation: http://wiki.eclipse.org/images/e/ea/20121022_BahBah_Slides.pdf

 	concept wiki: http://wiki.eclipse.org/Scout/Concepts/Client_Notification

 	forum: http://www.eclipse.org/forums/index.php/t/241053/

Chapter 15
File Upload and Download
 needs text
Existing Documentation

 	how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Transfer_a_file_from_the_client_to_the_server

 	how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Use_RemoteFileService

 	forum with error message box exampl
 http://www.eclipse.org/forums/index.php/t/441101/

 	forum: http://www.eclipse.org/forums/index.php/t/368166/

 	forum: http://www.eclipse.org/forums/index.php/t/366585/

 	forum: remotefileservice http://www.eclipse.org/forums/index.php/t/266862/

 	forum: file download http://www.eclipse.org/forums/index.php/t/263896/

 	forum: load & display file http://www.eclipse.org/forums/index.php/t/440934/

Chapter 16
Application Branding
 needs text
Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/373921/

 	forum: Splash http://www.eclipse.org/forums/index.php/t/263003/,

 	forum: Splash http://www.eclipse.org/forums/index.php/t/164495/

 	forum: Login Box http://www.eclipse.org/forums/index.php/t/417248/

 	forum: App Icon http://www.eclipse.org/forums/index.php/t/263221/

 	forum: App Name http://www.eclipse.org/forums/index.php/t/262121/

 	forum: Desktop http://www.eclipse.org/forums/index.php/t/373921/

 	forum: Scout info form http://www.eclipse.org/forums/index.php/t/236630/

 * Icons * Fonts / Colors * Look and Feel (Swing)

16.1 Rayo Look and Feel

needs text

Existing Documentation

 	forum http://www.eclipse.org/forums/index.php/t/369809/

 	wiki tutorial http://wiki.eclipse.org/Scout/Tutorial/3.8/Rayo_Look_and_Feel

16.2 Branding the Swing Client

needs text

Existing Documentation

 	how-to wiki: for logo
 http://wiki.eclipse.org/Scout/HowTo/3.8/Branding_the_Swing_Client

 	how-to wiki: app logo
 http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images

16.3 Branding the SWT Client

needs text

Existing Documentation

 	how-to wiki: for logo
 http://wiki.eclipse.org/Scout/HowTo/3.8/Branding_the_Swing_Client

 	how-to wiki: app logo
 http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images

16.4 Branding the Webclient

needs text

Existing Documentation

 	forum http://www.eclipse.org/forums/index.php/t/367983/

Chapter 17
Advanced Topics
 needs text
 17.1 Modifying the UI at Runtime

needs text

Existing Documentation

 	forum: inject fields in form http://www.eclipse.org/forums/index.php/t/367124/

17.2 Focus Handling

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/369585/

17.3 Keyboard Control

needs text

Existing Documentation

 	forum: http://www.eclipse.org/forums/index.php/t/351417/

17.4 Master Detail Pages

needs text

Existing Documentation

 	http://www.eclipse.org/forums/index.php/t/405999/

17.5 Client Only Applications

needs text

Existing Documentation

 	how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Create_a_Standalone_Client_with_DB_Access

 	forum: client only http://www.eclipse.org/forums/index.php/t/210183/

 	forum: offline capable client http://www.eclipse.org/forums/index.php/t/210183/

17.6 Headless Client

needs text

Existing Documentation

 	headless client forum http://www.eclipse.org/forums/index.php/t/262563/

17.7 Client Startup

needs text

Existing Documentation

 	reading command line parameters forum
 http://www.eclipse.org/forums/index.php/t/281816/

 	do something right after login forum
 http://www.eclipse.org/forums/index.php/t/261999/

17.7.1 Config.ini File

needs text

Existing Documentation

 	config ini file forum http://www.eclipse.org/forums/index.php/t/365140/

 	os independent *product/confg.ini forum
 http://www.eclipse.org/forums/index.php/t/261674/

17.8 Client Shutdown

needs text

17.9 Threading and Jobs

needs text

Existing Documentation

 	threading and jobs concept wiki
 http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Threading_and_Jobs

17.10 Caching

needs text

Part I
Appendices

Appendix A
Licence and Copyright

This appendix first provides a summary of the Creative Commons (CC-BY) licence used for this book.
The licence is followed by the complete list of the contributing individuals, and the full licence
text.

A.1 Licence Summary

This work is licensed under the Creative Commons Attribution License. To view a copy of this license,
visit https://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

A summary of the license is given below, followed by the full legal text.

You are free:

 	to Share—to copy, distribute and transmit the work

 	to Remix—to adapt the work

 	to make commercial use of the work

Under the following conditions:

Attribution—You must attribute the work in the manner specified by the author or licensor (but not in
any way that suggests that they endorse you or your use of the work).

With the understanding that:

Waiver—Any of the above conditions can be waived if you get permission from the copyright
holder.

Public Domain—Where the work or any of its elements is in the public domain under applicable law,
that status is in no way affected by the license.

Other Rights—In no way are any of the following rights affected by the license:

 	Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

 	The author’s moral rights;

 	Rights other persons may have either in the work itself or in how the work is used, such as
 publicity or privacy rights.

Notice—For any reuse or distribution, you must make clear to others the license terms of this work. The
best way to do this is with a link to https://creativecommons.org/licenses/by/3.0/.

A.2 Contributing Individuals

Copyright (c) 2012-2014.

In the text below, all contributing individuals are listed in alphabetical order by name. For contributions
in the form of GitHub pull requests, the name should match the one provided in the corresponding public
profile.

Jérémie Jeremie, Fihlon Marcus, Nick Matthias, Schroeder Alex, Zimmermann Matthias

A.3 Full Licence Text

The full licence text is availble online at http://creativecommons.org/licenses/by/3.0/legalcode

Creative Commons

Attribution 3.0 Unported

CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE

LEGAL SERVICES. DISTRIBUTION OF THIS LICENSE DOES NOT CREATE AN

ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS

INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES

REGARDING THE INFORMATION PROVIDED, AND DISCLAIMS LIABILITY FOR

DAMAGES RESULTING FROM ITS USE.

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS

CREATIVE COMMONS PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS

PROTECTED BY COPYRIGHT AND/OR OTHER APPLICABLE LAW. ANY USE OF THE

WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR COPYRIGHT LAW IS

PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND

AGREE TO BE BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS

LICENSE MAY BE CONSIDERED TO BE A CONTRACT, THE LICENSOR GRANTS YOU

THE RIGHTS CONTAINED HERE IN CONSIDERATION OF YOUR ACCEPTANCE OF SUCH

TERMS AND CONDITIONS.

1. Definitions

 a. "Adaptation" means a work based upon the Work, or upon the Work and

 other pre-existing works, such as a translation, adaptation,

 derivative work, arrangement of music or other alterations of a

 literary or artistic work, or phonogram or performance and includes

 cinematographic adaptations or any other form in which the Work may

 be recast, transformed, or adapted including in any form

 recognizably derived from the original, except that a work that

 constitutes a Collection will not be considered an Adaptation for

 the purpose of this License. For the avoidance of doubt, where the

 Work is a musical work, performance or phonogram, the

 synchronization of the Work in timed-relation with a moving image

 ("synching") will be considered an Adaptation for the purpose of

 this License.

 b. "Collection" means a collection of literary or artistic works, such

 as encyclopedias and anthologies, or performances, phonograms or

 broadcasts, or other works or subject matter other than works

 listed in Section 1(f) below, which, by reason of the selection and

 arrangement of their contents, constitute intellectual creations,

 in which the Work is included in its entirety in unmodified form

 along with one or more other contributions, each constituting

 separate and independent works in themselves, which together are

 assembled into a collective whole. A work that constitutes a

 Collection will not be considered an Adaptation (as defined above)

 for the purposes of this License.

 c. "Distribute" means to make available to the public the original and

 copies of the Work or Adaptation, as appropriate, through sale or

 other transfer of ownership.

 d. "Licensor" means the individual, individuals, entity or entities

 that offer(s) the Work under the terms of this License.

 e. "Original Author" means, in the case of a literary or artistic

 work, the individual, individuals, entity or entities who created

 the Work or if no individual or entity can be identified, the

 publisher; and in addition (i) in the case of a performance the

 actors, singers, musicians, dancers, and other persons who act,

 sing, deliver, declaim, play in, interpret or otherwise perform

 literary or artistic works or expressions of folklore; (ii) in the

 case of a phonogram the producer being the person or legal entity

 who first fixes the sounds of a performance or other sounds; and,

 (iii) in the case of broadcasts, the organization that transmits

 the broadcast.

 f. "Work" means the literary and/or artistic work offered under the

 terms of this License including without limitation any production

 in the literary, scientific and artistic domain, whatever may be

 the mode or form of its expression including digital form, such as

 a book, pamphlet and other writing; a lecture, address, sermon or

 other work of the same nature; a dramatic or dramatico-musical

 work; a choreographic work or entertainment in dumb show; a musical

 composition with or without words; a cinematographic work to which

 are assimilated works expressed by a process analogous to

 cinematography; a work of drawing, painting, architecture,

 sculpture, engraving or lithography; a photographic work to which

 are assimilated works expressed by a process analogous to

 photography; a work of applied art; an illustration, map, plan,

 sketch or three-dimensional work relative to geography, topography,

 architecture or science; a performance; a broadcast; a phonogram; a

 compilation of data to the extent it is protected as a

 copyrightable work; or a work performed by a variety or circus

 performer to the extent it is not otherwise considered a literary

 or artistic work.

 g. "You" means an individual or entity exercising rights under this

 License who has not previously violated the terms of this License

 with respect to the Work, or who has received express permission

 from the Licensor to exercise rights under this License despite a

 previous violation.

 h. "Publicly Perform" means to perform public recitations of the Work

 and to communicate to the public those public recitations, by any

 means or process, including by wire or wireless means or public

 digital performances; to make available to the public Works in such

 a way that members of the public may access these Works from a

 place and at a place individually chosen by them; to perform the

 Work to the public by any means or process and the communication to

 the public of the performances of the Work, including by public

 digital performance; to broadcast and rebroadcast the Work by any

 means including signs, sounds or images.

 i. "Reproduce" means to make copies of the Work by any means including

 without limitation by sound or visual recordings and the right of

 fixation and reproducing fixations of the Work, including storage

 of a protected performance or phonogram in digital form or other

 electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce,

 limit, or restrict any uses free from copyright or rights arising

 from limitations or exceptions that are provided for in connection

 with the copyright protection under copyright law or other

 applicable laws.

3. License Grant. Subject to the terms and conditions of this License,

 Licensor hereby grants You a worldwide, royalty-free,

 non-exclusive, perpetual (for the duration of the applicable

 copyright) license to exercise the rights in the Work as stated

 below:

 a. to Reproduce the Work, to incorporate the Work into one or more

 Collections, and to Reproduce the Work as incorporated in the

 Collections;

 b. to create and Reproduce Adaptations provided that any such

 Adaptation, including any translation in any medium, takes

 reasonable steps to clearly label, demarcate or otherwise

 identify that changes were made to the original Work. For

 example, a translation could be marked "The original work was

 translated from English to Spanish," or a modification could

 indicate "The original work has been modified.";

 c. to Distribute and Publicly Perform the Work including as

 incorporated in Collections; and,

 d. to Distribute and Publicly Perform Adaptations.

 e. For the avoidance of doubt:

 i. Non-waivable Compulsory License Schemes. In those

 jurisdictions in which the right to collect royalties

 through any statutory or compulsory licensing scheme cannot

 be waived, the Licensor reserves the exclusive right to

 collect such royalties for any exercise by You of the

 rights granted under this License;

 ii. Waivable Compulsory License Schemes. In those jurisdictions

 in which the right to collect royalties through any

 statutory or compulsory licensing scheme can be waived, the

 Licensor waives the exclusive right to collect such

 royalties for any exercise by You of the rights granted

 under this License; and,

 iii. Voluntary License Schemes. The Licensor waives the right to

 collect royalties, whether individually or, in the event

 that the Licensor is a member of a collecting society that

 administers voluntary licensing schemes, via that society,

 from any exercise by You of the rights granted under this

 License.

 The above rights may be exercised in all media and formats whether

 now known or hereafter devised. The above rights include the right

 to make such modifications as are technically necessary to exercise

 the rights in other media and formats. Subject to Section 8(f), all

 rights not expressly granted by Licensor are hereby reserved.

4. Restrictions. The license granted in Section 3 above is expressly

 made subject to and limited by the following restrictions:

 a. You may Distribute or Publicly Perform the Work only under the

 terms of this License. You must include a copy of, or the

 Uniform Resource Identifier (URI) for, this License with every

 copy of the Work You Distribute or Publicly Perform. You may not

 offer or impose any terms on the Work that restrict the terms of

 this License or the ability of the recipient of the Work to

 exercise the rights granted to that recipient under the terms of

 the License. You may not sublicense the Work. You must keep

 intact all notices that refer to this License and to the

 disclaimer of warranties with every copy of the Work You

 Distribute or Publicly Perform. When You Distribute or Publicly

 Perform the Work, You may not impose any effective technological

 measures on the Work that restrict the ability of a recipient of

 the Work from You to exercise the rights granted to that

 recipient under the terms of the License. This Section 4(a)

 applies to the Work as incorporated in a Collection, but this

 does not require the Collection apart from the Work itself to be

 made subject to the terms of this License. If You create a

 Collection, upon notice from any Licensor You must, to the

 extent practicable, remove from the Collection any credit as

 required by Section 4(b), as requested. If You create an

 Adaptation, upon notice from any Licensor You must, to the

 extent practicable, remove from the Adaptation any credit as

 required by Section 4(b), as requested.

 b. If You Distribute, or Publicly Perform the Work or any

 Adaptations or Collections, You must, unless a request has been

 made pursuant to Section 4(a), keep intact all copyright notices

 for the Work and provide, reasonable to the medium or means You

 are utilizing: (i) the name of the Original Author (or

 pseudonym, if applicable) if supplied, and/or if the Original

 Author and/or Licensor designate another party or parties (e.g.,

 a sponsor institute, publishing entity, journal) for attribution

 ("Attribution Parties") in Licensor’s copyright notice, terms of

 service or by other reasonable means, the name of such party or

 parties; (ii) the title of the Work if supplied; (iii) to the

 extent reasonably practicable, the URI, if any, that Licensor

 specifies to be associated with the Work, unless such URI does

 not refer to the copyright notice or licensing information for

 the Work; and (iv) , consistent with Section 3(b), in the case

 of an Adaptation, a credit identifying the use of the Work in

 the Adaptation (e.g., "French translation of the Work by

 Original Author," or "Screenplay based on original Work by

 Original Author"). The credit required by this Section 4 (b) may

 be implemented in any reasonable manner; provided, however, that

 in the case of a Adaptation or Collection, at a minimum such

 credit will appear, if a credit for all contributing authors of

 the Adaptation or Collection appears, then as part of these

 credits and in a manner at least as prominent as the credits for

 the other contributing authors. For the avoidance of doubt, You

 may only use the credit required by this Section for the purpose

 of attribution in the manner set out above and, by exercising

 Your rights under this License, You may not implicitly or

 explicitly assert or imply any connection with, sponsorship or

 endorsement by the Original Author, Licensor and/or Attribution

 Parties, as appropriate, of You or Your use of the Work, without

 the separate, express prior written permission of the Original

 Author, Licensor and/or Attribution Parties.

 c. Except as otherwise agreed in writing by the Licensor or as may

 be otherwise permitted by applicable law, if You Reproduce,

 Distribute or Publicly Perform the Work either by itself or as

 part of any Adaptations or Collections, You must not distort,

 mutilate, modify or take other derogatory action in relation to

 the Work which would be prejudicial to the Original Author’s

 honor or reputation. Licensor agrees that in those jurisdictions

 (e.g. Japan), in which any exercise of the right granted in

 Section 3(b) of this License (the right to make Adaptations)

 would be deemed to be a distortion, mutilation, modification or

 other derogatory action prejudicial to the Original Author’s

 honor and reputation, the Licensor will waive or not assert, as

 appropriate, this Section, to the fullest extent permitted by

 the applicable national law, to enable You to reasonably

 exercise Your right under Section 3(b) of this License (right to

 make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

 UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING,

 LICENSOR OFFERS THE WORK AS-IS AND MAKES NO REPRESENTATIONS OR

 WARRANTIES OF ANY KIND CONCERNING THE WORK, EXPRESS, IMPLIED,

 STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION, WARRANTIES

 OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,

 NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS,

 ACCURACY, OR THE PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT

 DISCOVERABLE. SOME JURISDICTIONS DO NOT ALLOW THE EXCLUSION OF

 IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY

 APPLICABLE LAW, IN NO EVENT WILL LICENSOR BE LIABLE TO YOU ON ANY

 LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL, CONSEQUENTIAL, PUNITIVE

 OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE OF THE

 WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH

 DAMAGES.

7. Termination

 a. This License and the rights granted hereunder will terminate

 automatically upon any breach by You of the terms of this

 License. Individuals or entities who have received Adaptations

 or Collections from You under this License, however, will not

 have their licenses terminated provided such individuals or

 entities remain in full compliance with those licenses. Sections

 1, 2, 5, 6, 7, and 8 will survive any termination of this

 License.

 b. Subject to the above terms and conditions, the license granted

 here is perpetual (for the duration of the applicable copyright

 in the Work). Notwithstanding the above, Licensor reserves the

 right to release the Work under different license terms or to

 stop distributing the Work at any time; provided, however that

 any such election will not serve to withdraw this License (or

 any other license that has been, or is required to be, granted

 under the terms of this License), and this License will continue

 in full force and effect unless terminated as stated above.

8. Miscellaneous

 a. Each time You Distribute or Publicly Perform the Work or a

 Collection, the Licensor offers to the recipient a license to

 the Work on the same terms and conditions as the license granted

 to You under this License.

 b. Each time You Distribute or Publicly Perform an Adaptation,

 Licensor offers to the recipient a license to the original Work

 on the same terms and conditions as the license granted to You

 under this License.

 c. If any provision of this License is invalid or unenforceable

 under applicable law, it shall not affect the validity or

 enforceability of the remainder of the terms of this License,

 and without further action by the parties to this agreement,

 such provision shall be reformed to the minimum extent necessary

 to make such provision valid and enforceable.

 d. No term or provision of this License shall be deemed waived and

 no breach consented to unless such waiver or consent shall be in

 writing and signed by the party to be charged with such waiver

 or consent.

 e. This License constitutes the entire agreement between the

 parties with respect to the Work licensed here. There are no

 understandings, agreements or representations with respect to

 the Work not specified here. Licensor shall not be bound by any

 additional provisions that may appear in any communication from

 You. This License may not be modified without the mutual written

 agreement of the Licensor and You.

 f. The rights granted under, and the subject matter referenced, in

 this License were drafted utilizing the terminology of the Berne

 Convention for the Protection of Literary and Artistic Works (as

 amended on September 28, 1979), the Rome Convention of 1961, the

 WIPO Copyright Treaty of 1996, the WIPO Performances and

 Phonograms Treaty of 1996 and the Universal Copyright Convention

 (as revised on July 24, 1971). These rights and subject matter

 take effect in the relevant jurisdiction in which the License

 terms are sought to be enforced according to the corresponding

 provisions of the implementation of those treaty provisions in

 the applicable national law. If the standard suite of rights

 granted under applicable copyright law includes additional

 rights not granted under this License, such additional rights

 are deemed to be included in the License; this License is not

 intended to restrict the license of any rights under applicable

 law.

Creative Commons Notice

Creative Commons is not a party to this License, and makes no warranty

whatsoever in connection with the Work. Creative Commons will not be

liable to You or any party on any legal theory for any damages

whatsoever, including without limitation any general, special,

incidental or consequential damages arising in connection to this

license. Notwithstanding the foregoing two (2) sentences, if Creative

Commons has expressly identified itself as the Licensor hereunder, it

shall have all rights and obligations of Licensor.

Except for the limited purpose of indicating to the public that the

Work is licensed under the CCPL, Creative Commons does not authorize

the use by either party of the trademark "Creative Commons" or any

related trademark or logo of Creative Commons without the prior

written consent of Creative Commons. Any permitted use will be in

compliance with Creative Commons’ then-current trademark usage

guidelines, as may be published on its website or otherwise made

available upon request from time to time. For the avoidance of doubt,

this trademark restriction does not form part of this License.

Creative Commons may be contacted at http://creativecommons.org/.

Appendix B
Scout Installation

 B.1 Overview

This chapter walks you through the installation of Eclipse Scout. The installation description (as well as the
rest of this book) is written and tested for Eclipse Scout 4.0 which is delivered as integral part of the Eclipse
Luna release train, 2014. Detailed information regarding the scheduling of this release train is provided in the
Eclipse wiki1 .

 We assume that you have not installed any software relevant for the content of this book. This is
why the Scout installation chapter starts with the installation of the Java Development Kit
(JDK). Consequently, you will have to skip some of the sections depending on your existing
setup.

 In the text below, installation routines are described separately for Windows, Mac, and Linux. As
Scout applications have been built primarily on the Windows platform in the past, Scout also has the
highest maturity level on this platform.

B.2 Download and Install a JDK

The first step to install Scout is to have an existing and working installation of a JDK version 7 or 8. It is
currently recommended to go for the most recent download of Java 7.

 Using Scout with Java 8 is possible and has been tested as part of Eclipse release train
testing2 .
We are currently not aware of any productive installation so far, but this is likely to change in
the near future as Oracle’s published end of public updates for Java 7 is scheduled for April
20153 .

 You may still use Scout with Java 6. However, this version is no longer tested with Scout and has
reached Oracle’s end of public updates on February 2013. Older Java versions will no longer work
together with the Scout framework.

 Currently, we recommend to install the Oracle JDK 7 together with Scout. Although, using
OpenJDK with Scout should work too. To successfully install the JDK you need to have at least local
admin rights. You also need to know your hardware architecture in order to download the correct JDK

installer.

 For Windows, the steps necessary to determine your hardware architecture are described on Microsoft’s
support site4 .
For Linux several ways to determine if your os is running with 32 or with 64 bits can be found on the
web5
For Mac this step is simple, as only a 64 bit package is provided on JDK the download page.

 Once you know your hardware architecture, go to Oracle’s official download
site6
and accept the licence agreement by clicking on the appropriate radio button. Then, select the Windows
x64 package if you are running 64-bit Windows as shown in Figure B.1. If you are running 32-bit
Windows, go for the Windows x86 package. It is also recommended to download the Java SE 7
Documentation. The Java API documentation package is available from the official download
site7 ,
located further down under section Additional Resources.

[image: PIC]

Figure B.1: Installer download for Oracle JDK 7. The Windows 64bit installer package is
highlighted.

 Once you have successfully downloaded the JDK installer, follow the Windows installation
guide8 .
To verify the installation you might want to go through this Java ”Hello World!”
tutorial9 .

 Installation instructions for Linux10
and Mac11
are also available from Oracle.

B.3 Download and Install Scout

Before you can install Scout make sure that you have a working Java Development Kit (JDK) installation
of version 7 or 8. To download the Eclipse Scout package visit the official Eclipse download page as shown
in Figure B.2.

[image: PIC]

Figure B.2: The Eclipse download page. The platform filter is set to Windows and the available
Packages are filtered for Scout.

 If the download page shows the wrong platform, manually select the correct platform in the
dropdown list. As shown in Figure B.2, the Scout package is available as a 32 bit and a 46 bit package.
Make sure to pick the package that matches your JDK installation. You can check your installation on
the command line as follows.

console-prompt>java -version
java version ”1.7.0_55”
Java(TM) SE Runtime Environment (build 1.7.0_55-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.55-b03, mixed mode)

 If the output explicitly mentions the 64 bit installation as shown above, you have a 64 bit
installation. Otherwise, you have a 32 bit JDK installed. Now you can select the correct Scout package
from the Eclipse download site. After the package selection, confirm the suggested download mirror as
shown in Figure B.3.

[image: PIC]

Figure B.3: Downloading the Scout package from a mirror.

 As the Scout package is a simple ZIP (or tar.gz) file, you may unpack its content to a folder of your
choice. Inside the eclipse sub-folder, you will then find the Eclipse executable file, such as the
eclipse.exe file on a Windows plattform. Starting the Eclipse executable brings up the workspace
launcher as shown in Figure B.4.

[image: PIC]

Figure B.4: Starting the Eclipse Scout package and selecting an empty workspace.

 Into the Workspace field you enter an empty target directory for your first Scout project. After
clicking the Ok button, the Eclipse IDE creates any directories that do not yet exist and opens the
specified workspace. When opening a new workspace for the first time, Eclipse then displays the welcome
screen shown in Figure B.5.

[image: PIC]

Figure B.5: Eclipse Scout welcome screen.

 To close the welcome page and open the Scout perspective in the Eclipse IDE click on
the Workbench icon. As a result the empty Scout perspective is displayed according to
Figure B.6.

[image: PIC]

Figure B.6: Eclipse Scout started in the Scout SDK perspective.

 Congratulations, you just have successfully completed the Eclipse Scout installation!

 If you have only installed a single JDK you will not need to change the default eclipse.ini file of
your Eclipse installation. In case you have installed multiple JDKs coming with their individual Java
Runtime Environments (JREs), you might want to explicitly specifiy which JRE to use. Open the file
eclipse.ini in a editor of your choice and insert the following two lines at the top of the
file:

-vm
C:\java\jre7\bin\javaw.exe

 where the second line specifies the exact path to the JRE to be used to start your Eclipse Scout
installation.

 If you have explicitly specified the JRE to be used you verify this in the running Eclipse installation.
Fist, select the Help—About Eclipse menu to open the about dialog. Then, click on the
Installation Details button and switch to the Configuration tab. In the long list of system
properties you will find lines similar to the ones shown below.

*** Date: Donnerstag, 19. Juni 2014 10:37:17 Normalzeit

*** Platform Details:

*** System properties:
...
-vm
C:\java\jre7\bin\javaw.exe
...
sun.java.command=... vm C:\java\jre7\bin\javaw.exe -vmargs ...

 You have now successfully completed the Eclipse Scout installation on your Windows environment.
With this running Scout installation you may skip the following section on how to add Scout to an
existing Eclipse installation.

B.4 Add Scout to your Eclipse Installation

This section describes the installation of Scout into an existing Eclipse installation. As the audience of
this section is assumed to be familiar with Eclipse, we do not describe how you got your Eclipse
installation in the first place. For the provided screenshots we start from the popular package Eclipse IDE
for Java EE Developers.

[image: PIC]

Figure B.7: Eclipse menu to install additional software

 To add Scout to your existing Eclipse installation, you need to start Eclipse. Then select
the Help—Install New Software... menu as shown in Figure B.7 to open the install
dialog.

[image: PIC]

Figure B.8: Add the current Scout repository

 In the install dialog, click on the Add... button to enter the link to the Scout repository. This opens
the popup dialog Add Repository As shown in Figure B.8, you may use ”Scout Luna” for
the Name field. For the Location field enter the Scout release repository as specified below.
http://download.eclipse.org/scout/releases/4.0.

[image: PIC]

Figure B.9: Select the Scout features to add to the Eclipse installation

 After the Eclipse IDE has connected to the Scout repository, select the Scout feature Scout
Application Development as shown in Figure B.9. Then, move through the installation with the Next
button. On the last installation step, accept the presented EPL terms by clicking on the appropriate radio
button. To complete the installation, click the Finish button and accept the request for a restart of
Eclipse. After the restart of the Eclipse IDE, you may add the Scout perspective using the
Window—Open Perspective—Other ... menu and selecting the Scout perspective from the
presented list. Clicking on the Scout perspective button should then result in a state very similar to
Figure B.6.

B.5 Verifying the Installation

After you can start your Eclipse Scout package you need to verify that Scout is working as intended. The
simplest way to verify your Scout installation is to create a ”Hello World” Scout project and run the
corresponding Scout application as described in Chapter 2.

Appendix C
Apache Tomcat Installation

Apache Tomcat is an open source web server that is a widely used implementation of the Java Servlet
Specification. Specifically, Tomcat works very well to run the server part of Scout client server applications. In
case you are interested in getting some general context around Tomcat you could start with the Wikipedia
article1 .
Then get introduced to its core component ”Tomcat
Catalina”2 before you switch to
the official Tomcat homepage3 .

 This section is not really a step by step download and installation guide. Rather,
it points you to the proper places for downloading and installing Tomcat. We recommend
to work with Tomcat version 7.0. Start your download from the official download
site4 .

[image: PIC]

Figure C.1: A successful Tomcat 7 installation.

 Once you have downloaded and installed Tomcat 7 (see the sections below for plattform
specific guidelines) you can start the corresponding service or deamon. To verify that Tomcat is
actually running open a web browser of your choice and type http://localhost:8080 into the
address bar. You should then see a confirmation of the successful installation according to
Figure C.1.

C.1 Platform Specific Instructions

According to the Tomcat setup installation for
Windows5
download the package ”32-bit/64-bit Windows Service Installer” from the Tomcat 7 download site. Then,
start the installer and accept the proposed default settings.

 For installing Tomcat on OS X systems download the ”tar.gz” package from the Tomcat 7 download site. Then, follow
the installation guide6
provided by Wolf Paulus.

 For Linux systems download the ”tar.gz” package from the Tomcat 7 download site. Then, follow the description
of the Unix setup7
to run Tomcat as a deamon. If you use Ubuntu, you may want to follow the
tutorial8 for
downloading and installing Tomcat provided by Lars Vogel.

C.2 Directories and Files

Tomcat’s installation directory follows the same organisation on all platforms. Here, we will
only introduce the most important aspects of the Tomcat installation for the purpose of this
book.

[image: PIC]

Figure C.2: The organisation of a Tomcat installation including specific files of interest. As an
example, the ”Hello World” server application is contained in subdirectory webapps.

 Note that some folders and many files of a Tomcat installation are not represented in Figure C.2. We
just want to provide a basic understanding of the most important parts to operate the web server in the
context of this book. In the bin folder, the executable programs are contained, including scripts to start
and stop the Tomcat instance.

 The conf folder contains a set of XML and property configuration file. The file server.xml
represents Tomcat’s main configuration file. It is used to configure general web server aspects such as the
port number of its connectors for the client server communication. For the default setup,
port number 8080 is used for the communication between clients applications and the web
server. The file tomcat-users.xml contains a database of users, passwords and associated
roles.

 Folder logs contains various logfiles of Tomcat itself as well as host and web application log files.
XXX need to provide more on what is where (especially application logs and exact setup to generate log
entries from scout apps).

 The folder needed for deploying web applications into a Tomcat instance is called webapps. It can be
used as the target for copying WAR files into the web server. The installation of the WAR file then
extracts its content into the corresponding directory structure as shown in Figure C.2 in the case of the
file helloworld_server.war.

 Finally, folder work contains Tomcat’s runtime ”cache” for the deployed web applications. It is
organized according to the hierarchy of the engine (Catalina), the host (localhost), and the web
application (helloworld_server).

C.3 The Tomcat Manager Application

Tomcat comes with the pre installed ”Manager App”. This application is useful to manage web applications
and perform tasks such as deploying a web application from a WAR file, or starting and stopping installed
web applications. A comprehensive documentation for the ”Manager App” can be found under the Tomcat
homepage9 .
Here we only show how to start this application from the hompage of a running Tomcat
installation.

 To access this application you can switch to the ”Manager App” with a click on the corresponding
button on the right hand side. The button can be found on the right hand side of Figure C.1. Before you
are allowed to start this application, you need to provide username and password credentials of a user
associated with Tomcats’s manager-gui role.

 Listing C.1:
 Example
 content
 for
 a
 tomcat-users.xml
 file
 <tomcat-users>
 <!--
 NOTE: By default, no user is included in the ”manager-gui” role required
 to operate the ”/manager/html” web application. If you wish to use it
 you must define such a user - the username and password are arbitrary.
 -->
 <user name=”admin” password=”s3cret” roles=”manager-gui”/>
 </tomcat-users>

 To get at user names and passwords you can open file tomcat-users.xml located in Tomcat’s conf
directory. In this file the active users with their passwords and associated roles are stored. See
Listing C.1 for an example. From the content of this file, we see that user admin has password
s3cret and also posesses the necessary role manager-gui to access the ”Manager App”. If file
tomcat-users.xml does not contain any user with this role, you can simply add new user
with this role to the existing users. Alternatively, you also can add the necessary role to an
existing user. Just append a comma to the existing right(s) followed by the string manager-gui.
Note that you will need to restart your Tomcat application after adapting the content of file
tomcat-users.xml.

 With working credentials you can now start the ”Manager App” as described the ”Hello World”
tutorial in Section 2.8.

Appendix D
Scout Utilities

text needed.

 1) ¡ctrl-shift-t¿fileutility 2) click into package org.eclipse.scout.commons; 3) ¡alt-shift-w¿ (or context
menu) show-in package explorer

D.1 StringUtility

text needed

 also mention apache StringUtils http://commons.apache.org/lang/api-2.3/org/apache/commons/lang/StringUtils.html

D.2 DateUtility

text needed

D.3 FileUtility

text needed

Existing Documentation

 	bug https://bugs.eclipse.org/bugs/show_bug.cgi?id=394784

Appendix E
Java Basics

 E.1 Java SE Basics

 Section waiting for contribution (2’000-3’000 words)
 The goal of this section is to provide the reader with a solid overview of the
 non-trivial Java concepts relevant for scout applications and central aspects of
 the framework itself. The focus of this section is on the Java Standard Edition
 (Java SE). Where appropriate, provide links to high quality online material,
 that is likely to exist for at least the next year or two.

E.1.1 Learning Java

To progam Scout applications you need to have a solid understanding of the Java language. Scout will
only work for you if you have achieved a certain proficiency level in Java.

 Luckily, free online tutorials to learn Java are offered in many places. A good starting point is the official Java
documentation site1 .
If you prefer to work with video tutorials we recommend “Eclipse and Java for Total
Beginners”2 ,
although the installation used is somewhat out of date. As for printed books, we suggest to start with
either “Head First Java”[1] or “Thinking in Java”[3]. Highly recommended but slightly more advanced is
“Effective Java”[2].

 To solve really tricky Java problems there is often no way around the Java
specification3
itself. Just make sure to pick the right Java version for your context.

E.1.2 Advanced Java SE Concepts

* say which non-trivial things are vital to good understanding * threading * generics * annotations

E.1.3 JAR Files

* purpose * directory structure * example

E.2 Java EE Basics

 Section waiting for contribution (2’000-5’000 words)
 The goal of this section is to provide the reader with a solid overview of
 the non-trivial Java enterprise concepts relevant for scout applications and
 central aspects of the framework itself. The focus of this section is on the Java
 Enterprise Edition (Java EE) Where appropriate, provide links to high quality
 online material, that is likely to exist for at least the next year or two.

 needs text

 * maybe the same as for java foundation, maybe not * jaas * http comm * servlet * servlet
filters

E.2.1 Servlets

A very comprehensive and detailed step to step description has been written by Chua
Hock-Chuan4 .

 may be found online do servlet stuff with annotations (JEE6) not JEE5?

 Listing E.1:
 The
 index.html
 start
 page
 for
 the
 tiny
 servlet
 application.

<html>
<head>
<title>tiny servlet title</title>
</head>
<body style=”color:green”>
<!-- link must correspond to url-pattern in servlet-mapping of web.xml -->
go to tiny servlet
</body>
</html>

 Listing E.2:
 The
 web.xml
 file
 of
 the
 tiny
 servlet
 application.

<?xml version=”1.0” encoding=”UTF-8” ?>
<!DOCTYPE web-app PUBLIC ”-//Sun Microsystems, Inc.//DTD Web Application 2.3//EN” ”http://java.sun.com/dtd/web-app_2_3.dtd”>

<web-app>
 <display-name>tiny servlet app</display-name>

 <!-- declaration of servlet for this app -->
 <servlet>
 <!-- unique servlet symbolic name -->
 <servlet-name>Tiny</servlet-name>
 <!-- full path to class (relative from WEB-INF/classes) -->
 <servlet-class>TinyServlet</servlet-class>
 </servlet>

 <!-- mapping of url to servlet defined above -->
 <servlet-mapping>
 <servlet-name>Tiny</servlet-name>
 <url-pattern>/servlets/Tiny</url-pattern>
 </servlet-mapping>
</web-app>

 Listing E.3:
 The
 complete
 TinyServlet
 source
 code.

// servlet browser link http://localhost:8080/tinyservlet/
// direct link to servlet: http://localhost:8080/tinyservlet/servlets/Tiny

// tomcat overview: http://localhost:8080/
// application admin: http://localhost:8080/manager/html/list

// compiling
// servlet jar has to be found in WEB-INF/lib/ (to be found in apache servlet container, as well for compiling above)
// mzi@bsim013 ~/Desktop/jee/servlet1/WEB-INF/sources
// (0) cd /cygdrive/C/Documents\ and\ Settings/mzi/Desktop/jee/tinyservlet/WEB-INF/sources
// (1) /cygdrive/C/java/jdk1.5.0_16/bin/javac -classpath ”../lib/javax.servlet_2.4.0.v200806031604.jar;.” TinyServlet.java
// (2) mv TinyServlet.class ../classes

// deploying
// servlet jar has to be found in WEB-INF/lib/ (to be found in apache servlet container, as well for compiling above)
// (1a) zip contents of C:\Documents and Settings\mzi\Desktop\jee\tinyservlet
// (1b) rename to tinyservlet.zip to tinyservlet.war
// (2) copy war to C:\tomcat\tomcat70\webapps
// (3) restart tomcat (or remove folder tinyservlet from webapps and restart with war file only)

import java.util.Date;
import java.io.IOException;

import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;

public class TinyServlet
 extends HttpServlet
{
 public void service(HttpServletRequest request, HttpServletResponse response)
 throws IOException, ServletException
 {
 response.setContentType(”text/html;charset=ISO-8859-1”);
 response.getWriter().println(
 ”<html>”+
 ”<head><title>tiny servlet</title></head>”+
 ”<body style=\”text-align:center\”>” +
 ”TinyServlet’s server time: ” + new Date() +
 ”</body>” +
 ”</html>”
);
 }
}

 DONT include servlet jar inside of war file (tomcat doesn’t like it)

E.2.2 Servlet Filters

hello world example (JEE6)

E.2.3 WAR Files

war file organisation: http://documentation.progress.com/output/Iona/orbix/6.1/tutorials/fnb/dev_intro/j2ee_overview8.html

Appendix F
Eclipse Basics

 F.1 Eclipse as an IDE

Excellent Eclipse IDE tutorial by L. Vogel http://www.vogella.com/articles/Eclipse/article.html.

F.1.1 Project Workspace

F.1.2 Perspectives

A perspective contains the visual elements and the arrangement of those elements to support a specific
development task within the Eclipse IDE. Perspectives relevant to the development of Scout applications
are the Scout perspective, the Java perspective, the Debug perspective, and many others. To open a
perspective available in the Eclipse IDE, the Open Perspective button or the Window → Open
Perspective → Other... menu can be used.

[image: PIC]

Figure F.1: The Eclipse IDE with the Scout perspective. The colors indicate the different elements.
View parts (blue), editor parts (green) and perspective buttons (purple).

 Figure F.1 provides a screenshot of the Eclipse Scout perspective indicating the corresponding
perspective button and the main view parts and editor parts involved. Using drag and drop, views and
editors can be freely moved around in the Eclipse IDE to suit the developer’s needs. Perspectives can be
further individualized using the Window → Customize Perspective... menu. Here, the visibility of
the toolbar items and menu entries can be defined. Once a suitable layout of all desired elements has been
defined, this organisation may be saved as a personal perspective using the Eclipse IDE Window →
Save Perspective As... menu.

 In case a customizing step does not turn out as intended, with the Window → Reset
Perspective... menu is always possible to go back to the last saved state of the current
perspective.

F.2 OSGi and Equinox

 Section waiting for contribution (2’000-3’000 words).
 The goal of this section is to provide the reader with a solid overview of OSGi
 concepts and its Equinox implementation. Where appropriate, provide links to
 high quality online material, that is likely to exist for at least the next year or
 two.

 What is OSGi: http://www.osgi.org/Technology/WhatIsOSGi What is Equinox:
http://www.eclipse.org/equinox/

 Server-side Equinox: http://www.eclipse.org/equinox/server/http_in_container.php

 The web.xml, the lib/servletbridge.jar and eclipse/plugins/servlet, equinox and bla stuff

 bundle example

 needs text

 * bundles * services * classloading

F.3 Eclipse

 Section waiting for contribution (3’000-6’000 words).
 The goal of section is to provide the reader with a solid overview of standard
 Eclipse concepts relevant for scout projects and central parts of the Scout
 framework and Scout SDK tooling. where appropriate, provide links to high
 quality online material that is likely to exist for at least the next year or two

 needs text

F.4 Eclipse Plugins

release engineering artefacts vs runtime artefacts. start with runtime artefacts

 * plugins * fragments * features * products * targets * servlet bridge * client exe files

Bibliography

 [1] Bert Bates, Kathy Sierra, Head First Java 2nd edition, O’Reilly Media, 2005.

 [2] Joshua Bloch, Effective Java 2nd edition, Addison-Wesley, 2008.

 [3] Bruce Eckel, Thinking in Java 4th edition, Prentice Hall International, 2006.

Index
 SymbolsAbstractButton 1, 2

AbstractCheckBox 3

AbstractCodeType 4, 5

AbstractDateTimeField 6

AbstractDoubleField 7

AbstractIntegerField 8

AbstractLabelField 9, 10

AbstractStringField 11

ClientSession 12, 13

CodeLookupCall 14

DesktopForm 15, 16

LabelField 17

MainBox 18

MessageBox 19, 20

ViewHandler 21, 22

execCreateLookupRows 23

execLoadCodes 24

E
Eclipse config.ini file 25

Eclipse plugin editor 26

Eclipse product file editor 27

N
NLS editor 28

P
Product launchers 29

Project creation 30

R
RAP 31

S
SDK Wizard

 Add Translation Entry 32

 Export Scout Project 33

 New Form Field 34

 New Scout Project 35

 1Web application framework comparison: http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java.

 2With the exception of the plugin.xml and MANIFEST.MF files required for Eclipse plugins.

 3Nominating and electing a new Eclipse Scout committer:
 http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committer#Guidelines_for_Nominating_and_Electing_a_New_Committer.

 4Example areas/topics that are abstracted by the Scout framework are user interface (UI) technologies, databases,
 client-server communication or logging.

 5Java Enterprise Edition: http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition

 6Eclipse Platform: http://wiki.eclipse.org/Platform

 7By reading through the book you will learn that there is much more to the Eclipse platform than just the IDE

 8Java Standard Edition: http://en.wikipedia.org/wiki/Java_SE

 9Level I Exam: docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer1.html

 10Level II Exam: docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer2.html

 11Eclipse Scout forum: http://www.eclipse.org/forums/eclipse.scout

 12Eclipse Scout wiki: http://wiki.eclipse.org/Scout

 13Download and installation of the ”My Contacts” application: http://wiki.eclipse.org/Scout/Book/\#Download_and_Run_the_Scout_Sample_Applications.

 14To contact the Scout team, use the feedback provided on the Scout homepage: https://eclipse.org/scout.

 1The Scout server part of the ”Hello World” application will be running on a web server.

 2”Hello World” wiki tutorial: http://wiki.eclipse.org/Scout/Tutorial/4.0/HelloWorld

 3Product files define the set of all components that are necessary to build the complete application.

 4The configuration file config.ini provides parameters that are read at startup of the corresponding program.

 5Eclipse Marketplace: http://marketplace.eclipse.org/

 6Web application ARchive (WAR): http://en.wikipedia.org/wiki/WAR_file_format_(Sun)

 7Make sure to remember the location of this directory. We will need the directory location again when we deploy
 these WAR files to the Tomcat web server.

 1In the Scout application model we can only add UI fields to Scout form elements, not directly to the desktop.

 2To expand elements (nodes, folders, etc.) in the Scout Explorer, use a double click on the element or a single click
 on the plus icon in front of the element.

 3Data Transfer Object (DTO): http://en.wikipedia.org/wiki/Data_transfer_object.

 4Read the following article for an introduction to Eclipse product files:
 http://www.vogella.com/articles/EclipseProductDeployment/article.html.

 5Jetty is web server with a small footprint: http://www.eclipse.org/jetty/.

 6Swing is the primary Java UI technology: http://en.wikipedia.org/wiki/Swing_\%28Java\%29.

 7Standard Widget Toolkit (SWT): http://en.wikipedia.org/wiki/Standard_Widget_Toolkit.

 8JavaFX is the most recent Java UI technology: http://en.wikipedia.org/wiki/JavaFX.

 9Remote Application Platform (RAP): http://www.eclipse.org/rap/.

 10Asynchronous JavaScript and XML (AJAX): http://en.wikipedia.org/wiki/Ajax_\%28programming\%29.

 11To provide native clients with Scout, the simplest (commercial) option is most likely Tabris:
 http://developer.eclipsesource.com/tabris/

 12Internationalization and localization, also called NLS support: http://en.wikipedia.org/wiki/Internationalization_and_localization.

 13See Section ?? for a detailed description of the NLS editor.

 14A good introduction to OSGi services is provided by Lars Vogel’s tutorial:
 http://www.vogella.com/articles/OSGiServices/article.html.

 15A good introduction to Eclipse extensions and extension points is provided in the Eclipse wiki:
 http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points\%3F.

 16Customer Relationship Management (CRM): https://en.wikipedia.org/wiki/Customer_relationship_management

 17Java Synth Look and Feel: http://en.wikipedia.org/wiki/Synth_Look_and_Feel

 18OpenJDK is an open source implementation of the Java platform: http://openjdk.java.net/.

 19See Appendix F.2 for more information regarding server-side Equinox.

 20See Appendix E.2 for more information regarding servlets.

 21See Appendix F.2 for more information regarding server-side Eclipse applications (server-side Equinox).

 22JAR files contain a set of Java classes and associated resources. http://en.wikipedia.org/wiki/JAR_\%28file_format\%29.

 23More about the Cat: http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_More.html.

 1Enumerated type: http://en.wikipedia.org/wiki/Enumerated_type

 2Industry Classification Benchmark (ICB): http://www.icbenchmark.com/

 1Standalone Client with DB Access: http://wiki.eclipse.org/Scout/HowTo/Create_a_Standalone_Client_with_DB_Access

 1The processing exceptions type ProcessingException represents Scout’s core exception class. The veto exception
 type VetoException is a direct subclass of the processing exception and is typically used in service calls for subjects with
 insuffiecient authorization.

 1Luna release plan: http://wiki.eclipse.org/Luna/Simultaneous_Release_Plan

 2Scout 4.0 platforms: https://wiki.eclipse.org/Scout/Release/Luna\#Tested_Platforms

 3Java 7 end of public support: http://www.oracle.com/technetwork/java/eol-135779.html

 4Windows 32/64-bit installation: http://support.microsoft.com/kb/827218

 5Linux 32/64-bit installation example page: http://mylinuxbook.com/5-ways-to-check-if-linux-is-32-bit-or-64-bit/

 6Official JDK 7 download: http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

 7Java API documentation download: http://www.oracle.com/technetwork/java/javase/downloads/index.html

 8Install the JDK on Windows: http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html\#Run

 9Windows Java ”Hello World!”: http://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html

 10Install the JDK on Linux: http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html

 11Install the JDK on Mac: http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html.

 1Apache Tomcat Wikipedia: http://en.wikipedia.org/wiki/Apache_Tomcat.

 2Mulesoft’s introduction to Tomcat Catalina: http://www.mulesoft.com/tomcat-catalina.

 3Apache Tomcat Homepage: http://tomcat.apache.org/

 4Tomcat 7 Downloads: http://tomcat.apache.org/download-70.cgi

 5Tomcat Windows setup: http://tomcat.apache.org/tomcat-7.0-doc/setup.html#Windows

 6Installing Tomcat on OS X: http://wolfpaulus.com/journal/mac/tomcat7

 7Tomcat Linux setup: http://tomcat.apache.org/tomcat-7.0-doc/setup.html#Unix_daemon

 8Apache Tomcat Tutorial: http://www.vogella.com/articles/ApacheTomcat/article.html

 9The Tomcat Manager Application: http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html.

 1Official online Java tutorial: http://docs.oracle.com/javase/tutorial/

 2Eclipse and Java for Total Beginners: http://eclipsetutorial.sourceforge.net/totalbeginner.html

 3The Java Language Specification http://docs.oracle.com/javase/specs/

 4Get Start with Java Servlet Programming: http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html.

scout_integration.png
Qient Scout Qlient

Scout Server

sdk_create_new_scout_project.png
Ele Edit Source Refoctor Navigote Search Broject Run Window Help

1 Scout Bxplorer 13 | [8 PackegeBiplorer = 0

%8B -
& Scoupes)
» @ Libraies | ¢ NewScoutProject. AtesniN |

5 Update all FormDta Classs...
5 Update all PageDsta Classes..

e M

No Properties available for Scout Projects

s Y E—
fiter & Tasks X (2] Problems @ Javadoc B) Console 5 Progress @) Eror Log
oitems

Regex

Description Resource

bsi_crm_mobile_galaxy.png
SAMSUNG

bsiag.com

lipse Found
{oegger, Andreas (&

ECLIPSE SOURCE

Eclipse Source INNOOPRACT Informationssysteme Gbl
Hoegger, Andreas (BS1 BADEN

ECLIPSESOURCE MUNCHEN

seSource Minchen Gmb
immermann, Matthias (BS1 ZURICH)

scout_with_other_apps.png

bsi_crm_desktop.png
B BSICRM - mai
(4 (®
€2 ©

Standardview | Marketing

™ Companies

- Persons

b W Business

b Tickets

= communications
- Tasks

= Documents

bsi-crm
ConfactCerfer Reports Human Resources Adrministration
~ Shortname Name Number

4 ECLIPSE FOUNDA.._Eclipse Foundation Inc

@4 ECLIPSE SOURCE Eclipse Source INNOOPR.

e >
simpi. Detala
phons w
K2GEB1 102 Company
s @ eI 913 Lan omn

Avanced Categories.

eclipse

e e
=
Shortname * [ECLIPSE FOUNDATION .
e (Eostomisioni - ecll se
amo
Nurniger Sector m Q
Language English . Region America Q
ang Q st
Segmentation Responsibility
4
Company = 8 Hosgger,Anareas Wanrepresemaive
3atjects 1 Competior
& Zimmermann, Mati.. Account manager

s :
e

Voo 1
e, [A ———
Fax +1(613) 224-5172 -
tmar viogspsony
Preferred 102 Centrepointe Ditve -
A o)

bsi_crm_web.png
85I CRM - mai

C [@ https://services bsiag.com/bsicrm/web#com bsiag.crm.client.core.desktop.PersonalOutline-Own-Person-Companies

) =

x
i

4 & Zimmermann, Wathias (BS1,

4 ® Companies

44 ECLIPSE FOUNDAT|

» i ECLIPSESOURCE 1
W Persons.
» W Business
1 W Active campaigns
b @ Budget

@ veal

» & Workand expenses
o @ Courses

‘Standard view

‘Shortname.

Name 1 * [Ectpse Foundstion nc.

Name2
Number
Language

Rating

Segmentation

Marketing ConfactCenter Reports Human Resources

«[ECLPSE FOUNDATION

Administration

eclipse

G Ky
(Amenca

) Ace

als Stangard distrbutor
b g Tickets
b @ Cases
[Communications
@ Tasks
A Locked objects
© a8 Department BSI
o a8 Team WebGUI

>l Al

[Company
[Competitor
[Customer
M Influencer

& Hosgoer, Andreas ain representative
& Zimmermann, Matthias Account manager

Responsiviy Responsidiy

“Addresses “Notes Informationen “Marketing Financial data “Documents °Changes

Fax +1(513) 2245172
Preferred

E-mail info@eclipse.org
Preferred

Already exists?

2 objects, 1 selected

(Agd. ine 1

(Aga. ine 2

102 Centiepaints e

“Simple Detailed °Advanced Categories

4 Search for Company with
Allowed channel is E-mail

Search constraint

b Acive
Allowed channel
b Category

 —

s

[Appointment
] E-mail

[Event

O Fax

[Letter

[Memo.

Modiy the selected constraint

[Cre 1 oo]

scoutbookcoverfrontend.png
& eclipse

Eclipse Scout
Frontend Development

Version 4.0 (Luna)

Published by BSI Business Systems Integration AG

helloworld_server_war_eclipse.png
4 @ edipse
4 & configuration

] javaxxmi_1.3.4.v201005080400 jar
4] more_scout_and_other_pluginsjar
4 org.eclipse.equinox servietbridge 1.3.0.v20140430-1556 jar
4 org.eclipse.scout helloworld.server 1.0.0.201406192222 jar
4 org.eclipse.scout helloworld.shared_1.0.0 201406192222 ar
£ launchini

helloworld_server_plugin.png
4 & orgeeclipsescout helloworld server
4@
b 8 org.eclipse:scout helloworld server
4 B orgeclipsescouthelloworld server.services
» 1] DesktopSenvicejava
b 8 org.eclipse:scout.helloworld server.services.common.security
» m JRE System Library [JavaSE-1.7]
») Plug-in Dependencies
4 (= META-INF
£ MANFESTMF
b € products
4 (= resources
4 (& html
) indexhtmi
(5] scoutagt
[build properties
B pluginaml

helloworld_server_war_plugin.png
4 (= org.eclipsescout helloworld.server 1.0.0.201406192222 jar
4 (5 METAINF
£ MANFESTMF
sEog
4 & eclipse
4 & scout
4 & helloworld
4 sever
4 (& senvices
» & common
DesktopService.class
Activator class
Serverhpplication.class
% ServerSession.class

4 (= resources
4 (& html
1) helloworldClent.zip
2] indechtmi
(58] scoutgit
B pluginaml

lookup_call.png
<cinterface>> <<interface>>

ILookupCall ILookupService
+getDataByKey() +gelDataByKey
+getDataByAl() +getDataByAl
+gelDataByTex() +gelDataByText

#gelConfiguredService()

7w i

LocallookupCall LookupCall AbstractLookupService

+gelDataByKey +gelDataByKey

+getDataByAl +getDataByAl

+gelDataByText +gelDataByText

#execCreateLookupRows. #getConfiguredService

MyLocalLookupCall MyLookupCall MyLookupService

#execCreateLookupRows. #gelConfiguredService +getDataByKey
+getDataByAl
+gelDataByText

sdk_new_project_2.png
Create a Scout Project

Create a Scout project in the workspace.
Enter the name and choose the desired fiers.

et Nome [org eclpsescouthelloword

Prjet Pt

[org.edipse.scout helloworld.ui.rap
I org.eclipse:scout helloworld.uiswing
] org.eclipse:scout helloworld.uiswt
¥ ® org.eclipse.scout.helloworld.client
7] @ org.eclipse:scout helloworld shared
7] @ org.eclipse:scout helloworld server

Project Properties

Ecipse Pl New Eclpse Lo Torge 4, corrent)

Use default Scout IDT preferences

Prjet Ao elowertd

The project aliasis used for the servlet name and launcher names.

Jo et J [men]

hierarchicalcodetype.png
4 Bl IndustrylCBCodeType (Industry Classification Benchmark (ICB)).
» & 1CB0001 (Ol & Gas)
& ICBL000 (Basic Materials)
» & 1CB2000 (ndustrals)
& ICB3000 (Consumer Goods)
& 1CB4000 (Health Care)
& ICBS000 (Consumer Services)
» & 1CB5000 (Telecommunications)
& ICB000 (Utltes)
» & 1CB8000 (Financials)
4 5 1CB9000 (Technology)
4 5 1C89500 (Technology)
4 9 1CB9530 (Software & Computer Services)
© 1CB9533 (Computer Services)
© 189535 (Intemet)
S 1CBI537 (Software)
» & ICBI570 (Technology Hardware & Equipment)

sdk_initial_helloworld_project.png
Eile dit Source Refactor Navigste Search Project Run

Window Help

1 Scout Explorer 2 £ Package Explorer

& B
4 & ScoutProjects
4 d org.cclipsescouthelloworld

4 ® org.eclipsescout helloworld.client
b org.eclipsescout helloworld.uiep
b org.eclpsescout helloworld.uiswing
b org.echpsescout helloworld.uiswt
o ® org.eclpsescout helloworld.client mobile
» [ClientSession
» O Desktop
» & Forms
b E Search Forms
b 2 Wizards
b € Local Lookup Calls
b G Services
b 5 All Outlines.
b G AllPages
b & Templates
b €9 Libraries

4 ® org.ecipsescouthelloworld shared

= Icons.

b 2 Permissions
» @ CodeTypes
b € Lookup Calls
b €9 Libraries
b &L Text Provider Services

4 @ org.eclipsescouthelloworld.server
b [@ ServerSession
b Services
b € Lookup Services
b & Common Services
b €9 Libraries
b (2 Webservices JAX-WS RI216)

b €9 Libraries

& Scout Object Propertes 53 =0

orgeclipsescouthelloworld

"> Project Version
~ Product Launchers

helloworld-server-dev.product

1) heloworl:server-devproduct
) configini

@ Start Page.

@ Process Serviet

helloworld-rap-dev.product

1) heloworid:ssp-devproduct
) configini

@ Automatic Device Dispatch
@ Desktop Devices

@ smartphone Devices

@ Tablet Devices

helloworid-swing-cent-devproduct
1) helloworl:swing:cient-devproduct
) configini
hellowortd-su-clent-dev product

1) helloworid-on-clien-dev.roduct
) configini

" Technologies

& Tasks B0 Problems 3| @ Javadoc) Console =5 Progress @] ErrorLog

Oitems

Deccrintion

| Reco

Path

<l

cover_image.jpg
L.clipse scout

Frontend
Development

a0
I~
M
—
e
J

white_pixel.png

sdk_server_dev_product_config.png
) helloworld-server-dev.product £ =0

® Configuration opEn

Configuration File
A product can be configured by setting propertis in a configni file. Select whether an edsting confi
should be used or one generated.

i macos sl G iz

) Generate a default config.ini file
05 3n Sisting config ni i

File: /org.eclipse-scout helloworld.server/products/development/config:

Oriow Depeniences| Configurton | aancing]speh | raning] e Upie]

sdk_nls_editor.png
Ble Edt Source Refactor Novigate Search Project Run Window Help

1 ScoutBeplorer 87 1% Packagebplorsr & B Y = O

4 & Scout Projects
4 Z org.eclpsescouthelloworld
@ orgeeclipsescout helloworld.client
4 org.eclipse scout helloworld shared
 leons
» (2 Permissions
5 4 Code Types
» (2 Lookup Calls
» € Librares
4 T Text Provider Senvices
T HelloworldDocumentationTextProviderService
T HelloworldTextProviderService
» @ orgedipsescouthelloworldserver
» €5 Librares

5 Scout Object Propertes £7 % Outine

HelloworldTextProviderService

) helloworid-server-d...

I~ Links

© Qpen NS Editor.

Translations

Hide inherited rows.

© P T\%\lﬂ Ll

key default

AboutMenu ausbout.
ApplicationTitle My Application
AuthorizationFailed
BitMenu BBt
ExportToExcelDiagramMenu Export to Excel &diagram
ExportTobxcelMenu Export to &ifxcel
FileMenu afile
HelpMenu &z
Info Info
Logoff Log off

Message
StandardOutiine Standard
ToolsMenu &Tools

Permission denied

NNNNNNNNNENENS @

New Langua

Tansiaions]

sdk_server_dev_configini.png
£ helloworld-server-dev.product confi

e Developnent Settings
2osgi. clean-true

3 org.eclipse. equinox. http. jetty. http. port=5080

< org. eclipse. equinox http. Jetty. context.path-/helLovor1d_server

s

.

7### £clipse Runtine Configuration File

5 osgi_noshutdown=true.

5 eclipse. ignoreapp-false

10 eclipse. producteorg. eclipse. scout..helloworld. server. product

22 csgi bundlesorg. eclipse equinox. comong2\:tart, org.eclipse.update. configuratorgstar
12 0sgi. bundles. defaultStartLevel o4

13

14 eclipse. consoleLog=true

15 org-eclipse. scout. log-eclipse

16 org.eclipse. scout. og. level-TNFO

]

Rl —— B

helloworld_server_war.png
4 (& helloworld_server.war
4 (> WEB-INF
4 & eclipse
» & configuration

2] org.eclpse.equinoxsenetbridgejar
8 webam

sdk_plugin_editor_desktopservice.png
Edit Source Refactor Navigate

Search Broject Bun

Window Help

& Scout Explorer |13 Package Bxplorer 50

[ER-T

» & orgecipsescout helloworldclent
» & orgeclipsescout helloworldclient.mobile
4 & org.ecipsescout helloworld server
b @ src
b m JRE System Library [JavaSE-1.7]
») Plug-in Dependencies
b € META-INF
s & products
b (& resources
buildproperies
£ pluginaami
» & orgedipsescouthelloworldshared
» & orgecipsescouthelloworldtarget
» & orgecipsescouthelloworlduirsp
» & orgeciipsescout helloworlduiswing
» & orgecipsescout helloworld.uiswt

(3

=8

& helloworld-servr-d... configini

(3] HelloworldTextProvi..

B orgeclipsescouth.. 53| = O

% Extensions

DRE O]

| All Extensions

Define extensions for this plug-i

type filter text

4 o orgeclipsescoutsenvicesenvices
[8) FileSystemBookmarkStorageService (s
) WorkflowProviderService (srvice)
8] AccessControlSenvice (service)

[0 DesktopSenice (senice)|

the following section.

= org.eclipse.equinoxhttp.registry.serviets
b = orgeeclipse.scout tserver.commonsfilters
b = org.eclipse.core.runtime.applications.

b = org.eclipse.core.runtime products

“ i

w]

Extension Element Details

Set the properties of ‘service' Required fields are denoted by
class”: " org.cclipse.scout helloworld servers
factory. " org.cclipse.scout tserversenvices 51
session: " org.cclipse.scout helloworld server.

ranking:

i [Depandans] R stensiors [e Pt Bl MANFESTAVF g [Buid ropee]

widgetapp_mobile3.png
Examples.

Default

Mandatory*

Disabled
Text in disabled Field

Styled

On Field Label

Label Left

Label Center

Label Right

widgetapp_mobile2.png
W LabelField >
W stringField >
W Number Fields. >
W Decimal Fields. >
W Date & Time Fields >
W CheckboxField >
W RadioButtonGroup >
W Buttons & Links >

W WMessageBox >

stringfield.png
StringField X
Examples

Deteut i

v |

Disabled Textin disabled Field

s T

Configuration
Muttling Text

StringField
Upper Case.
Input masked

Max Length

Font Style
Font size

Foreground Color

[Wrap Text

|

sample Content | Sample Format

labelfield.png
LabelField

Examples
Default

Disabled

Styled

Configuration
Too long Label Text

Label containing empty text Text shown is filed in using seti:

sed

Multline Label Lorem ipsum dolor sit amet, consetetur sadipscing eli
‘diam nonumy eifmod tempor invidunt ut abore et dolore
‘magna aliquyam erat, sed diam voluptua. At vero eos et

Lorem ipsum dolor sit amet, consetetur sadipscing elitr sed diam nonumy eimod
tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero.
0s et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea

decimalfield.png
‘BigDecimalField
B . T S—
s o) s i
s s
Configuration
Fee— T
getvalue() 3.141592653589793 getvalue() 3.14159265358979323856
e e —
B ——
A e —
P —

numberfield.png
Default
Mandatory

Disabled

Styled

Configuration

oo —
A

Disabled 5

s

T
N

Disabled 5

s

IntegerField Input
getvalue()
Minimurm Value
Maximum Value

Format

-

—

[—
.

2147483647

2147,

[e—

getvalue() 922337203685«

Highestvalue | smaliestvaiue | sample Format

[E——

getvalue()

widgetapp_github_menu.png
Scout Widgets Demo App

Advanced Widgsts Layout Widgets

[wLanerien | Exammes
W StingField
ISt S O Fied Label
W Number Fields Open in dialog.
W Decimal Fields View Source on GNH&E Latiel Left
W Date & Time Fields Textin disabled

 CheckhoField

Styed ©) scoutbook/code/widgets
 RadioButonGraup = - - =
Configuration & - € [B GitHub, Inc. [US)] https://github.com/BSI-Business-Systems-Inte @ 73| =
 Butons & Links
219 5
 MessageBox n .
i Muliline Text orem Ipswn: 220 Gorder(io.0)
21 public class ExamplesBox extends AbstractGroupBox {
sadipscing e goverride
dian nonumy protected String getConfiguredLabel() {
invidunt ut return TEXTS .get(“Exanples”); "l
dolore magna N
erat, sed did
At vero eos Gorder(16.2)
ori i public class DefaultField extends AbstractstringField {
Fontstyle Goverride
Fontsize protected String getConfiguredLabel() {
return TEXTS.get("Default");
Foreground Color 000083
Background Color | DDDDFF.

I wrapText

Sample Content | Sample Format

scoutclientmodel.png
n
'i Wizard
11 3
‘ Client Session —>| IDeskiop - "
7 1
:
i
1Form o 1GroupBox | |1}
(Lowisrmomen > ety | | romren]
1 : +--4Buttor
« IChartBox
N WiueField |* 1CustomField (1 compogiteFiel
+ limageBox
« ITableField
IFormHandler « (ChbrField R + IGroupBox
« ICheckBox + IRangeBox
+ IDateField « ITabBox
« IDogbleField « ISequenceBox
« IFiléChooserField « ISlideBox
+ HiField
« lLatolField
« lLisiBox
« lLorgField
« IRadioButtonGroup
« ISmarField
«_IStrigField
Tl
 IreeField
. « MaljeField

= Py (e

widgetapp_web.png
Scout Widgets Demo App X

€ - C [D localhost8082/weborg.eclipse.scoutwidgetclientuidesktop.outlines.SimpleWidgetsOutline-LabelFiel 7| =

pr— (e

LabefField Examples
StingField

Number Fields

Default

Decimal Fields Dissoled

Date & Time Fields Styled

CheckboxField
Configuration

RadioButionGroup

Butions & Links Too long Label Text

MessageBox Label containing empty text Text shown is filled in using setValue.

Muttline Label Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed giam nonumy sirmod
tempor invidunt ut abore et dolore magna aliquyam erat, sed diam voluptua. Atvero eos
etaccusam et justo duo dolores et e rebum. Stet cita kasd gubergren, no seatakimata
‘sanctus est Lorem ipsum dolor st amet. Lorem ipsum dolor sit amet, consetetur
‘sadipscing elitr, sed diam nonumy eifmod tempor invidunt ut abore et dolore magna
aliquyam erat, sed diam voluptua. At vero eos st accusam et justo duo olores stea.
rebum. Stet cita kasd gubergren, no seatakimata sanctus est Lorem ipsum dolor sit
amet.

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy sirmod tempor invidunt ut abore et
dolore magna aliquyam erat, sed giam voluptua. Atvero sos et accusam et justo duo dolores st ea rebum. Stet
clita kasd qubergren, no sea takimata sancius est Lorem ipsum dolor sit amet Lorem ipsum dolor sit amet,
consetetur sadipscing eltr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliguyar erat,
‘sed diam voluptua. Atvero eos et accusam et justo duo dolores et ea rebum. Stet cita kasd gubergren, no sea.
takimata sanctus est Lorem ipsum dolor sit amet.

widgetapp_swt.png
Eile Tools Outlines 2

Simple Widgets Advanced Widgets Layout Widgets
] Simple Widgets 52| = B |[[] LabelField 52

Exemples
© LabelField

© StingField

€ Number Fields

€3 Decimel Fields

€3 Date & Time Fields
) CheckboField

€3 RedioButtonGroup Configuration

(3 Buttons & Links Toolong Label Text g...

) MessageBox
Label containing empty text. Text shown is filled n using setValue.

Multiline Label Lorem ipsum dolor sit amet, consetetur sadipscing elir, sed diam nonumy eirmod tempor
invidunt ut abore et dolore magna aliquyam erat, sed diam voluptua. At vero cos et accusam et
justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus st Lorem

um dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed ciam nonumy
eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero

Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore
magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clta kasd
‘gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet, Lorem ipsum dolor sit amet, consetetur sadipscing.
elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero cos.
et accusam et justo duo dolores et ea rebum, Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor

widgetapp_mobile1.png
 simple Widgets >
W Advanced Widgets. >
W Layout Widgets. >

messagebox.png
LabelField
Examples

Open MessageBox with hidden text

Configuration

Open MessageBoxwith YesiNo butions vetoExesption [
Open MessageBox with YesiNo/Cancel buttons FrocessnaRCer] - are you familiar with the meaning of the “Lorem Ipsum. * ted?

Answer the question using the appropriate button

Open the configured MessageBax

Retum Value

- ED

Sample Content

The Questian Hidoen Text Lorem ipsurn dolor st amet cone
o Text v youfamilarwih the meaning | fconid Q
ActonText Answerthe queston using the ap | Defaul Retum Vatue | IMessageEGKNO_OPTION (1
ves ButonText eves Auto Ciose Milsecond

o Buton Text ano

Cancet Buton Text

treebox.png
Examples
TreeBox with CodeType Content TreeBox with LookupCall Content
Defaut O Technoiogy >0 2014
4) Software & Computer Sen s 02015
[Computer Senices s 0 201
[Intemet I b0 2017
1 Software >0 2018
-
4 .
Disableg > & Financials Disableg PR -
+ O Technology 2 e I
@ uy
i -
Configuration
TreeBox 1 e 2| 7ree Content #hkeyparentidiconidioolTipionts ~
1 LetinAmerica e
@ South America I EAAF Eastem Afica composerfeld
W AF Middle Aica composeriield_
M Caribbean NFAFNorthern Africacomnoserfiel ™
@ Cental America b
[Northem America
Checkal Uncheckal
J—
i

listbox.png
exampies
ListBoxithCodeType cotent Listgox with LookupCallcontent
Default ¥ Blue. Default [] Default
[Cyan] Bold
[Magenta [talic
 Yellow [] Bold italic
¥ Orange
[Pink -
Oiaties e Oiaties e
) Green ¥ Bold italic
¥ Blue
Configuration
ListBox @ Traines. List Content # keytexticonld;toolTip;font.enablec|
Role100;Trainee;eye;Very limited ex|
Ao R0 e e tolateen
Role120;Secretary.eye:No longer av|
[Secretary. Role130;Manager,eye;Senior true;t
[] Manager
Ghectal Uncneceal
getCheckedkeys) [Role100Role110 (7] Filter Checked Rows Value
Samplo Contnt

smartfieldmenu.png
smartfield

[N

Menu term 1
Menu iterm 2

Menu ftem 3

smartfield.png
SmartField

Examples

‘SmartField with List Content ‘SmartField ith Tree Content
Deaut (German (swizstang) O et [Sofware & Computer Sevices. 01
Wandstory i) wansatony B Q
Disabled white Disabled Software
Configuration
Uit smartield O] Teesmatidd [soutnem Q)
getvalue() Rolet10 getvalue() 4 W Atica
List Content # keytexticonld;toolTip;fontenabled | Tree Content i

Role100 Trainee;eye:eryimited exp| 4w s

Role110;Employee;eye; boldtrue

Role120;Secretary.eye:No longer ava| ‘Southem Asia

Role130 anagereye;Senior;irue. 4w Europe

Souther Europe

W) 5 ——]

B — pm—
Browse Auto Expand All

SRR

tablefield.png
TableField

pre
it Name « Type Size
[birdjpg JPGImage 206 KB
[datetimefield.png PNG Image 26KB.
Open File
soueri
Configuration
TaoleField ‘Name Location Date « Industry
O
5 S
{ —————————————————— »
e
B E— [SpP——
B — v
e — S
B — o
B e — -
o v
Sampl Content

treefield.png
Treefield

Examples
Default » Oil & Gas. -
J—
 nustidls
 Consumer Goods
 Heath care
 Consumer sences d
Configuration
TreeField b g Afri Tree Content # key parenttexticonidtoolTip;fonte o
T Areree nosasse
W Am(Info. [EAAF Eastern Africa,composerfield!|
- o A e s comosels
Edit > Insert . NF;AF;Northern Africa;composerfiel
b W Asi SF,AF;Southern Africa,composerfiel
Upote et s composertl
' Europe AM;Americas tree_node;; trueitrue ¥
W Oceania Delete. « I >
‘Menu Content # key parenttexticonidtoolTip;fonte o
INFO; &lnfo....; true;true .
EDIT, &Edit,; true;true.
INSERT.EDITI&nsert _;:truetrue
Sampio Contnt

checkboxfield.png
| Default

Disabled

datetimefield.png
- mera F—
Default [l Defautt 1925 ©| Defautt

Uancaor .] anaatoy S O wenasoy

oot (e D) ot (5 oo ()
Locale English (United Kingdo

Configuration

f—— A——— [——

getvalue() Thu Feb 06 00:00:00 | getvalue() ThuJan0119:25:00 | getvalue() Thu Feb 06 19:25:00
- e owsTmsamal sy
o —"

buttonlink.png
Buttons & Links

Examples
Button Toggle Button Link Button
Push o select Deaut
[T [setectea] Disabled
€ Styied =
Configuration
Toggle |
caver aToggle
fooni bookmark Q
ose

radiobuttonfield.png
RadioButtonGroup

Examples
Default Private Exernal
Disabled Inactive Al
Styled Oa Ow

Configuration

RadioButtonGroup. Inactive. Al

T —
S
R —
e

Sampio Contnt

tabbox.png
TabBox =

Examples

Months ~ Comments “Documents

soniary | D]

Foonay | Juy)
e[) e]
‘Tab Visibility

Visible (Months)
Visible (Comments)

/| Visible (Documeris)

groupbox.png
GroupBox

Field Visibility

[] =
county [
]
Horizontal Layout
sy (1) fouay [z] wa [3]
o o w5 Jume 5]
w2 N
o
| w5

Visible (First Name)
Visible (Last Narme)
V! Visible (Company)

Visible (Scrollable)

splitbox.png
SpitBox

Examples
Fiies
Name Type. Size «.
[birdjpg JPGImage. 206 K8
Details
Name [oiaipg
Size [Bytes] (
Wodiied ns 11PH
Splitter Visibility
| Visible (Preview)
/| Visible (Details)
Close.

sequencebox.png
SequenceBox X

Examples
From/To Usage
petauttom (J o]
wangatoryfom | 2] tof =)
Disabled flom {10 1] (100)] to[s2tr14 (| [71epm 9}
Horizontal Field Group Usage

& [Fstame) (Gesiiome e

Campany () Empoyees) s qJ
Field Visibility

Visible (Company)

Visible (Employee)

Visible (industry)

scout_download.png
S Eclpse Downlosds

€« C' | & https;//www.eclipse.org/downloads/

& eclipse

GETTING STARTED MEMBERS PROJECTS MORE-

> Packages | Developer Builds | Java™ 8 Support

Eclipse IDE for Java Developers
d Downloaded 260,018 Times

‘The essential tools for any Java developer, including a Java IDE, a VS client,
Git client, XML Editor, Mylyn, Maven integration...

Eclipse for Scout Developers = /c
Downloaded 21,033 Times

Eclipse Scout is a framework to develop Java/Eclipse based business
applications that run on the desktop, in browsers, and on mabile.

§ windows32Bit
men Windows 64 Bit

§ windows32sit
men Windows 64Bit

L DOWNLOAD

JRebel
+JAVA=

'BACON-WRAPPED FERRAI
FAST & DELICIOUS CODE

« Compare & Combine
Packages

« Install Guide

« Documentation

« Updating Eclipse

« Forums

oracle_jdk_download.png
5] Jova S Development kit x

«

c

Java SE Development Kit 7u60

[www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html

You must accept the Oracle Binary Code License Agreement for Java SE to download this

software.

Accept License Agreement ® Decline License Agreement

Product/ File Description

File Size

Download

Linux x86
Linux x86

Linux x64

Linux x64

Mac OS X x64

Solaris x86 (SVR4 package)

Solaris x86

Solaris x64 (SVR4 package)

Solaris x64

Solaris SPARC (SVR4 package)
Solaris SPARC

Solaris SPARC 64-bit (SVR4 package)
Solaris SPARC 64-bit

Windows x86

Windows x64

119.67 MB
136.95 MB
12097 MB
135.77 MB
185.94 MB
139.43 MB
955118

2464 MB
16.35 1B
138.73 MB
98.57 MB
24.04MB
18418

127.91MB
129.65 MB

¥ jdk-7uB0-inux-i586.rpm

$ jok-7uB0-linuy-i586 tar gz

jdk-7uB0-inux-x64.rpm
jok-7B0-linux-x64 tar gz
jdk-7u80-macosx-x64.dmg
jdk-780-olaris 586 tar.Z
jok-7uB0-solaris-i586 tar gz

jdk-7uB0-solaris-x64 tar.Z

$ jok-7u60-solaris-x64.tar.gz

jdk-7uB0-solaris-sparc tar Z
jdk-7u80-olaris-sparc tar.gz
jdk-7u80-olaris-sparcvd.tar. Z
jdk-7u80-solaris-sparcvd.tar.gz
jdk-7u0-windows-i586.exe

jdk-7uB0-windows-x64 exe

Java .

‘magazine
for FR

Subscribe Today.

We
Introducing Ja

Watch Now

scout_startup_select_workspace.png
clipse

'S Workspace Launcher

Select a workspace

Eclipse stores your projects in a folder called a workspace.
Choose a workspace folderto use for this session.

ce\hellow

]

7] Usethis ss the default and do not ak again

scout_download_mirror.png
S Eclpse downloads - mirrc. X

€« c

ac © ®login

& eclipse — B

GETTINGSTARTED ~ MEMBERS ~ PROJECTS MORE- & DOWNLOAD

Downloads Home

s s EClIDSE dOWNloads - mirror .
s wereracss SElECTION Sprl?g

All downloads are provided under the terms and conditions of the Eclipse

Foundation Software User Agreement unless otherwise specified.
FREE ECLIPSE PLUGIN

Download eclipse-scout-luna-SR1-win32-x86_64.zip from: EORISERING

Give Back
to Eclipse

switzertand) SwiTCHnirror (i)
$5 815 ! Checksums: [MDS5] [SHA1] [SHA-512]
..r pick a mirror site below.

$25
hitps:/ /s eclpse o/ downloads/download.phpfle=/technology/epp/ downloads/release/luna/SRL/eclpse-scout-una-SR1-wind2-86 64 zip&miror id=

imagefield.png
ImageField
Examples
Default Aligned Left *
Aligned Center *
Aligned Right
Configuration
Auto Fit ‘Scrolibar Enabled
Image URL | http:112.bp.blogspot.com/_LDF924Z2ZHolTQZI-CUPI2UAAAAAAAATCI-DUSZRxywhl/s 1600/bird_1008.jpg

Sample Content

jose.

editabletablefield.png
Configuration

TebleField Name Location Date « Industry. Participans
Eclipsecon USA SanFrancisco, USA Mar 18,2014 Software)
Javaland Brinl Germany Mar25,2014 Software 810

emaionaparsAr S (MG Joun 15,2015 Asospace 10273

3 objects, 1 selected

SelcedRous) o Resize Cotams
P) 1o visblo
UpsstedRovs) isEatatle
e — i Sl
P Y Tobo Stts Visblo

V) Header Row Visiole

svgfield.png
Examples.

Default

Configuration

Usersve

‘Sampie Content

Disabled

Svg Document

<2umi version="1.0" encoding="UTF&" sta|
<svg width="400" height="400" viewBox="0)
contentStleType="texticss" version="1.1"
<polygon id="background" points="0,0 0.4
<ainkhref="ntplocallcircled">
<circle 10="circle " 0="120" cy="120"
<z
<polygon id="box” points="100,200 10,3,
<ainkhref="ntp/locallcrcle2™>
<circle 10="Cirtle2” o="250° C/="200° 1="
<a>
<svg>

Close.

sdk_start_client_product.png
& Scout Object Propertes 53 = 0 | & Tasks [Problems @ Java

orgeclipsescouthelloworld -z o |
helloworld-server-dev.product [Eclipse Application] C\java\jdK1.7.0_55\bin javaw.exe (19.06.2014 21:25:15)

» Filter ISESSION 2014-06-19 21:25:15.219 -
eclipse. buildId=unknown
Jjava.version=1.7.0_55
Java.vendor=oracle Corporation

» Project Version

 Product Launchers = BootLoader constants: OS-win32, ARCH=xB6_64, WS=win32, NL=en_US
hellowortd-server-dev.product - runring.« Franework argunents: -product org. sclipse. scout.hellovorld. server. product
@) || Comand-line orguments: -product org.cclipse. scout.hellowor d.server.product -data
) helloworld-server-dev.product
& confia % | | 1eNTRY org.eclipse. scout.helloworld. server 1 0 2014-06-19 21:25:16.655
@ StatPage INESSAGE org. eclipse. scout. helloworld. server. Serverapplication. start(serverapplicati
s

@ Process Serviet

helloworld-rap-dev.product

) helloworld-rap-dev.product
4] config.

@ Automatic Device Dispatch
@ Desktop Devices

@ Smartphone Dt [Start Product in Debug Mode...
martphone Devices s

@ Tablet Devices »
d [« i ’

Iﬁo

sdk_server_desktopservice_load.png
t: Scout Explorer 53 | [§ PackageBpl.. = O | [7) DesktopSenvicejava 3

S I —
. 2 package org.eclipsescout. helloworld. server. services;
4 & Scout Projects :
4 & org.eclipsescout helloworld 5% import org.eclipse.scout.commons . exception. Processingexceptions[]
> ® org.ecipsescout helloworld.clent 1
» @ omecipsescouthelloworldshared | 119 /7%
4 @ orgeclpsescouthellowordsener | 12 Gauthor bob
[3 ServerSession i3 | */
4 © 14 public class DesktopService extends AbstractService implements IDesktopService {
4 & sevices i
4 & DesktopSence 165 goverride
" [load(DesktopFormbatsl] | 7 public Desktoprornbata [EE(besktoprormbata forsDsta) throus Processingexception {
+ G Lookep Serices 15 //1000 [bob] Auto-generated method stub.
 ooeap e 15 return forndata;
> & Common Sences .
> €5 Libraries =N
1 (@ Webservices (JAX-WS RI216) 22

b €9 Libraries

sdk_helloworld_messagefield.png
Ele Edit Source Refoctor Navigote Search Broject Run Window Help

1 ScoutExplorer 37 | 1§ Packagebxplorer & (5] ¥ = O | [1) DesktopFormjava 3

4 ® org.cclipse.scout helloworld.client . s
® orgecipse 525 gorder(10.0)

> | orgedlipsescouthelloworld.uirep 5 public class Maingox extends AbstractGroupBox {
s orgedipsescout helloworlduiswing o

b org.eclipsescout helloworld i swt 55 gorder(10.0)
» @ org.eclpsescout helloworld.cent mobile 5 public class Desktopbox extends AbstractGroupBox {
» 3 ClientSession &7
» O Desktop
4 5 Forms
4 [DesktopForm goverride
b G5 Variables protected String getConfigurediabel() {
2 O MainBox return TEXTS.get("Hessage") 5

» & Keystrokes
4 [DesktopBox
b € Keystrokes 3

[0 MessageField (Message)

» & Handlers public class ViewHandler extends AbstractFormHandler {

gorder(10.0)
public class extends AbstractstringField {

5 Scout Object Properties 33 | oerrise :
i

"'~ Properties e @ 2 o
1 Tests [Problems 38 @ Jdee © Consele S Progress Qerorleg = O

Appearance = Progress @] 9

oiems

[Decrpion hesouce

Layout

Mandatory

Multline Ted

hellworld_empty_swing.png
My Application S
File Tools Favorites 2
Eclipse Scout

hellworld_empty_rap.png
5) My Application
& - € |[localhost8082/web % =

sdk_new_field_wizard_menu.png
= Scout Explorer 50 | [§ Package Explorer
4 & Scout rojects
4 & orgeciipse scout helloworld
4 ® orgeciipse.scouthelloworld.clent
> orgeclpsescout helloworld.
5 orgeclpsescout helloworld.
b org.eclipsescout helloworld i swt
» @ org.cclpsescout helloworld client mobile
» 3 ClientSession
» O Desktop
4 €5 Forms
4 [DesktopForm
b G5 Variables

B v=0o

Create template...

Find Java references.

AltsShift+R

hellworld_empty_swt.png

sdk_new_field_groupbox_2.png
New Group Box
Create a new Group Box.

abel

Cls o |Desttopber

iving ot

sdk_new_field_groupbox_1.png
Form Field
Choose the type of form field.

O DateField
I DoubleField

O FormstateButton

0 GroupBox - orgeclipse.scout.r.client.iform fields.groupbox AbstractGroupBox
© HtmiField

Olntegerfield

<Back H%” Enish | [Cancel

sdk_new_field_stringfield_2.png
New String Field
 Please specify a closs name.

welvesgd]
Csame|

Sibling.

sdk_new_field_stringfield_1.png
Form Field
Choose the type of form field.

O SmartField
[ESirngF eld - ora echpse scout t hent i form lds singfield Abere
TabBox
O Tablefield

sdk_new_text_entry.png
New Entry

Create a new Translation entry.

Key Name Message

‘<

Copy key to clipboard.

tomcat_managerapp_login.png
) Apache Tomeat/7054 x

€ & X [localhost8080

Authentication Required

Home Documentation Col‘{ Find Help

The server https//localhost8080 requires 3 usemame and

Apache Tomcat/7.0.5: pessword. The server says: Tomeat Manager Applicaton. Software Foundation
J/www.apache.org/

Congratulations!

| Managerapp |

Host Manager

Developer Quick Start

Tomcat Setup Realms & AAA
First Web Application JDBC DataSources

tomcat_helloworld_download.png
€ & C # [locahost:8080/heloworid_server/

=

Download

Installation of helloworid

helloworld has to be installed on your computer before use.

[helloworid zip |

tomcat_managerapp_selectwar.png
[/manager

€ - C |[localhost8080/manager/html

" Apache
Software Foundation

http://www.apache.org/

Tomcat Web Application Manager

e —
2 —

[Expie sessions | Wit die= 50| minutes
e
[Epre sessons wihide= 30 minies

Start_Stop Reload_Undsploy

Comexpangsqures ||
XL Configurationfle URL: ||

[Weicome to Tomcat

imanager [Tomeat Manager pplication

‘Select WAR fileto upload Nofile chosen

helloworld_message_rap_rayo.png
8] My Application
- €' | [localhost:8082/web

Hessage Hello Worla]

helloworld_message_swing_rayo.png
Hy Application
Eclipse Scout

Message Hello World!

sdk_rayo_confirm_changes.png
Change Technology
Specify the resources that should be modified.

|

) falhelloworld terget

org.eclipse:scout helloworld.uiswing

I (2| MANIFEST.MF

I [) SwingEnvironmentjava

7]) helloworld-swing-client-dev.product
7]) helloworld-swing-client product

sdk_rayo_add_checkbox.png
15 Scout Explorer 57 | [# Package Bxplorer = 1
BE 7
4 & Scout Projects

4da org.ecipse scouthelloworld |

» ® orgecipsescouthelloworldclent

» 1 orgedipsescouthelloworldshared

» @ orgecipsescout helloworldserver
» €5 Librares

5 Scout Object Properties 53 =8
org.eclipse.scout helloworld
» Fitter

» Project Version

» Product Launchers o

~ Technologies

Backend Features
Webservices with JAX-WS RI216
Database Drivers

Derby 10 JDBC Driver for Eclipse Scout

[FIMySQL 5.1.17 JDBC Driver for Ecipse Scout
[Oracle 112 JDBC Driver for Ecipse Scout
[PostgreSQL JDBC Diver for Ecipse Scout
GeneralFeatures

[Doodj Support

[1F2 Support

JRAP FileChooser Support (ncubation)
Scalable Vector Graphics (SVG)

export_wizard_1.png
Export a Scout Project

Exports a Scout project.
‘The export can be deployed directly to an application- or web-server.

Toge Divectory [tomeatTomcat0\webapps

Export as Enterprise Archive (EAR).

AR Fie Name nelloworid o

2] @ Server Web Applicsion I avaabl, the cient will e included)
) Clent Appiication (ZIP)
1 RAP Web Appiication

< Back [*g] Einish Cancel

sdk_export_war_menu.png
= Scout Explorer 50 | [§ Package Explorer @ v=0O
4 & Scout rojects

Add Scout Bundles.

Create missing @Classld annotations

Update all FormData Classes...
Update all PageData Classes...
Wellform.

Export Scout Project...
Organize all Imports.

b4

Validate FormData SQL Bindings

export_wizard_4.png
Export RAP Web Archive
Exports the product as WAR file.

WaR il eencrtdvor

Product i |orgecpsescouthelowordaisap/producs producton/helloworé-pprodict

export_wizard_3.png
© Export 3 Scout Project

Export Client Appl
Exports the client application as ZIP file.

Client Product to include | org.eclipsescout helloworld.uiswt/prod:
Client Download Location | org.eclipse scout helloworld server/resour]

Select Product
Choose the preferred products.

orgeclipse scout helloworld irap
4 orgeclipse.scout helloworld.uiswing
5 helloworld-swing-client-dev.product (development)
5 helloworld-swing-client product (production)
4 orgeeclpse.scout helloworlduiswt
5 helloworld-swt-clent-dev.product (development)
| £ helloworld-swt-client product (production)|
@ org.cclpse.scout helloworld server

sdk_server_node_properties.png
1 Scout Explorer 37 | [§ Package Explorer & (5 ¥ = O
4 & Scout Projects
4 Z org.eclpsescouthelloworld
org.eclpsescouthelloword.clent
» @ org.eclipse scout helloworld shared

(@ org.cclipse scout helloworld server |

b €9 Libraries

5 Scout Object Properties 53 =8

org.eclipse.scout helloworld.server
~ Links
helloworld-server product

) helloworld-server.product
4] config.

helloworld-server-dev.product

) helloworld-server-dev.product
4] config.

@ Start Page

@ Process Serviet

¥ O m#O

sdk_select_product_launcher.png
© select Product =
Select Product

Choose the preferred products.

4 orgeclipse.scout helloworld.uiswing
5 helloworld-swing-client-dev.product (development)
1 5 helloworld-swing-client product (production)
4 orgeeclipse.scout helloworlduiswt
5 helloworld-swt-client-dev.product (development)
] 5 helloworld-swt-client product (production)
4 @ org.eclpse.scout helloworld server
5 helloworld-server-dev.product (development)
1 5 helloworld-server.product (production)

sdk_server_dev_product.png
£5) helloworld-server-dev.product 53 =8
% Dependenci OB EB®
Plug-ins and Fragments &3
List all the plug-ins and fragments that constitute the product.
4 org.eclipse.osgiservices B Add...
<> org.eclipse.scout.commons. =
(g ecipse scouthelloworid server) Add Working Set,
4= org.eclipse.scout helloworld.shared ‘Add Required Plug-ins
> org.eclipse.scout jaxws216
> orgecipsescouttidbedebylo
S [Removenn]
> org.eclipse.scout.rtserver.commons 3
Soeipacon

4= org.eclpsescoutsenvice

.

[include optionsl dependencies when computing required plug-ins

Ovmiow| Dependencies| Conguration | aancting] spe | raning] e Upde]

sdk_server_plugin_explorer.png
E: Scout Explorer | % Package Explorer 57

=R

» & orgecipsescout helloworldclent
» & orgeclipsescout helloworldclent.mobile
4 org.ecipse scout helloworld sever
b @ sic
b m JRE System Library [JavaSE-1.7]
») Plug-in Dependencies
b € META-INF
4 & products
4 &> development
& confg
) heloworld-server-dev.product
4 & production
& configini
) helloworld-serverproduct
b (& resources
6 buid properties
£ pluginaaml
» & orgecipsescouthelloworldshared
» & orgecipsescouthelloworldtarget
» & orgecipsescouthelloworlduirsp
» & orgeciipsescout helloworlduiswing
» & orgecipsescout helloworld.uiswt

=]

helloworld_finished_rayo_rap.png

helloworld_finished_rayo_swing.png
helloworld
Eclipse Scout

Message hello warld!

sdk_package_explorer.png
% Scout Explorer [Package Explorer 52 | @
4 & orgeciipse scouthelloworld.clent
4@
b 8 orgeclipse:scout helloworld.client.
b 8 orgeclipse:scout.helloworld.client.ui.desktop
4 & org.eclipse.scout helloworld.client.
) DesktopFormjava|
» mh JRE System Library [JavaSE-1.7]
») Plug-in Dependencies
b € META-INF
b (& resources
(& buildproperties
£ pluginami
» & org.eclpsescout helloworld.client mobile
» & org.echpsescout helloworld.server
» & org.eclpsescout helloworld shared
» & org.echpsescout helloworld trget
» & org.eclpsescout helloworld.uirep
» & org.eclpsescout helloworld.uiswing
» & org.echpsescout helloworld.ui.swt

=]

helloworld_finished_rayo_rap_mobile.png
8 helloworld

Message

hello world

sdk_helloworld_viewhandler.png
Edit Source Refactor Novigate Search Project Run Window Help

= Scout Explorer 53 1% Package fplorer G 5 ¥ = O[3 Scout Object Properties 52 [3) DesktopFormjova 57 |

4 @ Scout Projects o

4 & orgeciipse scout helloworld [] DesktopForm gorder(16.0)
2 © org eclpse scouthelloworld lent ‘ public class DesktopBox extends AbstractGroupBox {

y ~ Links
b orgeclipsescouthelloworld.uirap gorder(10.0)

b orgeclipsescout helloworld.uiswing ® DesktopForm Service public class MessageField extends AbstractStringField {
» orgeclipsescout helloworlduiswt © Dotorrombats | Desttopsenice

+ @ orgeclpsescouthelloworldcientmabile © Desttopserice @override)
=P protected string getConfigurediabel() {

f = o3 return TEXTS.get("Message");
» CJ Desktop » Documentation) get("Message").

4 (5 Forms "'~ Properties o T

4 [DesktopForm 9% ¥
Appearance N

i
Qo wl =) | %

EE———— T, s e o
» (= Keystrokes Layout o Rouls E
4 [DesktopBox oiplayttint [view |[Z)= |00 goverriae
» & Keystrokes st Vicw _ 4102 protected void execload() throws ProcessingException {
R B e e e
2 & Hondles 10: Desktoprornbata fomdata = new Deskioprormdata()s
195 exportrormbata(formbata);
o [ViewHandler 106 forndata = service.load(fornDats);
& SearchFoms 107 inportFormoata(formdata);
» & Wi |
+ & Local Lookup Calls 109
LG soew R o |
» & Aloutines
» & AllPages o

"> Advanced Operations

sdk_scout_explorer.png
= Scout Explorer 50 | [§ Package Explorer @ v=0O
4 & Scout rojects
4 & orgeciipse scout helloworld
4 ® orgeciipse.scouthelloworld.clent
> orgeclpsescout helloworld.
5 orgeclpsescout helloworld.
b org.eclipsescout helloworld i swt
» @ org.cclpsescout helloworld client mobile
» 3 ClientSession
» O Desktop
4 €5 Forms
[DeskiopForm|
b E Search Forms
> €2 Wizards
» € Local Lookup Calls
b G Senvices
b 5 All Outlines.
» & AlPages
b & Templates
b 5 Libraries
» @ org.eclipse scout helloworld shared
» @ org.eclipsescout helloworld server
b €5 Libraries

sdk_edit_product_launcher.png
2 Scout Object Properties 57
orgeeclipsecouthelloworld
» Fiter
» Project Version
< Product Launchers

helloworld-server-dev.product

) helloworld-server-dev.product
4] config.

@ Start Page

@ Process Serviet
helloworld-swing-client-dev.product

) helloworld-swing-client-dev.product
4] config.

helloworld-swt-client-dev.product

) helloworld-swt-client-dev.product
4] config.

» Technologies

m %O N

B#O EHO

3

eclipse_install_new_software.png
@

@
%

Welcome

Help Contents
Search

Dynamic Help
Key Assist

Tips and Tricks...

Report Bug or Enhancement.

Cheat Sheets..

Check for Updates.

S

Ctrl+ShiftsL

Install New Softuware...

N

Installation Details
Eclipse Marketplace...

About Eclipse

5 Snippets

£ I O Sy

85 Outline 7] Tk L

=]

An outline i not available.

=8

®

Path

eclipse_select_scout_features.png
& instal

Available Software
Check the items that you wish to install.

Workwith: Scout Luna - http://download.eclipse.org/scout/releases/4.0

Find more software by working with the *Availsble Softuware Sites” preferences.

[typefittertex

Version

how only the latest versions of available software

roup items by category
how only software applicable to target environment
Contact all update sites during installto find required software

Hide items that are already installed
What is slready installed?

@

<Back || Mm>t\ Einish

I

eclipse_add_repository.png
& instal

Available Software
Select a site or enter the location of a site.

Workwith: type or select asite

type filter text

Name

® Thereis noste selected] Neme: Scout Luna

@

Location ip/downiontecipseorg/scoutilemesidl | [Avchiven

how only the latest versions of available software

roup items by category
how only software applicable to target environment
Contact all update sites during installto find required software

ide items that are already installed
What is slready installed?

@

Finish

tomcat_install_dir.png
& tomeat_install_dir
5@ bin
T tomeat7.exe
5@ conf
%) server.xml
[¥) tomeat-users.xm

talna, 20130517109
localhost_access_log. 2013-05-17.t¢t
locahost.2013-05-17.log
tomcat7-stderr 2013.05-17.g
tomeat7-stdout. 2013-05-17.Jog
-G webapps
5 heloworld_server
5 & WeB I
B (> ecipse
CE=1)
[X) web.xm
heloworld_server.war
5 work
5 & Cataina
& locahost

tomcat_install.png
[Apache Tomeat/7.0.8.
C A | © locahost:3080]

Home Documentation Configuration Wiki Mailing Lists Find Help

wpache Software Foundation
Apache http://www.apache.org/
Tomcat/7.0.8

If you're seeing this, you've successfully installed Tomcat.

Congratulations!

Recommended Reading: Server Status
Security Considerations HOW-TO
Manager App

Manager A tion HOW-TO
Clustering/Session Replication HOW-TO Host Manager

Developer Quick Start
Tomeat Setup Realms & AAA Servlet Examples Servlet Specifications

eclipse_ide_parts.png
& Scout - org.eclipsescout.helloworld.clientlsrc/org/eclipsescout/helloworld/clienti ui/forms/Des’

Perspective Buttons
Fie Edt Souce Refactor Nvgate Seach Progct Rum Vindow e
' F-0- Q- IBS T & | &

& Scout Explorer 3¢ | [Package Explorer DesktopFormjava 5

mblic vasnsex getainaen() ¢
& & scoutpro » B v

i ass (ainBox.class) ;
Scout Explorer View + Java Editor

org capsescout nesonano.uiep
org ecipsescout heloword. i sving
org ecpsescout helowrkd.u st
%8 org.edpsescout heloword cent mobie
: g Shensesden Goraer (10.0)
eston
ublic class MainSox extends AbstractGroupBox (
565 Forms » =
Sl Gozdex (10.0)
Varitles public class extends AbstractStringField {
=0 Mareox

G Keystrokes

public MessageField getMessgaeField() {
return getFieldSyClass (MessageField.class):
B

goverride
protected String gecConfiguredlabel() {
return TEXTS.get("Messgae");

2 Scout Object Properties 52)

MessaneFiel, “teccnae) (verie]

- Object Properties View

Appearance

= Console 52
Layout

G o consoes to dpayat s e
Gdn f Console View

Mandatory (]

Behavior

scout_startup_scout_explorer.png
Ele Edit Source Refoctor Navigote Search Broject Run Window Help

& Scout Projects
b €9 Libraries

5 Scout Object Propertes £7 % Ouine

No Properties available for Scout Projects

'~ Filter
Regor
ETosks 51 (2 Probl.. @ Java.. B Cons.. 3 Prog
Oitems

==
[

scout_startup_welcome.png
File Edit Source Refoctor Navigate Search Project Run Window Help

(@ wacm = YL

Welcome to Eclipse for Scout Developers

Overview Q Tutorials
Go through tutorials

Get an overview of the features

Samples What's New
Try out the samples. Find out what is new

