The Scout "Hello World!"

Scout Team

Version 5.0.0-SNAPSHOT

Table of Contents

Create @ SCOUL PrOJeCTt o e il
RUN the APPIICatION i3
Add the User Interface Widgets i e e e ES)
IMplement the SErVer SEIVICE e 9
Run the Final Application e 10

WHALIS NEXE? © . oottt 12

After installing the Eclipse Scout package you are now ready to implement your
first Scout application.

Create a Scout Project

Start your Eclipse IDE and select an empty directory for your workspace. This workspace directory will
then hold all the project code for the OHello World0 application. Once the Eclipse IDE is running it will
show the Scout perspective with the Scout Explorer view and an empty Scout Object Properties view.
To create a new Scout project select the New Scout ProjectE context menu as shown in Figure New
Scout Project Menu.

Figure 1. Create a new Scout project using the Scout SDK perspective.

In the New Scout Project wizard enter a name for your Scout project. As we are creating a OHello
World0 application, use org.eclipsescout.helloworld for the Project Name field according to Figure New
Scout Project Wizard. Then, click the [!Finish!] button to let the Scout SDK create the initial project
code for you.

= e b I = W
Jap—— = == —,.Ll.l_____h.ﬁ.-.-_4_,._ T e S T TR TR
1l .

Figure 2. The new Scout project wizard.

Once the initial project code is built, the Scout SDK displays the application model in the Scout Explorer
as shown in Figure Representation of the Hello World Application. This model is visually presented as
a tree structure covering both the client and the server part of the application. The Scout Explorer view
on the left hand side displays the top level elements of the complete Scout application. Under the
orange node the Scout client components are listed. Components that are needed in both the Scout
client and the Scout server are collected under the green node. And the Scout server components are
listed below the blue node in the Scout Explorer view.

Figure 3. The Scout SDK showing the tree representation of our OHello World0 application in the Scout
Explorer. The Scout Object Properties contain the product launchers for the server and the available
clients.

Run the Application

After the initial project creation step we can start the Scout application for the first time. For this, we
switch to the Scout Explorer view and select the root node org.eclipse.scout.helloworld. This then loads
the corresponding controls and the Product Launchers section into the Scout Object Properties view as
shown in Figure Representation of the Hello World Application.

Figure 4. Starting the Hello World application in the Scout SDK using the provided product launcher.
Make sure to start the server before starting any client product.

In the product launcher section of the Scout Object Properties view four launcher boxes are available.
One launcher box for the Scout server product, and three launchers for the different client products.
Each launcher box provides a link to the corresponding configuration and product definition files, as
well as the launcher icons to start and stop the corresponding product. The green Circle icon starts the
product in normal mode. The Bug icon just below, starts a product in debug mode. To terminate a
running product, the red Square icon is provided.

Before any of the client products is started, we need to start the server product using the green circle
or the bug launcher icon. During startup of the Scout server you should see console output similar to
the one shown on the right hand side of Figure Starting the Hello World application.

Once the server is running, you may start the RAP client as shown in Figure Starting the Hello World
application. To start the Swing client, or the SWT client use the corresponding green Circle icon or Bug
icon. And with a running RAP client, the Scout client can be opened in a web browser by clicking on
the provided Automatic Device Dispatch link.

4

Figure 5. Running the three client applications. Each client displays an empty desktop form. The RAP
client, the Swing client, and the SWT client

Having started the Scout server and all client products, the running client applications should look as
shown in Figure Running the three client applications.

Add the User Interface Widgets

The project creation step has created a Scout client that displays an empty desktop form. We will now
add widgets to the clientis desktop form that will later display the OHello World!0 message.

To add any widgets to the desktop form, navigate to the DesktopForm in the Scout Explorer. For this,
click on the orange client node in the Scout Explorer view. Then, expand the Forms folder by clicking
on the small triangle icon, and further expand the DesktopForm. As a result, the MainBox element
becomes visible below the desktop form as shown in Figure New Form Field Menu. With a click of the
right mouse button over the MainBox, the available context menus are displayed. To start the form
field wizard select the New Form Field E menu.

Figure 6. Using the New Form Field E menu to start the form field wizard provided by the Scout SDK.

In the first step of the form field wizard shown on in Figure Add the DesktopBox field choose
GroupBox as the form field type and click on the [INext!] button. In the second wizard step, enter
(Desktopl into the Class Name field before you close the wizard with the [IFinish!] button. The Scout
SDK will then add the necessary Java code for the DesktopBox in the background.

Figure 7. Adding the DesktopBox field with the Scout SDK form field wizard.

We can now add the text field widget to the group box just created. To do this, expand the MainBox in
the Scout Explorer view to access the newly created DesktopBox element. On the DesktopBox use the
New Form Field E menu again. In the first wizard step, select StringField as the form field type
according to Figure Add a StringField. To select the StringField type you can either scroll down the list
of available types or enter 0st0 into the field above the field type list. In the second wizard step, enter
IMessagel into the Label field. As we do not yet have the text IMessagel available in our OHello World0
application the wizard prompts the user with the proposal New Translated Text

Figure 8. Adding a StringField and providing a new translation entry.

With a double click on this option a new text entry can be added to the application as shown in Figure
Add a new translation entry. Once an initial translation for the message label is provided, close the
translation dialog with the [!Ok!] button. Finally, close the form field wizard using the [!Finish!] button.

Figure 9. Adding a new translation entry.

By expanding the DesktopBox element in the Scout Explorer, the new message field becomes visible.
Now, double click on the message field element to load the corresponding Java code into an editor and
displays the message fieldils properties in the Scout Object Properties as shown in Figure showing
MessageField. This is a good moment to compare your status with this screenshot. Make sure that both

the Java code and the project structure in the Scout Explorer look as shown in Figure showing
MessageField.

Figure 10. Scout SDK showing the MessageField

Having verified your status of the OHello World0 application start the start the server and a client of the
application as described in the previous section. The client applications will then display your message
widget. However, the text widget is still empty, as we did not yet load any initial content into this field.
This is the topic of the next section.

Implement the Server Service

The responsibility of the Scout server in our OHello World0 application is to provide an initial text
content for the message field in the clientls user interface. We implement this behaviour in the load
method of the serveris DesktopService. An empty stub for the load method of the DesktopService
service has already been created during the initial project creation step.

To navigate to the implementation of the desktop service in the Scout SDK, we first expand the blue
top-level server node in the Scout Explorer. Below the server node, we then expand the Services folder
which shows the DesktopService element. Expanding this DesktopService node, the load method
becomes visible as shown in Figure showing Server node.

Figure 11. The Scout Explorer showing the blue server node expanded with the Services folder. In this
folder the load method of DesktopService is selected and its initial implementation is shown in the editor
on the right side.

The DesktopService represents the server service corresponding to the DesktopForm on the client side.
This initial setup represents Scoutls default where client forms and server services typically come in
pairs. Whenever the clientls user interface displays a form to the user, the client connects to the server
and calls the load method of the corresponding server service. We just need to add our business logic
to the load method of the server(s DesktopService.

According to the signature of the load method, a formData object is passed into this method that is then
handed back in the return statement. To complete the implementation of the load method it is
sufficient to assign the text 'hello world!" to the message field part of the form data. The complete
implementation of the load method is provided in Listing load() implementation.

Listing 1. load() implementation in the DesktopService.

E

E public DesktopFormData load(DesktopFormData formData) throws ProcessingException {
E formData.getMessage().setValue("Hello World!™); &

E return formData;

E}

¥ assign a value to the value holder part of the FormData corresponding to the message field

With this last element we have completed the Scout OHello World0 application.

Run the Final Application

We are now ready to run the completed OHello World!0 application by first starting the server and then
the clients. This results in running clients as shown in Figure Running the complete Hello World
application. The mobile version of the client can be started from the Scout SDK by clicking on the
Smartphone Devices link in the product launchers section. Alternatively, manually change the
applications URL from http://localhost:8082/web to http://localhost:8082/mobile.

10

11

Figure 12. Running the complete OHello World!0 application with an SWT client, as a web application and
a mobile application.

Congratulations, you just have implemented your first Scout client server application!

Whatls Next?

Now that you have successfully created your first Scout application, you might want to learn more
about Scout. To gain experience with Scout, you can follow more tutorials and start to read in the Scout
books. If you prefer "Learning by doing" browse the available Wiki tutorials and go for the subset that
matches your interests.

http://wiki.eclipse.org/Scout/Tutorial

If you are interested in Scoutls concepts, architecture and features you probably want to start reading.
For this, we are writing the Scout books.

http://wiki.eclipse.org/Scout/Book

In case you should get stuck somewhere and need help, try to get answers by searching the web. And if
despite reasonable efforts this approach does not help, contact us on the forum. Should you have
solved issues on your own, please consider sharing your findings in the Scout forum as this can help
other folks too.

http://www.eclipse.org/forums/eclipse.scout

We wish you all the best on your journey with Scout and hope to hear from you in the Scout forum.

12

http://wiki.eclipse.org/Scout/Tutorial
http://wiki.eclipse.org/Scout/Book
http://www.eclipse.org/forums/eclipse.scout

	The Scout "Hello World!"
	Table of Contents
	Create a Scout Project
	Run the Application
	Add the User Interface Widgets
	Implement the Server Service
	Run the Final Application
	What’s Next?

