
Eclipse Scout
an Introduction

Matthias Zimmermann

Version 5.0.0-SNAPSHOT



Table of Contents
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê1

1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê1

1.1. What is Scout? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê1

1.2. Why Scout?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê9

1.3. What should I read?. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê10

2. ÒHello WorldÓ Tutorial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê12

2.1. Installation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê13

2.2. Create a new Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê13

2.3. Run the Initial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê15

2.4. The User Interface Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê18

2.5. The Server Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê22

2.6. Add the Rayo Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê23

2.7. Exporting the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê26

2.8. Deploying to Tomcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê29

3. ÒHello WorldÓ Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê33

3.1. Create a new Project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê34

3.2. Walking through the Initial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê36

3.3. Run the Initial Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê41

3.4. The User Interface Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê48

3.5. The Server Part . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê50

3.6. Add the Rayo Look and Feel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê53

3.7. Exporting the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê53

3.8. Deploying to Tomcat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê56

4. Scout Tooling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê58

4.1. The Scout SDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê58

4.2. The Scout Explorer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê60

4.3. The Scout Object Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê64

4.4. Scout SDK Wizards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê68

5. A Larger Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê96

5.1. The ÒMy ContactsÓ Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê96

5.2. Setting up the new Scout project . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê105

5.3. Adding the Person Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê112

5.4. Adding the Company Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê119

5.5. Installing the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê121

5.6. Fetching Data from the Database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê131

5.7. Creating the Person Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê136



5.8. Managing Person Data on the Server Side . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê159

5.9. Creating the Company Form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê163

5.10. Adding the Scribe Library to the Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê163

5.11. Integrating LinkedIn Access with Scribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê165

5.12. Fetching Contacts from LinkedIn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê178

Appendix A: Licence and Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê185

A.1. Licence Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê185

A.2. Contributing Individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê186

A.3. Full Licence Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê186

Appendix B: Scout Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê186

B.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê186

B.2. Download and Install a JDK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê187

B.3. Download and Install Scout . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê188

B.4. Add Scout to your Eclipse Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê194

B.5. Verifying the Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê196

Appendix C: Apache Tomcat Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê196

C.1. Platform Specific Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê197

C.2. Directories and Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê198

C.3. The Tomcat Manager Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Ê199



Preface
Today, the Java platform is widely seen as the primary choice for implementing enterprise
applications. While many successful frameworks support the development of persistence layers and
business services, implementing front-ends in a simple and clean way remains a challenge. This is
exactly where Eclipse Scout fits in. The primary goal of Scout is to make your life as a developer easier
and to help organisations to save money and time. For this, the Scout framework covers most of the
recurring front-end aspects such as user authentication, client-server communication and the user
interface. This comprehensive scope reduces the amount of necessary boiler plate code, and let
developers concentrate on understanding and implementing business functionality.

The purpose of this book is to get the reader familiar with the Scout framework. In this book ScoutÕs
core features are introduced and explained using many practical examples. And as both the Scout
framework and Scout applications are written in Java, we make the assumption that you are familiar
with the language too. Ideally, you have worked with Java for some time now and feel comfortable
with the basic language features.

In the first part of the book a general introduction into the runtime part of the framework and the
tooling - the Scout SDK - is provided. After the mandatory ''Hello World!'' application, the book walks
you though a complete client server application including database access. The focus of the bookÕs
second part is on the front-end side of Scout applications. First, an overview of the Scout client model is
introduced before ScoutÕs most important UI components are described based on the Scout widget
demo application. To cover the the server-side of Scout applications, an additional part of the book is
planned to be released jointly with version 5.0 of the Scout framework. And finally, we intend to
amend the book regarding building, testing and continuous integration for Scout applications.

Last but not least, we thank you for your interest in Scout, for being part of our community and for
your friendly support of new community members. To allow for contributions to this book, the
technical setup and the bookÕs licence have been selected to minimize restrictions. According to the
terms of the Creative Commons (CC-BY) license, you are allowed to freely use, share and adapt this
book. All source files of the book including the Scout projects described in the book are available on
github. For the first edition of this book, we did already receive a number of bug reports and
comments that were pointing out mistakes, inconsistencies and suggestions for changes. This feedback
is very valuable to us as it helps to improve both the bookÕs content and the quality for all future
readers. We hope that this book helps you to get started quickly and would love to get your feedback.

1. Introduction

1.1. What is Scout?
Scout is an open source framework for building business applications. The Scout framework covers
most recurring aspects of a classical client server architecture with a strong focus on the applicationÕs
front-end. With its multi-device capability, a Scout client applications may run simultaneously as a rich

1



client, in the browser and on mobile and tablet devices.

To different groups of people, Scout means different things. End users are interested in a good
usability, the management cares about the benefits a new framework can offers to the organisation
and developers want to know if a framework is simple to use and helps them to solve practical issues.
This is why the text below describes Scout from the perspective of these three roles.

1.1.1. End User Perspective

End users of enterprise applications care about friendly user interfaces (UI) and well designed
functionality that support them in their everyday work. Depending on the current context/location of
an end user, either desktop, web or mobile clients work best. If working in the office, a good
integration of the enterprise software with Lotus Notes or Microsoft Office often help to boost the users
productivity. As office software is typically installed locally on the users PC, integrating this software
also requires a desktop client for the enterprise application. When a user is working on a computer
outside of his company where the enterprise client is not installed (or the user lacks the permissions to
install any software), the natural choice is to work with a web application. And when the user is on the
move or sitting in a meeting, the only meaningful option is to work with a mobile device.

Figure 1. The desktop client of a Scout enterprise application.

To provide a concrete example, we briefly describe a real world enterprise application based on Scout.
A first screenshot of a Scout desktop client is provided in Figure 000. The screenshot provides an
overview of the layout of a customer relationship management (CRM) solution. On the left hand side,
an entity class such as companies can be selected. Once an entity such is selected, a form is presented

2



on the right hand side to enter the search criteria. After entering ÒeclipseÓ into the company search
field, the list of matching companies is presented. Using the context menu on a specific company, the
corresponding company dialog can be opened for editing.

Figure 2. A Scout enterprise application running in a web browser.

In Figure 000 a screenshot of the web client of the CRM Scout application is shown. When comparing
the screenshots of the desktop client with the web application it is interesting to note how Scout
applications offer a consistent look and feel for the two clients. This is important as it makes the end
user feel Òat homeÓ on the web client.

3



Figure 3. The same Scout enterprise application running on a mobile device.

Finally, Figure 000 provides a screenshot of the now familiar CRM application. In contrast to desktop
and web applications, most tablets and mobile phones are controlled using touch features instead of
mouse clicks. In addition, less elements may be presented on a single screen compared to desktop
devices. These two aspects makes it impractical to directly reuse the desktop user interface on mobile
devices. The look and feel still relates to the desktop and web clients but is optimized to the different
form factor of the mobile device. And the end user benefits from the identical behaviour and the the
known functionality of the application.

4



Comparing the company table shown in the background of Figure 000 with Figure 000 it can be
observed that the multi-column table of the desktop client has been transformed into a list on the
mobile device. In addition, the context menu ÒNew companyÓ is now provided as a touch button. As the
navigation in the application and the offered choices remain the same for Scout desktop and mobile
applications, the end user feels immediately comfortable working with Scout mobile applications.

1.1.2. Management Perspective

For the management, Scout is best explained in terms of benefits it brings to the organisation in
question. This is why we are going to concentrate on a (typical) application migration scenario here.
Let us assume that to support the companyÕs business, a fairly large landscape of multi-tier
applications has to be maintained and developed. Including host systems, client server applications
with desktop clients, as well as applications with a web based front-end.

Figure 4. A typical application landscape including a service bus and a Scout application.

Usually, these applications interact with each other through a service bus as shown in Figure 000.
Often, some of the applications that are vital to the organisationÕs core business have grown
historically and are based on legacy technologies. And for technologies that are no longer under active
development it can get difficult to find staff having the necessary expertise or motivation. Sometimes,
the organisation is no longer willing to accept the costs and technology risks of such mission critical
applications.

5



Figure 5. The integration of a Scout application in a typical enterprise setup.

In this situation, the company needs to evaluate if it should buy a new standard product or if the old
application has to be migrated to a new technology stack. Now let us assume, that available products
do not fit the companyÕs requirements well enough and we have to settle for the migration scenario. In
the target architecture, a clean layering similar to the one shown in Figure 000 is often desirable.

While a number of modern and established technologies exist that address the backend side (data
bases, data access and business services), the situation is different for the UI layer and the application
layer. The number of frameworks to develop web applications with Java is excessively large. [1: Web
application framework comparison:
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java.], but the choice
between desktop application technologies in the Java domain is restricted to three options only. Swing,
SWT and JavaFX. Both Eclipse SWT and Java Swing are mature and well established but Swing is
moving into 'maintenance only' mode and will be replaced by JavaFX. However, the maturity of the
new JavaFX technology in large complex enterprise applications is not yet established. Obviously,
deciding for the right UI technology is a challenge and needs to be made very carefully. Reverting this
decision late in a project or after going into production can get very expensive and time consuming.

Once the organisation has decided for a specific UI technology, additional components and frameworks
need to be evaluated to cover client server communication, requirements for the application layer, and
integration into the existing application landscape. To avoid drowning in the integration effort for all
the elements necessary to cover the UI and the application layer a ÔlightweightÕ framework is
frequently developed. When available, this framework initially leads to desirable gains in productivity.
Unfortunately, such frameworks often become legacy by themselves. Setting up a dedicated team to

6

http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java


actively maintain the framework and adapt to new technologies can reduce this risk. But then again,
such a strategy is expensive and developing business application frameworks is usually not the core
business of a company.

Can we do better? To implement a business application that covers the UI and the application layer as
shown in Figure 000, Eclipse Scout substantially reduces both risk and costs compared to the inhouse
development presented above. First or all, Scout is completely based on Java and Eclipse. Chances are,
that developers are already familiar with some of these technologies. This helps in getting developers
up to speed and keeping training costs low.

On the UI side, ScoutÕs multi-device support almost allows to skip the decision for a specific UI
technology. Should a particular web framework become the de-facto standard in the next years, it will
be the responsibility of the Scout framework to provide the necessary support. Existing Scout
applications can then switch to this new technology with only minimal effort. This is possible because
the Scout developers are designing and building the UI of an application using ScoutÕs client model.
And this client model is not linked to any specific UI technology. Rather, specific UI renderers provided
by the Scout framework are responsible to draw the UI at runtime.

As Scout is an open source project, no licence fees are collected. Taking advantage of the growing
popularity of Scout, free community support is available via a dedicated forum. At the same time,
professional support is available if the organisation decides for it.

As the migration of aging applications to current technology is always a challenge, it surely helps to
have Scout in the technology portfolio. Not only is it a low risk choice, but also boosts developer
productivity and helps to motivate the development team. Additional reasons on why Scout helps to
drive down cost and risks are discussed in Section Why Scout?.

1.1.3. Developer Perspective

From the perspective of application developers, Scout offers a Java based framework that covers the
complete client server architecture. This implies that!Ñ!once familiar with the Scout framework!Ñ!the
developer can concentrate on a single framework language (Java) and a single set of development
tools.

As Scout is completely based on Java and Eclipse, Scout developers can take full advantage of existing
knowledge and experience in these domains. And to make learning Scout as simple as possible, Scout
includes a comprehensive software development kit (SDK), the Scout SDK. The Scout SDK helps to
create a robust initial project setup for client server applications and includes a large set of wizards for
repetitive and error prone tasks.

On the client-side ScoutÕs flexible client model allows the developer to create a good user experience
without having to care about specific UI technologies. The reason for this can be found in ScoutÕs client
architecture that cleanly separates the UI model from the UI technology. In Scout (almost) every UI
component is implemented four times. First the implementation of the UI model component and then,
three rendering components for each UI technology supported by Scout. For desktop clients these are
the Swing and the SWT technologies, and for the web and mobile support this is Eclipse RAP which in

7



turn takes care of the necessary JavaScript parts.

Not having to worry about Swing, SWT or JavaScript can significantly boost the productivity. With one
exception. If a specific UI widget is missing for the user story to be implemented, the Scout developer
first needs to implement such a widget. Initially, this task is slightly more complex than not working
with Scout. For custom widgets the Scout developer needs to implement both a model component and
a rendering component for a specific UI technology. But as soon as the client application needs to be
available on more than a single frontend, the investment already pays off. The developer already did
implement the model component and only needs to provide an additional rendering component for
the new UI technology. In most situations the large set of Scouts UI components provided out-of-the box
are sufficient and user friendly applications are straight forward to implement. Even if the application
needs to run on different target devices simultaneously.

Client-server communication is an additional aspect where the developers is supported by Scout.
Calling remote services in the client application that are provided by the Scout server looks identical to
the invocation of local services. The complete communication including the transfer of parameter
objects is handled fully transparent by the Scout framework. In addition, the Scout SDK can completely
manage the necessary transfer objects to fetch data from the Scout server that is to be shown in dialog
forms on the Scout client. The binding of the transferred data to the form fields is done by the
framework.

Although the Scout SDK wizards can generate a significant amount of code, there is no one-way code
generation and no meta data in a Scout application. Just the Java code. [2: With the exception of the
plugin.xml and MANIFEST.MF files required for Eclipse plugins.]. Developers preferring to write the
necessary code manually, may do so. The Scout SDK parses the applicationÕs Java code in the
background to present the updated Scout application model to the developers preferring to work with
the Scout SDK.

Finally, Scout is an open source framework hosted at the Eclipse foundation. This provides a number of
interesting options to developers that are not available for closed source frameworks. First of all, it is
simple to get all the source code of Scout and the underlying Eclipse platform. This allows for complete
debugging of all problems and errors found in Scout applications. Starting from the application code,
including the Scout framework, Eclipse and down to the Java platform.

Scout developer can also profit from an increasing amount of free and publicly available
documentation, such as this book or the Scout Wiki pages. And problems with Scout or questions that
are not clearly addressed by existing documentation can be discussed in the Scout forum. The forum is
also a great place for Scout developers to help out in tricky situation and learn from others. Ideally,
answered questions lead to improved or additional documentation in the Scout Wiki.

At times, framework bugs can be identified from questions asked in the forum. As all other
enhancement requests and issues, such bugs can be reported in Bugzilla by the Scout developer. Using
Bugzilla, Scout developers can also contribute bug analysis and patch proposals to solve the reported
issue. With this process, Scout developers can actively contribute to the code base of Eclipse Scout. This
has the advantage, that workarounds in existing Scout applications can be removed when an upgrade
of the Scout framework is made.

8



Having provided a significant number of high quality patches and a meaningful involvement in the
Scout community, the Scout project can nominate a Scout developer as a new Scout committer.
Fundamentally, such a nomination is based on the trust of Scout committers in the candidate. To quote
the official guidelines. [3: Nominating and electing a new Eclipse Scout committer:
http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committer#
Guidelines_for_Nominating_and_Electing_a_New_Committer.] for nominating and electing a new
committer:

A Committer gains voting rights allowing them to affect the future of the
Project. Becoming a Committer is a privilege that is earned by contributing and
showing discipline and good judgment. It is a responsibility that should be
neither given nor taken lightly, nor is it a right based on employment by an
Eclipse Member company or any company employing existing committers.

After a successful election process (existing committers voting for and not against the candidate) the
Scout developer effectively becomes a Scout committer. With this new status, the Scout developer then
gets write access to the Eclipse Scout repositories and gains voting rights and the possibility to shape
the future of Scout.

1.2. Why Scout?
Most large organizations develop and maintain enterprise applications that have a direct impact on
the success of the ongoing business. And at the same time, those responsible for the development and
maintenance of these applications struggle with this task. It is a big challenge to adapt to changing
business demands and complying with the latest legal requirements in time. And the increasing
pressure to lower recurring maintenance costs does not make the situation any easier.

It often seems that too many resources are required to keep a heterogeneous set of legacy technologies
alive. In this situation, modernizing mission critical applications can help to improve over the current
situation. For the target platform stack, Java is a natural choice as it is mature, widely adopted by in the
industries and unlikely to become legacy in the foreseeable future. While for the back-end side of
enterprise applications well-known and proven frameworks do exist, the situation on the client side is
less clear. Unfortunately, user interface (UI) technologies often have lifetimes that are substantially
shorter than the lifetimes of larger mission critical applications. This is particularly true for the web,
where many of todayÕs frameworks will no longer be relevant in five or more years.

Enter Eclipse Scout. This open source framework covers most of the recurring needs that are relevant
to the front-end development of business applications. And Scout forces a clean separation between
the user interface and the specific UI technology used for rendering. This has two major benefits. First,
Scout developers implement the user interface against an abstraction layer, which helps to focus on
the business functionality and saves development time. And second, long term maintenance costs are
lower, as the Scout code remains valid even when the rendering technology needs to be exchanged.
Therefore, Scout helps to improve the productivity of the development teams and reduces the risk of

9

http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committer#Guidelines_for_Nominating_and_Electing_a_New_Committer
http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committer#Guidelines_for_Nominating_and_Electing_a_New_Committer


major application rewrites.

To provide a first impression on the scope and goals of the Scout framework, a number of scenarios
where Scout typically contributes to your projects success are listed below .

¥ You are looking for a reasonable client side framework for your business application.

¥ You need an application that works on the desktop, in browsers and on mobiles devices.

¥ You donÕt have the time to evaluate and learn a new UI technology.

¥ You need a working prototype application by the end of the week.

¥ Your applicationÕs expected lifespan is 10 years or more.

That Scout should help in the last two situations mentioned above seems to be contradictory at first but
is just based on a simple principle. Where possible, the Scout framework provides abstractions for
areas/topics. [4: Example areas/topics that are abstracted by the Scout framework are user interface
(UI) technologies, databases, client-server communication or logging.] that need to be implemented for
business applications again and again. And for each of these abstractions Scout provides a default
implementation out of the box. Typically, the default implementation of such an abstraction integrates
a framework or technology that is commonly used.

When needing a working prototype application by the end of the week, the developer just needs to
care about the desired functionality. The necessary default implementations are then automatically
included by the Scout tooling into the Scout project setup. The provided Scout SDK tooling also helps to
get started quickly with Scout. It also allows to efficiently implement application components such as
user interface components, server services or connections to databases.

In the case of applications with long lifespans, the abstractions provided by Scout help the developer to
stay productive and concentrate on the actual business functionality. At the same time, this keeps the
code base as independent of specific technologies and frameworks as possible. This is a big advantage
when individual technologies incorporated in the application reach their end of life. As all the
implemented business functionality is written against abstractions only, no big rewrite of the
application is necessary. Instead, it is sufficient to exchange the implementation for the legacy
technology with a new one. And often, an implementation for a new technology/framework is already
provided by a more recent version of Scout.

1.3. What should I read?
The text below provides guidelines on what to read (or what to skip) depending on your existing
background. We first address the needs of junior Java developers that like to learn more about
developing enterprise applications. Then, we suggest a list of sections relevant for software wizards
that already have a solid understanding of the Eclipse platform, Java enterprise technologies, and real
world applications. Finally, the information needs of IT managers are considered.

10



1.3.1. I know Java

The good news first. This book is written for you! For the purpose of this book we do not assume any
significant understanding of the Java Enterprise Edition (Java EE). [5: Java Enterprise Edition:
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition] and the Eclipse Platform. [6: Eclipse
Platform: http://wiki.eclipse.org/Platform].

Of course, having prior experience in client server programming with Java is helpful. And having used
the Eclipse IDE for Java development before --- please do not mistake the IDE with the Eclipse platform.
[7: By reading through the book you will learn that there is much more to the Eclipse platform than
just the IDE] is certainly of benefit.

The ÒbadÓ news is, that writing Scout applications requires a solid understanding of Java. To properly
benefit from this book, we assume that you have been developing software for a year or more. And
you should have mastered the Java Standard Edition (Java SE). [8: Java Standard Edition:
http://en.wikipedia.org/wiki/Java_SE] to a significant extent. To be more explicit, you are expected to be
comfortable with all material required for the Java Programmer Level I Exam. [9: Level I Exam:
docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer1.html] and most of the
material required for Level II. [10: Level II Exam:
docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer2.html].

We now propose to start downloading and installing Scout as described in Appendix Scout Installation
and do some actual coding. To do so, please continue with the ÒHello WorldÓ example provided in
Chapter ÒHello WorldÓ Tutorial. You can expect to complete this example in less than one hour
including the necessary download and installation steps. Afterwards, you might want to continue with
the remaining material in ÒGetting StartedÓ. Working through the complete book should take no more
than two days.

Once you work with the Scout framework on a regular basis, you might want to ask questions in the
Scout forum. [11: Eclipse Scout forum: http://www.eclipse.org/forums/eclipse.scout]. When your
question gets answered, please ask yourself if your initial problem could have been solved by better
documentation. In that case, you might want to help the Scout community by fixing or amending the
Scout wiki pages. [12: Eclipse Scout wiki: http://wiki.eclipse.org/Scout]. Or this book. If you find a bug in
Eclipse Scout that makes your life miserable you can report it or even propose a patch. And when your
bug is fixed, you can test the fix. All of these actions will add to the healthy grow of the Scout
community.

1.3.2. I know tons of both Java and Eclipse

This means that you are one of these software wizards that get easily bored. You prefer to get a quick
impression before deciding to dig deeper and hate going through lengthy descriptions. In that case let
us assume that you are prepared to spend two hours to grasp the scope of Eclipse Scout and get an
impression of its strengths and limitations. The list below suggests a sequence of sections to digest
including a brief motivation for each one.

¥ Chapter ÒHello WorldÓ Tutorial "Hello World" Tutorial. Download and installation of the Scout

11

http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
http://wiki.eclipse.org/Platform
http://en.wikipedia.org/wiki/Java_SE
http://www.eclipse.org/forums/eclipse.scout
http://wiki.eclipse.org/Scout


package should take less than 30 minutes, going through the "Hello World" takes another 15
minutes.

¥ Section Walking through the Initial Application ÒWalking through the Initial ApplicationÓ Read
about some key elements used in every Scout client application including integration of server
services and data binding.

¥ Chapter Scout Tooling ÒScout ToolingÓ. Browse through the tooling chapter to get an impression on
the tooling provided with Scout. Make sure you understand that the Scout SDK is supporting the
developer without restricting the developer.

¥ Chapter A Larger Example ÒThe My Contacts ApplicationÓ. Check out the slightly larger demo
application. In case you are not yet running out of time, download the demo app as described in the
Scout wiki. [13: Download and installation of the ÒMy ContactsÓ application:
http://wiki.eclipse.org/Scout/Book/#Download_and_Run_the_Scout_Sample_Applications.].

1.3.3. I am a manager

Being a manager and actually reading this book may indicate one of the following situations:

¥ Your developer tried to convince you that Eclipse Scout can help you with implementing business
applications in a shorter time and for less money. And you did not understand why (again) a new
technology should work better than the ones you already use.

¥ Your are a product manager of a valuable product that is based on legacy technology. And you are
now evaluating options to modernize your product.

¥ Think about your current situation. There must be a reason why you are checking out this book.

To learn about Scout and about its benefits first go through Section What is Scout? and Section Why
Scout?. Then, flip through Section The ÒMy ContactsÓ Application to get an impression of the ÒMy
ContactsÓ application. In case you like the idea that your developers should be able to build such an
application in a single day, you might want to talk to us. [14: To contact the Scout team, use the
feedback provided on the Scout homepage: https://eclipse.org/scout.].

2. ÒHello WorldÓ Tutorial
The ÒHello WorldÓ chapter walks you through the creation of an Eclipse Scout client server application.
When the user starts the client part of this application, the client connects to the server. [15: The Scout
server part of the ÒHello WorldÓ application will be running on a web server.] and asks for some text
content that is to be displayed to the user. Next, the server retrieves the desired information and sends
it back to the client. The client then copies the content obtained from the server into a text field widget.
Finally, the client displays the message obtained from the server in a text field widget.

The goal of this chapter is to provide a first impression of working with the Scout framework using the
Scout SDK. We will start by building the application from scratch and then weÕll deploy the complete
application to a Tomcat web server. Except for a single line of code in the server part of the ÒHello
WorldÓ application, we will only be using the tooling provided by the Scout SDK.

12

http://wiki.eclipse.org/Scout/Book/#Download_and_Run_the_Scout_Sample_Applications
https://eclipse.org/scout


Based on this simple ÒHello WorldÓ applications a large number of Scout concepts can be illustrated.
Rather than including such background material in this tutorial, this information is provided
separately in Chapter ÒHello WorldÓ Background. This tutorial is also available in the Scout wiki. [16:
ÒHello WorldÓ wiki tutorial: http://wiki.eclipse.org/Scout/Tutorial/4.0/HelloWorld].

2.1. Installation and Setup
Before you can start with the ÒHello WorldÓ example you need to have a complete and working Scout
installation. For this, see the step-by-step installation guide provided in Appendix Scout Installation.
Once you have everything installed, you are ready to create your first Scout project.

2.2. Create a new Project

Start your Eclipse IDE and select an empty directory for your workspace. This workspace directory will
then hold all the project code for the ÒHello WorldÓ application. Once the Eclipse IDE is running it will
show the Scout perspective with the Scout Explorer view and an empty Scout Object Properties view.
To create a new Scout project select the New Scout ProjectÉ context menu as shown in Figure New
Scout Project Menu.

Figure 6. Create a new Scout project using the Scout SDK perspective.

In the New Scout Project wizard enter a name for your Scout project. As we are creating a ÒHello
WorldÓ application, use org.eclipsescout.helloworld for the Project Name field according to Figure New
Scout Project Wizard. Then, click the [ Finish ] button to let the Scout SDK create the initial project
code for you.

13

http://wiki.eclipse.org/Scout/Tutorial/4.0/HelloWorld


Figure 7. The new Scout project wizard.

Once the initial project code is built, the Scout SDK displays the application model in the Scout Explorer
as shown in Figure Representation of the Hello World Application. This model is visually presented as
a tree structure covering both the client and the server part of the application. The Scout Explorer view
on the left hand side displays the top level elements of the complete Scout application. Under the
orange node the Scout client components are listed. Components that are needed in both the Scout
client and the Scout server are collected under the green node. And the Scout server components are
listed below the blue node in the Scout Explorer view.

14



Figure 8. The Scout SDK showing the tree representation of our ÒHello WorldÓ application in the Scout
Explorer. The Scout Object Properties contain the product launchers for the server and the available
clients.

2.3. Run the Initial Application
After the initial project creation step we are ready to start the server and the clients of the still empty
Scout application. For this, we switch to the Scout Explorer and select the root node
org.eclipse.scout.helloworld. Selecting the applicationÕs org.eclipse.scout.helloworld node in the Scout
Explorer displays the product launchers in the Scout Object Properties. As we can see in Figure 000, we
have product launchers for four different development products.

Server The Scout server application

RAP The RAP server application for web and mobile
clients

Swing The Scout Swing desktop client application

15



SWT The Scout SWT desktop client application

Figure 9. Starting the web client in the Scout SDK using the provided RAP product launcher. Make sure to
start the server before starting any client product.

Each product launcher box provides a link to the corresponding Eclipse product file. [17: Product files
define the set of all components that are necessary to build the complete application.], the
configuration file. [18: The configuration file config.ini provides parameters that are read at startup of
the corresponding program.], as well as three launcher icons to start and stop the corresponding
application. The green Circle icon starts the product in normal mode. The Bug icon just below, starts a
product in debug mode. To terminate a running product, the red Square icon is provided. Alternatively,
you can also stop products by clicking on the same red icon in the console view. This is shown on the
right hand side of Figure 000. Client products may also be stopped by closing the clientÕs main window
or using the provided File | Exit menu.

Before any of the client products is started, we need to start the server product using the green circle
or the bug launcher icon. During startup of the Scout server you should see console output similar to
the one shown on the right hand side of Figure 000. Once the server is running, you may start the web
client as shown in Figure 000, the Swing client, or the SWT client in the same way. And with a running
RAP product, the Scout web client can be opened in a web browser. Just click on the provided
Automatic Device Dispatch link or open a a browser and manually type the address
http://localhost:8082/web into the browserÕs navigation bar.

16

http://localhost:8082/web


Figure 10. Running the three client applications. Each client displays an empty desktop form. From left to
right: The web client, the Swing client, and the SWT client

Having started the Scout server and all client products, the client applications should become visible as
shown in Figure 000.

17



2.4. The User Interface Part
The project creation step has created a Scout client that displays an empty desktop form. We will now
add widgets to the clientÕs desktop form that will later display the ÒHello World!Ó message.

To add any widgets to the desktop form, navigate to the DesktopForm in the Scout Explorer. For this,
click on the orange client node in the Scout Explorer view. Then, expand the Forms folder by clicking
on the small triangle icon, and further expand the DesktopForm. As a result, the MainBox element
becomes visible below the desktop form as shown in Figure New Form Field Menu. With a click of the
right mouse button over the MainBox, the available context menus are displayed. To start the form
field wizard select the New Form Field É menu.

Figure 11. Using the New Form Field É menu to start the form field wizard provided by the Scout SDK.

In the first step of the form field wizard shown on in Figure Add the DesktopBox field choose
GroupBox as the form field type and click on the [ Next ] button. In the second wizard step, enter
ÔDesktopÕ into the Class Name field before you close the wizard with the [ Finish ] button. The Scout
SDK will then add the necessary Java code for the DesktopBox in the background.

18



Figure 12. Adding the DesktopBox field with the Scout SDK form field wizard.

We can now add the text field widget to the group box just created. To do this, expand the MainBox in
the Scout Explorer view to access the newly created DesktopBox element. On the DesktopBox use the
New Form Field É menu again. In the first wizard step, select StringField as the form field type
according to Figure Add a StringField. To select the StringField type you can either scroll down the list
of available types or enter ÒstÓ into the field above the field type list. In the second wizard step, enter
ÔMessageÕ into the Label field. As we do not yet have the text ÔMessageÕ available in our ÒHello WorldÓ
application the wizard prompts the user with the proposal New Translated Text É.

19



Figure 13. Adding a StringField and providing a new translation entry.

With a double click on this option a new text entry can be added to the application as shown in Figure
Add a new translation entry. Once an initial translation for the message label is provided, close the
translation dialog with the [ Ok ] button. Finally, close the form field wizard using the [ Finish ] button.

20



Figure 14. Adding a new translation entry.

By expanding the DesktopBox element in the Scout Explorer, the new message field becomes visible.
Now, double click on the message field element to load the corresponding Java code into an editor and
displays the message fieldÕs properties in the Scout Object Properties as shown in Figure showing
MessageField. This is a good moment to compare your status with this screenshot. Make sure that both
the Java code and the project structure in the Scout Explorer look as shown in Figure showing
MessageField.

21



Figure 15. Scout SDK showing the MessageField

Having verified your status of the ÒHello WorldÓ application start the start the server and a client of the
application as described in the previous section. The client applications will then display your message
widget. However, the text widget is still empty, as we did not yet load any initial content into this field.
This is the topic of the next section.

2.5. The Server Part
The responsibility of the Scout server in our ÒHello WorldÓ application is to provide an initial text
content for the message field in the clientÕs user interface. We implement this behaviour in the load
method of the serverÕs DesktopService. An empty stub for the load method of the DesktopService
service has already been created during the initial project creation step.

To navigate to the implementation of the desktop service in the Scout SDK, we first expand the blue
top-level server node in the Scout Explorer. Below the server node, we then expand the Services folder
which shows the DesktopService element. Expanding this DesktopService node, the load method
becomes visible as shown in Figure showing Server node.

22



Figure 16. The Scout Explorer showing the blue server node expanded with the Services folder. In this
folder the load method of DesktopService is selected and its initial implementation is shown in the editor
on the right side.

The DesktopService represents the server service corresponding to the DesktopForm on the client side.
This initial setup represents ScoutÕs default where client forms and server services typically come in
pairs. Whenever the clientÕs user interface displays a form to the user, the client connects to the server
and calls the load method of the corresponding server service. We just need to add our business logic
to the load method of the serverÕs DesktopService.

According to the signature of the load method, a formData object is passed into this method that is then
handed back in the return statement. To complete the implementation of the load method it is
sufficient to assign the text 'hello world!' to the message field part of the form data. The complete
implementation of the load method is provided in Listing load() implementation.

Listing 1. load() implementation in the DesktopService.

Ê @Override
Ê public DesktopFormData load(DesktopFormData formData) throws ProcessingException {
Ê   formData.getMessage().setValue("Hello World!"); !
Ê   return formData;
Ê }

! assign a value to the value holder part of the FormData corresponding to the message field

With this last element we have completed the Scout ÒHello WorldÓ application.

2.6. Add the Rayo Look and Feel

23



Figure 17. The ÒHello WorldÓ client application with the Rayo look and feel. The desktop client is shown
on the left and the web client on the right hand side.

For Eclipse Scout applications a slick look and feel called Rayo is available in the Eclipse Marketplace.
[19: Eclipse Marketplace: http://marketplace.eclipse.org/]. And in this (optional) part of the ÒHello
WorldÓ tutorial we will add Rayo to our ÒHello WorldÓ Swing client application. As a result, we will get
a Scout desktop application that looks the same as the corresponding Scout web client as shown in
Figure 000.

24

http://marketplace.eclipse.org/


25



Figure 18. Adding the Rayo Swing look and feel. The Rayo checkbox to activate the look and feel is
highlighted on the left hand side. The dialog on the right hand side shows the changes in the Swing plugin
and the target file that will be made by the Scout SDK.

To add Rayo in the Scout SDK to our ÒHello WorldÓ project, switch to the Scout Explorer and select the
top-level org.eclipse.scout.helloworld node. Then, according to Figure 000, select the checkbox Rayo
Swing Look and Feel for Eclipse Scout under the Technologies section of the Scout Object Properties.
This brings up a dialog showing the proposed changes to applicationÕs target file and the Swing plugin
of the ÒHello WorldÓ application. These changes need to be confirmed with the [ OK ] button. The first
time the user adds the Rayo feature in the Scout SDK, Eclipse needs to download the package from the
Eclipse Marketplace. This download and subsequent installation of Rayo will make you to go through
the following steps.

1. Accept Licence: GPL with Classpath Exception

2. Accept unsigned content

After the successful download and installation of the Rayo package, start the Swing client using the
procedure described in Section Run the Initial Application. When we also start the web client of the
ÒHello WorldÓ application using the RAP product launcher, we can compare the result side by side.

2.7. Exporting the Application
We are now ready to move the finished ÒHello WorldÓ application from our development environment
to a productive setup. The simplest option to move our application into the ÔwildÕ is to use the Export
Scout Project wizard provided by the Scout SDK. Using the default settings, the export wizard produces
two WAR files. [20: Web application ARchive (WAR):
http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29] that contain the complete Scout server and
the desktop and mobile client applications.

26

http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29


To deploy the application to a web server the WAR files generated by the wizard are the only artefacts
needed. The first WAR file contains the Scout server including a zipped desktop client for downloading.
In the second WAR file, the RAP server application that provides both the web client and the client for
mobile devices.

Figure 19. Starting the Export Scout Project wizard in the Scout SDK with the context menu. In the first
wizard step, the target directory for the WAR files and the artefacts to export are specified.

Figure 20. The first dialog of the Export Scout Project wizard. Here, the target directory for the WAR files
that will be generated by the wizard is specified.

To start the export wizard, we start the Scout SDK with the ÒHello WorldÓ Scout project. In the Scout
Explorer we then select the corresponding Export Scout ProjectÉ context menu on the ÒHello WorldÓ
top level application node as shown in Figure 000. In the first wizard dialog shown in Figure 000, the

27



target directory for the WAR files needs to be specified. You may choose any directory as the target
directory. [21: Make sure to remember the location of this directory. We will need the directory
location again when we deploy these WAR files to the Tomcat web server.]. After clicking [ Next ]
button the second wizard step proposes the server product file that specifies the artefacts to be
exported including the file name for the WAR file for the ÒHello WorldÓ server application. Typically,
the proposed default values are fine. Move to the third dialog with [ Next ] button.

Figure 21. The third dialog of the Export Scout Project wizard defines the client application to be included
in the helloworld_server.war file. In the last step of the export wizard the RAP sever is exported to the
specified file name (right).

In the third dialog of the Export Scout Project wizard the desktop client to be included in the WAR file
needs to be specified. The default selection is set to the SWT client application. For the ÒHello WorldÓ
example, we want to include the Swing client application with the Rayo Look and Feel. For this, we
need to change the selected product to helloworld-swing-client.product (production) according to Figure
000. With [ Next ] button we move to the last wizard step.

28



Figure 22. The last dialog of the Export Scout Project wizard defines the export of the RAP server.
Normally, the proposed field values do not need any adjustments.

In the last wizard dialog shown in Figure 000, the RAP server product and the corresponding WAR file
name are specified. Normally, the proposed field values are fine and we can close the wizard with
[ Finish ] button. After this last step, the Scout SDK is assembling the necessary artefacts and building
the two ÒHello WorldÓ WAR files. These two WAR files are the only items needed for deploying the
ÒHello WorldÓ application to a web server

2.8. Deploying to Tomcat
As the final step of this tutorial, we deploy the two WAR files representing our ÒHello WorldÓ
application to a Tomcat web server. For this, we first need a working Tomcat installation. If you do not
yet have such an installation you may want to read and follow the instructions provided in Appendix
Apache Tomcat Installation. To verify a running Tomcat instance, type http://localhost:8080/ into the
address bar of the web browser of your choice. You should then see the page shown in Figure 000.

29

http://localhost:8080/


Figure 23. The Tomcat shown after a successful installation. After clicking on the ÒManager AppÓ button
(highlighted in red) the login box is shown in front. A successful login shows the ÒTomcat Web Application
ManagerÓ.

30



Figure 24. The ÒTomcat Web Application ManagerÓ. The WAR files to be deployed can then be selected
using button ÒChoose FileÓ highlighted in red.

Once the web browser displays the successful running of your Tomcat instance, switch to its ÒManager
AppÓ by clicking on the button highlighted in Figure 000. After entering user name and password the
browser will display the ÒTomcat Web Application ManagerÓ as shown in Figure 000. If you donÕt know
the correct username or password you may look it up in the file tomcat-users.xml as described in
Appendix Directories and Files.

After logging successfully into TomcatÕs manager application, you can select the WAR file(s) to be
deployed using button ÒChoose FileÓ according to the right hand side of Figure 000. After picking your
helloworld_server.war and helloworld.war file and closing the file chooser, click on button ÒDeployÓ
(located below button ÒChoose FileÓ) to deploy the application to the Tomcat web server. This will copy

31



the selected WAR file into Tomcats webapps directory and unpack its content into a subdirectory with
the same name. Deploying the file helloworld.war will extract its contents into a subdirectory named
helloworld. And the file helloworld_server.war will be extracted into subdirectory helloworld_server.
You can now connect to the deployed application using the browser of your choice and enter the
following address.

Ê http://localhost:8080/helloworld_server/

Figure 25. The ÒHello WorldÓ home page, providing a link to download the desktop client.

You will then see the home page of the server of your ÒHello WorldÓ application shown in Figure 000.
From here you can download the zipped client application that can be saved in a directory of your
choice. After unpacking the zip file, you may start the executable file named helloworld. This will start
the ÒHello WorldÓ client application as shown on the left hand side of Figure 000. To start the ÒHello
WorldÓ web application, open a browser and enter the following address.

Ê http://localhost:8080/helloworld/

32



Figure 26. The ÒHello WorldÓ client application running on the desktop, in the browser and on a mobile
device.

Depending on the device your browser is running on you will be redirected to helloworld/web on a
desktop or laptop computer, to helloworld/mobile on a mobile device or to helloworld/mobile if you are
connecting from a tablet device. Figure 000 shows screenshots for a desktop client, the web application
and the same application in a mobile browser. As demonstrated in these screenshots helloworld/web
and helloworld/mobile lead to a different presentation of the same UI optimized to the target form
factors of desktop browsers, tablets, and mobile phones.

3. ÒHello WorldÓ Background
The previous ÒHello WorldÓ tutorial has been designed to cover the creation of a complete client server
application in a minimal amount of time. In this chapter, we will take a deeper look at the ÒHello

33



WorldÓ and provide background information along the way. The goal is to explain many of the used
concepts in the context of a concrete Scout application to allow for a well rounded first impression of
the Eclipse Scout framework and the tooling provided by the Scout SDK.

The structure of this chapter is closely related to the ÒHello WorldÓ tutorial. As you will notice, the
order of the material presented here exactly follows the previous tutorial and identical section titles
are used where applicable. In addition to Chapter ÒHello WorldÓ Tutorial, we include Section Walking
through the Initial Application to discuss the initial application generated by the Scout SDK.

3.1. Create a new Project
The first thing you need for the creation of a new Scout project is to select a new workspace. For
Eclipse, a workspace is a directory where Eclipse can store a set of projects in a single place. As Scout
projects typically consist of several Eclipse plugin projects the default (and recommended) setting is to
use a single workspace for a single Scout project.

34



Figure 27. The Eclipse plugin projects of the ÒHello WorldÓ application shown by the Package Explorer in
the Scout SDK on the left hand side. The corresponding view in the Scout Explorer is provided on the right
hand side.

In the case of the ÒHello WorldÓ application, the workspace contains seven plugin projects as shown on
the left side of Figure 000. In the expanded source folder of the client plugin
org.eclipse.scout.helloworld.client the organisation of the Java packages is revealed. The Scout Explorer
provided on the right side of Figure 000 shows three colored top level nodes below the main project
org.eclipse.scout.helloworld.

In the Scout Explorer, the main project node expands to the orange client node
org.eclipse.scout.helloworld.client, the green shared node org.eclipse.scout.helloworld.client and the
blue server node org.eclipse.scout.helloworld.server. The client node first presents the white user
interface (UI) nodes org.eclipse.scout.helloworld.client.ui.* indicating the supported UI technologies.
Next, the client mobile node org.eclipse.scout.helloworld.client.mobile is shown. It is responsible for
adapting the layout of the user interface suitably for mobile and tablet devices. Finally, after the
ClientSession node and the Desktop node, component specific folders allow for a simple navigation to
the various client parts.

Comparing the Package Explorer with the Scout Explorer a couple of aspects are notable. First, the
number and names of the Eclipse plugin projects is identical in both the Package Explorer and the
Scout Explorer view. However, the Scout Explorer recognizes the Scout project structure and explicitly
renders the relation between the different Eclipse plugins. In addition, individual node colors are used
to indicate the role of each plugin project. Second, the focus of the Scout Explorer lies on the business
functionality of the complete client server application. Artefacts only necessary to the underlying

35



Eclipse platform are not even accessible. Third, on the individual elements rendered in the Scout
Explorer, the Scout SDK provides menus to start wizards useful to the selected context. In the case of
the ÒHello WorldÓ tutorial we could create the complete application (except for a single line of Java
code) using these wizards .

When we revisit the New Scout Project wizard in Figure New Scout Project Wizard, it now becomes
trivial to explain how the Project Name field org.eclipse.scout.helloworld was used as the common
prefix for plugin project names and Java package names. Based on the project name, the last part
helloworld was used for the Project Alias field. As we have seen in Section Exporting the Application,
this project alias is used by the Scout SDK to build the base names of the WAR files in the export step.
In turn, after deploying the WAR files as described in Section Deploying to Tomcat, the RAP server
application becomes available under the URL http://localhost:8080/helloworld. Should you have a
catchy naming for you application in mind, com.mycompany.mycatchyname is therefore a good choice
for the Project Name field.

3.2. Walking through the Initial Application
In this section, we will walk you through the central Scout application model components of the ÒHello
WorldÓ example. As each of these components is represented by a Java class in the Scout framework,
we can explain the basic concept using the available ÒHello WorldÓ source code. Below, we will
introduce the following Scout components.

¥ Desktop

¥ Form

¥ Form handler

¥ Service

¥ MainBox

¥ Form data

¥ Form field

Please note that most of the Java code was initially generated by Scout SDK. In many cases this code
can be used Òas isÓ and does not need to be changed. Depending on your requirements, it might very
well be that you want to adapt the provided code to fit your specific needs. However, a basic
understanding of the most important Scout components should help you to better understand the
structure and working of Scout applications.

3.2.1. Desktop

The desktop is the central container of all visible elements of the Scout client application. It inherits
from Scout class AbstractDesktop and represents the empty application frame with attached elements,
such as the applications menu tree. In the ÒHello WorldÓ application, it is the Desktop that is first
opened when the user starts the client application.

36



To find the desktop class in the Scout Explorer, we first navigate to the orange client node and double
click the Desktop node just below. This will open the associated Java file Desktop.java in the editor view
of the Scout SDK. Of interest is the overwritten callback method execOpened shown in Listing Desktop.

Listing 2. The configuration of the serverÕs resource servlet in the plugin.xml configuration file. The
remaining content of the file has been omitted.

Ê @Override
Ê protected void execOpened() throws ProcessingException {
Ê   //If it is a mobile or tablet device, the DesktopExtension in the mobile plugin takes
care of starting the correct forms.
Ê   if (!UserAgentUtility.isDesktopDevice()) {
Ê     return;
Ê   }
Ê   DesktopForm desktopForm = new DesktopForm();
Ê   desktopForm.setIconId(Icons.EclipseScout);
Ê   desktopForm.startView();
Ê }

Method execOpened is called by the Scout framework after the desktop frame becomes visible. The
only thing that happens here is the creation of a desktopForm object, that gets assigned an icon before
it is started via method startView. This desktop form object holds the Message field text widget that is
displayed to the user. [22: In the Scout application model we can only add UI fields to Scout form
elements, not directly to the desktop.]. More information regarding form elements are provided in the
next section.

3.2.2. Form

Scout forms are UI containers that hold form field widgets. A Scout form always inherits from Scout
class AbstractForm and can either be displayed as a dialog in its own window or shown as a view
inside of another UI container. In the ÒHello WorldÓ application a DesktopForm object is created and
displayed as a view inside of the desktop element.

To find the desktop form class in the Scout Explorer, expand the orange client node. [23: To expand
elements (nodes, folders, etc.) in the Scout Explorer, use a double click on the element or a single click
on the plus icon in front of the element.]. Below this node, you will find the Forms folder. Expand this
folder to show the DesktopForm as shown in Figure 000. In the Scout Object Property window in the
screenshot, we can also see the Display Hint property. Its value is set to ÔViewÕ to display the desktop
form as a view and not as a dialog in its own frame.

37



Figure 28. Scout SDK showing the DesktopFormÕs ViewHandler in the Scout Explorer and the properties
of the DesktopForm in the Scout Object Properties.

Expand the DesktopForm to show its children: Variables, MainBox and Handlers. The Variables sub
folder contains variables. They are invisible to the application user. The ÒHello WorldÓ application is so
simple, it does not need variables. The sub folder MainBox contains form fields. These are the visible
user interface elements. The main box of our DesktopForm holds the DesktopBox containing the
MessageField added with the New Form Field wizard. Finally, the Handlers sub folder contains all
available form handlers. The view handler shown in Figure 000 has been added in the initial project
creation step.

3.2.3. Form Handler

Form handlers are used to manage the formÕs life cycle. Scout form handlers inherit from
AbstractFormHandler and allow the implementation of desired behaviour before a form is opened, or
after it is closed. This is achieved by overwriting callback methods defined in AbstractFormHandler.
The necessary wiring is provided by the Scout framework, either by the initial project creation step or
when using one of the provided Scout SDK wizards.

38



Listing 3. Class DesktopForm with its view handler and startView method. Other inner classes and
methods are omitted here.

public class DesktopForm extends AbstractForm {

Ê public class ViewHandler extends AbstractFormHandler {

Ê   @Override
Ê   protected void execLoad() throws ProcessingException {
Ê     IDesktopService service = SERVICES.getService(IDesktopService.class);
Ê     DesktopFormData formData = new DesktopFormData();
Ê     exportFormData(formData);
Ê     formData = service.load(formData);
Ê     importFormData(formData);

Ê   }
Ê }

Ê public void startView() throws ProcessingException {
Ê   startInternal(new ViewHandler());
Ê }
}

In the ÒHello WorldÓ application, it is the overwritten execLoad method in the ViewHandler that
defines what will happen before the desktop form is shown to the user. The corresponding source code
is provided in Listing ViewHandler in DesktopForm. It is this execLoad method where most of the
behaviour relevant to the ÒHello WorldÓ application is implemented. Roughly, this implementation is
performing the following steps.

1. Get a reference to the forms server service running on the server.

2. Create a data transfer object (DTO). [24: Data Transfer Object (DTO):
http://en.wikipedia.org/wiki/Data_transfer_object.]

3. Pass the empty DTO to the load service method (ask the server for some data).

4. Update the DTO with the content provided by the service load method.

5. Copy the updated information from the DTO into the desired form field.

To open the ViewHandler class in the Java editor of the Scout SDK, double click on the ViewHandler in
the Scout Explorer. Your Scout SDK should then be in a state similar to Figure 000. In the lower part of
Listing ViewHandler in DesktopForm we can see the wiring between the desktop form and the view
handler in method startView. Further up, we find method execLoad of the view handler class.

Before we discuss this methodÕs implementation, let us examine when and how execLoad is actually
called. As we have seen in the Desktop class (see Listing Desktop), the formÕs method startView is
executed after the desktop form is created. Inside method startView (see Listing ViewHandler in

39

http://en.wikipedia.org/wiki/Data_transfer_object


DesktopForm), the desktop form is started/opened using startInternal. In method startInternal a view
handler is then created and passed as a parameter. This eventually leads to the call of our execLoad
custom implementation.

We are now ready to dive into the implementation of method execLoad of the desktop formÕs view
handler. First, a reference to a form service identified by IDesktopService is obtained using
SERVICES.getService. Then, a form data object (the DTO) is created and all current form field values are
exported into the form data via method exportFormData. Strictly speaking, the exportFormData is not
necessary for the use case of the ÒHello WorldÓ application. But, as this is generated code, there is no
benefit when we manually delete the exportFormData command. Next, using the load service method
highlighted in Listing ViewHandler in DesktopForm, new form field values are obtained from the
server and assigned to the form data object. Finally, these new values are imported from the form data
into the form via the importFormData method. Once the desktop form is ready, showing it to the user is
handled by the framework.

To add some background to the implementation of the execLoad above, the next section introduces
services and form data objects.

3.2.4. Form Services and Form Data Objects

Form services and form data objects are used in the Scout framework to exchange information
between the Scout client and server applications. When needed, a service implemented on the server
side can register a corresponding proxy service on the client. This proxy service is invoked by the
client as if it were implemented locally. In fact, when we get a service reference using
SERVICES.getService, we do not need to know if this service runs locally on the client or remotely on
the server.

In the ÒHello WorldÓ example application, the clientÕs desktop form has an associated desktop service
running on the server. This correspondence between forms and form services is also reflected in the
Links section of the Scout Object Properties of the desktop form. As shown in Figure 000, links are
provided not only for the desktop form, but for its desktop form data, the corresponding desktop form
service as well as for the service interface IDesktopService. On the client, this interface is used to
identify and register the proxy service for the desktop service.

To transfer data between the client and the server, the ÒHello WorldÓ application uses a
DesktopFormData object as a DTO. This form data object holds all form variables and values for all the
form fields contained in the form. Taking advantage of this correspondence, the Scout framework
provides the convenience methods exportFormData and importFormData. As a result, the developer
does not need to deal with any mapping code between the form data object and the form fields.

The actual implementation of the desktop form service in class DesktopService is implemented on the
server side. As the class DesktopService represents an ordinary Scout service it inherits from
AbstractService. It also implements its corresponding IDesktopService interface used for registering
both the actual service as well as the proxy service.

40



3.3. Run the Initial Application

3.3.1. The Launcher Boxes

To run a Scout application the Scout SDK provides launcher boxes in the Scout Object Properties as
described in Section Run the Initial Application. These object properties are associated to the top level
project node in the Scout Explorer. Using the Edit icon provided in the product launcher section of the
Scout Object Properties, the list of launcher boxes can be specified as shown in Figure 000.

41



Figure 29. Using the Edit ContentÉ icon shown on the left hand side, the product selection dialog shown
on the right side is opened. Using this product selection dialog, the list of launcher boxes can be specified.

3.3.2. Eclipse Product Files

The available products shown on the right side of Figure 000 represent the Eclipse product files
created in the initial project creation step. Product files. [25: Read the following article for an
introduction to Eclipse product files:
http://www.vogella.com/articles/EclipseProductDeployment/article.html.] are used in Eclipse to specify
the configuration and content of an executable application. In the case of the ÒHello WorldÓ project,
four executable applications --- with two Eclipse product files for each application --- have been defined
by the Scout SDK. The four applications, one for the server application and one for each client
technology, have already been discussed in Section Run the Initial Application.

42

http://www.vogella.com/articles/EclipseProductDeployment/article.html


43



Figure 30. The production and development launcher boxes associated with the ÒHello WorldÓ server
application are shown on the left side.  In the Package Explorer shown on the right side, the production
and development products are located under the products folder in the server plugin project.

We assume that Scout applications will be run in at least two different environments. Once from
within the Eclipse IDE in the development environment, and once by the actual end users outside the
Eclipse IDE. This second environment is named production environment. Depending on the complexity
of deployment processes there might be some more environments to consider, such as testing and
integration environments. This is the reason that the Scout SDK initially creates two product files that
are associated with the development and the production environment.

Even in the case of the simple ÒHello WorldÓ example, the Scout application is started in two target
environments. The development environment defines the product in the context of the Scout SDK. To
export and run the Scout application outside of the Scout SDK, the production product files are used to
define the application when it is to be started on a Tomcat web server. Figure 000 illustrates this
situation for the ÒHello WorldÓ server application. On the left side, the blue server node is selected in
the Scout Explorer. This opens the two server launcher boxes for the production and the development
environment. On the right side of Figure 000, the corresponding plugin project
org.eclipse.scout.helloworld.server is expanded to show the file based organisation of the two product
definitions.

44



Figure 31. The Eclipse product file editor showing file helloworld-server-dev.product of the ÒHello WorldÓ
application. In the Dependencies tab shown above, the list of Eclipse plugins that are required for the
server application are shown.

For the case of the ÒHello WorldÓ example we did not need to edit or change the product files generated
by the Scout SDK. However, if your requirements are not met by the provided product files, you may
use the Eclipse product file editor. A screenshot of this editor is shown in Figure 000 with the tab
Dependencies opened. In the tab Dependencies, the complete list of necessary plugins is provided.
Example plugins visible in Figure 000 include the ÒHello WorldÓ server and shared plugins, Scout
framework plugins, and Jetty plugins. The Jetty. [26: Jetty is web server with a small footprint:
http://www.eclipse.org/jetty/.] plugins are only needed to run the ÒHello WorldÓ server application
inside the Scout SDK. Consequently, Jetty plugins are not listed as a dependency in the Scout serverÕs
production product file.

3.3.3. Eclipse Configuration Files

45

http://www.eclipse.org/jetty/


Figure 32. Above, the definition of the products config.ini in tab Configuration of the product file editor.
Below, the content of the configuration file of the ÒHello WorldÓ server application is provided in a normal
text editor.

Switching to tab Configuration in the product file editor, shows the selected radio button Use an
existing config.ini file and the link to the configuration file provided in the File field as shown in the
upper part of Figure 000. Below, a part of the serverÕs config.ini file is shown. Both the entry in the
product file pointing to the configuration file, and the content of the config.ini file has been generated
by the Scout SDK during the initial project creation step. As shown in the lower part of Figure 000,
Eclipse configuration files have the format of a standard property file. The provided key value pairs
are read at startup time if the config.ini file can be found in folder configuration by the Eclipse
runtime.

3.3.4. Scout Desktop Client Applications

Having introduced Eclipse product files and configuration files based on the ÒHello WorldÓ server

46



application, we will now look at the different client applications in turn. With Swing applications. [27:
Swing is the primary Java UI technology: http://en.wikipedia.org/wiki/Swing_%28Java%29.] and SWT
applications. [28: Standard Widget Toolkit (SWT):
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit.], two alternative UI technologies are currently
available to build Scout desktop client applications. More recently, JavaFX. [29: JavaFX is the most
recent Java UI technology: http://en.wikipedia.org/wiki/JavaFX.] is promoted as a successor to Swing
and it is therefore likely, that Scout will provide JavaFX client applications in the future.

When we compare the product files for the Swing and the SWT client applications, it is apparent that
both client applications share a large number of plugins. Most importantly, the complete UI model and
the business logic is identical for both client applications. In other words, the value created by the
Scout developer is contained in the two plugins org.eclipse.scout.helloworld.client and
org.eclipse.scout.helloworld.shared. To create an executable client application, we only need to
combine these two plugins with a set of plugins specific to the desired UI technology.

After starting the ÒHello WorldÓ Swing client or the corresponding SWT client application, the client
application first reads the startup parameters from its config.ini file. Among other things, this client
configuration file contains the parameter server.url to specify the URL to the ÒHello WorldÓ server.
After the startup of the ÒHello WorldÓ client application, it can then connect to the ÒHello WorldÓ server
application using this address.

3.3.5. Scout Web, Tablet and Mobile Clients

For Scout web, tablet and  mobile clients, the Eclipse RAP framework. [30: Remote Application Platform
(RAP): http://www.eclipse.org/rap/.] is used. The RAP framework provides an API that is almost
identical to the one provided by SWT and allows to use Java for server-side Ajax. [31: Asynchronous
JavaScript and XML (AJAX): http://en.wikipedia.org/wiki/Ajax_%28programming%29.]. This setup
implies that Scout tablet and mobile clients are not native clients but browser based. [32: To provide
native clients with Scout, the simplest (commercial) option is most likely Tabris:
http://developer.eclipsesource.com/tabris/].

Comparing the product file of the SWT client applications with the RAP application, we observe that
the RAP development product does not include any SWT plugins, but a set of RAP and Jetty plugins. In
addition, the RAP product also contains the Scout mobile client plugins org.eclipse.scout.rt.client.mobile
and org.eclipse.scout.helloworld.client.mobile. These two plugins are responsible for transforming the
UI model defined in the ÒHello WorldÓ client plugin to the different form factors of tablet computers
and mobile phones.

If you start the ÒHello WorldÓ RAP application in your Scout SDK, you are launching a second server
application in a Jetty instance on a different port than the ÒHello WorldÓ server application. As in the
case of the desktop client applications, the RAP or Ajax server application knows how to connect to the
ÒHello WorldÓ server application after reading the parameter server.url from its config.ini file.

47

http://en.wikipedia.org/wiki/Swing_%28Java%29
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit
http://en.wikipedia.org/wiki/JavaFX
http://www.eclipse.org/rap/
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://developer.eclipsesource.com/tabris/


3.4. The User Interface Part
Using the UI of the ÒHello WorldÓ application we explain in this section how the Scout UI form model is
represented in Java. We also describe how this representation is exploited by the Scout SDK to
automatically manage the form data objects used for data transfer between Scout client and Scout
server applications. Finally, will have a brief look at internationalization. [33: Internationalization and
localization, also called NLS support:
http://en.wikipedia.org/wiki/Internationalization_and_localization.] support of Scout for texts.

Listing 4. The DesktopForm with its inner class MainBox containing the desktop box and message field

@FormData(value = DesktopFormData.class, sdkCommand = FormData.SdkCommand.CREATE)
public class DesktopForm extends AbstractForm {

Ê @Order(10.0)
Ê public class MainBox extends AbstractGroupBox {

Ê   @Order(10.0)
Ê   public class DesktopBox extends AbstractGroupBox {

Ê     @Order(10.0)
Ê     public class MessageField extends AbstractStringField {

Ê       @Override
Ê       protected String getConfiguredLabel() {
Ê         return TEXTS.get("Message");
Ê       }
Ê     }
Ê   }
Ê }
}

As discussed in Section Form Scout forms consist of variables, the main box and a number of form
handlers. The main box represents the visible part of ScoutÕs form model. It may holds any number of
form fields. Using container fields such as group boxes, it is possible to define complex structures such
as hierarchical UI models containing multiple levels. In the Scout framework the forms structure is
represented in the form of inner classes that are located inside of the MainBox class. And the New
Form Field wizard of the Scout SDK fully supports this pattern. Listing MainBox provides the concrete
example using the the desktop form of the ÒHello WorldÓ tutorial.

Using inner Java classes to model a formÕs content is a central aspect of the UI part of the Scout
application model. It allows the Scout SDK to easily parse the formÕs Java code on the fly and directly
reflect changes to the form model in the Scout Explorer and the Scout Property View. However, this is
not the only benefit for the Scout SDK. As form data objects hold all form variables and the values of all
form fields contained in the form, the Scout SDK can keep the form data classes in sync with the forms

48

http://en.wikipedia.org/wiki/Internationalization_and_localization


of the application. It is important to note that this mechanism only depends on the Java code of the
form field class. In consequence, the Scout SDK can update form field classes in the background even
when form fields are manually coded into the formÕs Java class. This includes adding all the necessary
getter and setter methods to access the values of all the fields defined on a form. As a result, Scout
developers donÕt need to manually update form data objects when the UI model of a form is changed.
The Scout SDK takes care of this time consuming and error prone task.

Listing 5. The HelloworldTextProviderService class. Its getter method provides the path and the base
name for the text property files

public class HelloworldTextProviderService extends AbstractDynamicNlsTextProviderService
{
Ê @Override
Ê protected String getDynamicNlsBaseName() {
Ê   return "resources.texts.Texts";
Ê }
}

Figure 33. The NLS editor provided by the Scout SDK. This editor is opened via the Open NLS Editor É link
in the Scout Object Properties of the HelloworldTextProviderService node.

When we did add the Message field to the desktop form of the ÒHello WorldÓ application we had to
enter a new translation entry for the label of the message field as shown in Figure Add a StringField.
The individual translation entries are then stored in language specific text property files. To modify
translated texts we can use the NLS editor. [34: See Section The NLS Editor for a detailed description of
the NLS editor.] provided by the Scout SDK as shown in Figure 000.

To access the translated label field entry in the application, the Scout SDK generated the

49



implementation of getConfiguredLabel using TEXTS.get("Message") as shown in Listing MainBox. In
the default Scout project setup, calling TEXTS.get uses the DefaultTextProviderService in the
background. This text provider service then defines the access path for the text property files to use for
the translation. To resolve the provided key, the userÕs locale settings are used to access the correct text
property file.

3.5. The Server Part
In this background section we take a closer look at Scout services and calling service methods
remotely. We will first discuss the setup of an ordinary Scout service. Then, the additional components
to call service methods remotely are considered. To explain the concepts in a concrete context, we use
the setup of the DesktopService of our ÒHello WorldÓ example.

3.5.1. Scout Services

Scout services are OSGi services. [35: A good introduction to OSGi services is provided by Lars VogelÕs
tutorial: http://www.vogella.com/articles/OSGiServices/article.html.] which in turn are defined by
standard Java classes or interfaces. Scout is just adding a convenience layer to cover typical
requirements in the context of client server applications. To support Scout developers as much as
possible, the Scout SDK offers wizards that generate the necessary classes and interfaces and also take
care of service registration.

Listing 6. The server service class DesktopService.

public class DesktopService extends AbstractService implements IDesktopService {

Ê //tag::load[]
Ê @Override
Ê public DesktopFormData load(DesktopFormData formData) throws ProcessingException {
Ê   formData.getMessage().setValue("Hello World!"); !
Ê   return formData;
Ê }

All Scout services need to extend ScoutÕs AbstractService class and implement their own corresponding
interface. This also applies to the ÒHello WorldÓ desktop service according to Listing DesktopService. As
shown in Figure showing Server node, this service can be located in the Scout Explorer under the blue
server node in the Services folder.

Before Scout services can be accessed and used, they need to be explicitly registered as a service in the
correct place. For this registration mechanism, Scout is using Eclipse extension points and extensions.
[36: A good introduction to Eclipse extensions and extension points is provided in the Eclipse wiki:
http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F.] which are conceptually
similar to electrical outlets and plugs. And in order to work, as in the case of outlets and plugs, the plug
must fit to the outlet. In our ÒHello WorldÓ example, the extension (plug) is represented by class

50

http://www.vogella.com/articles/OSGiServices/article.html
http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F


DesktopService and the service extension point (outlet) is named org.eclipse.scout.service.services.
What makes the desktop service fit to the service extension point is the fact that its interface
IDesktopService extends ScoutÕs IService interface.

Figure 34. The Eclipse plugin editor for plugin.xml files. In the tab Extensions the ÒHello WorldÓ desktop
service is registered under the extension point org.eclipse.scout.service.services.

Listing 7. The registration of the DesktopService in the serverÕs plugin.xml configuration file. The
remaining content of the file has been omitted.

<?xml version="1.0" encoding="UTF-8"?>
<plugin>

Ê  <extension
Ê        name=""
Ê        point="org.eclipse.scout.service.services">
Ê     <service
Ê           factory="org.eclipse.scout.rt.server.services.ServerServiceFactory"
Ê           class="org.eclipse.scout.helloworld.server.services.DesktopService"
Ê           session="org.eclipse.scout.helloworld.server.ServerSession">
Ê     </service>
Ê  </extension>

</plugin>

The registration of the desktop service under the service extension point is then defined in the
plugin.xml file of the ÒHello WorldÓ server plugin. As shown in Figure 000, the plugin.xml file is located
in the root path of plugin org.eclipse.scout.helloworld.server. To modify a plugin.xml, you can either
use the Eclipse plugin editor or your favorite text editor. In Figure 000, the registration of the desktop
service is shown in the Extensions tab of the plugin editor. For the corresponding XML representation
in the plugin.xml file, see Listing server plugin.xml.

51



3.5.2. Scout Proxy Services

In the ÒHello WorldÓ application the load method of the desktop service is called remotely from the
client. But so far, we have only seen how the desktop service is implemented and registered in the
server application. To call server service methods remotely from Scout client applications, the Scout
framework provides client proxy services and the service tunnel. As the name implies, a client proxy
service acts as a local proxy service (running in the Scout client application) of a server service
(running remotely in the Scout server application).

Listing 8. The registration of the IDesktopService proxy service in the client plugin of the ÒHello WorldÓ
application. This is the complete content of the clientÕs plugin.xml file.

<?xml version="1.0" encoding="UTF-8"?>
<plugin>

Ê  <extension
Ê        name=""
Ê        point="org.eclipse.scout.service.services">
Ê     <proxy
Ê           factory="org.eclipse.scout.rt.client.services.ClientProxyServiceFactory"
Ê           class="org.eclipse.scout.helloworld.shared.services.IDesktopService">
Ê     </proxy>
Ê  </extension>

</plugin>

Client proxy services are defined by a Java interface located in the shared plugin of the Scout
application. As shown in Listing DesktopService of the desktop service, this service interface is also
implemented by the desktop service class in the server plugin. Corresponding to the registration of the
desktop service in the server plugin, client proxy services need to be registered in the clientÕs
plugin.xml file. The content of the ÒHello WorldÓ client plugin configuration file is provided in Listing
client plugin.xml. To create proxy services in Scout clients, the ClientProxyServiceFactory is used. This
is also reflected in the extension defined in Listing client plugin.xml. Internally, this service factory
then uses the service tunnel to create the local proxy services.

To call a remote service method from the Scout client application, we first need to obtain a reference to
the proxy service. Using the SERVICES.getService method with the interface IDesktopService, we can
obtain such a reference as shown in Listing ViewHandler in DesktopForm for the view handler of the
desktop form. With this reference to the clientÕs proxy service, calling methods remotely works as if
the service would be running locally. Connecting to the server, serializing the method call including
parameters (and de serializing the return value) is handled transparently by Scout.

52



3.6. Add the Rayo Look and Feel
Rayo has been designed in 2009 by BSI for its CRM. [37: Customer Relationship Management (CRM):
https://en.wikipedia.org/wiki/Customer_relationship_management] application and contact center
solution. Since then, Rayo has been copied for Scout web applications and also adapted to work on
touch/mobile devices.

The implementation of Rayo for desktop clients is based on the Java Synth look and feel. [38: Java Synth
Look and Feel: http://en.wikipedia.org/wiki/Synth_Look_and_Feel]. However, in a few cases it was
necessary to adjust some of the synth classes. In order to do this, the adapted classes are copied form
the OpenJDK implementation. [39: OpenJDK is an open source implementation of the Java platform:
http://openjdk.java.net/.] As OpenJDK is licenced under the GNU General Public Licence (GPL) with a
linking exception it is not possible to distribute Rayo under the Eclipse Public Licence. That is why
Rayo is not initially contained in the Eclipse Scout package but needs to be downloaded from the
Eclipse Marketplace. Fortunately, there is still no restriction to use Rayo in commercial products. The
only remaining restriction applies to modifying Rayo for commercial products. In this case you will be
obliged to redistribute your modified version of Rayo under the same licence (GPL with classpath
exception).

With Eclipse Scout 3.8 (Juno), the Scout framework also allows to build web clients based on Eclipse
RAP. Great care has been taken to ensure, that the look and feel for Scout web applications matches the
look and feel of the desktop as closely as possible. As RAP is already distributed under the EPL licence
the Rayo for web apps is directly contained in the Scout package. TODO: Describe what to change to use
RAP default look and feel

A similar approach was chosen for Rayo on tablets and mobile devices that are supported with Eclipse
Scout 3.9 (Kepler). For such devices optimized components are used to take into account the smaller
screens and the absence of a mouse (no context menus!) But as far as possible, the Rayo look and feel
also applies to touch devices. TODO: Pointer to more info regarding mobile devices.

3.7. Exporting the Application
In this background section we look at the content and organisation of the two WAR files generated by
the Scout SDK Export Scout Project wizard. The first WAR file holds the Scout server including a
landing page to download the Scout desktop client. The desktop client is provided in the form of a
standalone ZIP file. In the second WAR file, the Ajax server based on Eclipse RAP is contained. This
Ajax server provides the URLs that can be accessed by web browsers running on desktop computers or
tablet and mobile devices.

53

https://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Synth_Look_and_Feel
http://openjdk.java.net/


Figure 35. The organisation of the ÒHello WorldÓ server WAR file. The right side reveals the location of the
config.ini file and the applicationÕs plugin files

The content and its organisation of the exported WAR files was not specifically designed for Scout
applications. Rather, it is defined according to server-side Equinox. [40: See Appendix [apx-osgi_basics]
for more information regarding server-side Equinox.], the typical setup for running Eclipse based
server applications on a web server. Using file helloworld_server.war as a concrete example, we will
first describe the general organisation of the WAR file. Then, we introduce individual artefacts of
interest that are contained in this WAR file.

The explicit organisation of the server WAR file is shown in Figure 000. From the left hand side of the
figure we can see that on the top level only folder WEB-INF exists in the WAR file. This folder contains
all files and directories that are private to the web application. Inside, the web deployment descriptor
file web.xml as well as the directories lib and eclipse are located. While the web.xml file and directory
lib are standard for servlet based based applications. [41: See Appendix [apx-javaee_basics] for more
information regarding servlets.], directory eclipse contains all necessary artefacts for servlet based
Eclipse applications. [42: See Appendix [apx-osgi_basics] for more information regarding server-side
Eclipse applications (server-side Equinox).]. Such as Eclipse Scout server applications.

On the right hand side of Figure 000 the eclipse specific content of the WAR file is shown. From top to
bottom we find the configuration file config.ini introduced in Section Eclipse Configuration Files. In
folder plugins the necessary plugins that constitute the eclipse application are located where the
plugins are available in the form of JAR files. [43: JAR files contain a set of Java classes and associated
resources. http://en.wikipedia.org/wiki/JAR_%28file_format%29.]. This includes plugins for servlet
management, the eclipse platform including the servlet bridge, the scout framework parts and of
course our ÒHello WorldÓ server and shared plugin. These ÒHello WorldÓ jar files exactly match with
the plugin projects discussed in Section Create a new Project.

54

http://en.wikipedia.org/wiki/JAR_%28file_format%29


Figure 36. The content of the ÒHello WorldÓ server plugin contained in the helloworld_server.war file. The
necessary files for the download page including the zipped client application are in the resources/html
directory.

Listing 9. The configuration of the serverÕs resource servlet in the plugin.xml configuration file. The
remaining content of the file has been omitted.

<?xml version="1.0" encoding="UTF-8"?>
<plugin>

Ê  <extension
Ê        name=""
Ê        point="org.eclipse.equinox.http.registry.servlets">
Ê     <servlet
Ê           alias="/"
Ê           class="org.eclipse.scout.rt.server.ResourceServlet">
Ê        <init-param
Ê              name="bundle-name"
Ê              value="org.eclipse.scout.helloworld.server">
Ê        </init-param>
Ê        <init-param
Ê              name="bundle-path"
Ê              value="/resources/html">
Ê        </init-param>
Ê     </servlet>
Ê  </extension>

</plugin>

55



In Figure 000 some of the content of the ÒHello WorldÓ server plugin is shown. The first thing to note is
that the plugin file conforms to the JAR file format including a META-INF/MANIFEST.MF file and the
directory tree containing the Java class files, as the DesktopService.class implemented in Section The
Server Part of the ÒHello WorldÓ tutorial. In folder resources/html the necessary files for the download
page shown in Figure 000 including the zipped desktop client are contained. To access this download
page the Scout serverÕs resource servlet ResourceServlet is responsible. It is registered under the
servlet registry as shown in Listing servlet registration. With setting "/" of the alias parameter the
download page becomes available under the root path of the Scout server application. For the mapping
to the contents resources/html the parameter bundle-path is used.

Figure 37. The ÒHello WorldÓ server plugin shown in the Eclipse package explorer. The files for the
download page are located under resources/html.

Revisiting the ÒHello WorldÓ server plugin project in the Eclipse package explorer as shown in Figure
000, we can see how the plugin project elements are transformed and copied into the JAR file.
Examples files are plugin.xml and MANIFEST.MF as well as static HTML content of the download page
(files index.html and scout.gif). The zipped client is missing of course. It is assembled, zipped and
added into the Scout server JAR file by the Export Scout Project wizard of the Scout SDK. In case you
need to change/brand/amend the download page for the desktop client, you have now learned where
to add and change the corresponding HTML files.

3.8. Deploying to Tomcat
In this section we will discuss two common pitfalls when working with the Scout IDE and Tomcat. The
symptoms linked to these problems are Scout server applications that are not starting or Scout
applications that fail to properly update.

In usual culprit behind Scout server applications that fail to start is a blocked port 8080. This setting
can be created when we try to run both the Jetty web server inside the Scout SDK and the local Tomcat
instance. In consequence, either Jetty or Tomcat is not able to bind to port 8080 at startup which makes

56



it impossible for a client to connect to the right server. To avoid such conflicts, make sure that you
always stop the Scout server application in the Scout SDK (effectively killing Jetty) before you restart
your Tomcat server. Alternatively, you can assign two different ports to your Jetty webserver and your
Tomcat webserver.

To modify JettyÕs port number in the Scout SDK you have to update the corresponding properties in the
config.ini files of the development products of your Scout server application and all client applications.
In the Scout serverÕs config.ini file the property is named org.eclipse.equinox.http.jetty.http.port, in the
client config.ini files the relevant property is called server.url. To change the port number to 8081 for
the ÒHello WorldÓ example in the Scout SDK you could use the following lines in the individual
config.ini files.

Scout Server org.eclipse.equinox.http.jetty.http.port=8081

Scout Desktop Client server.url=http://localhost:8081/helloworld_server
/process

Scout Ajax Server server.url=http://localhost:8081/helloworld_server
/ajax

The second pitfall is connected to a web application that seems to refuse to update to the content of a
freshly generated WAR file. At times it seems that your changes to a deployed WAR file do not find
their way to the application actually running. In many cases this is caused by a cached instance of the
previous version of your application located in TomcatÕs working directory. To save yourself much
frustration, it often helps just to clear TomcatÕs working directory and restart Tomcat. For this, you
may follow the following procedure.

1. Stop the Tomcat web server

2. Go to folder work/Catalina/localhost

3. Verify that you are not in TomcatÕs webapps folder

4. Delete all files and directories in folder work/Catalina/localhost

5. Start the Tomcat web server

How you start and stop Tomcat depends on the platform you are running it. If you have installed
Tomcat on a Windows box according to Appendix Apache Tomcat Installation it will be running as a
service. This means that to stop the Tomcat web server you need to stop the corresponding Windows
service. For starting and stopping Tomcat on Mac/Linux/Unix systems, you can use the command line
script files startup.sh and shutdown.sh located in TomcatÕs subdirectory bin.

For those interested in more advanced aspects of Apache Tomcat we recommend the article ÒMore
about the CatÓ by Chua Hock-Chuan. [44: More about the Cat:
http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_More.html.].

57

http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_More.html


4. Scout Tooling
In addition to the Scout runtime framework presented in the previous chapter Eclipse Scout also
includes a comprehensive tooling, the Scout SDK.

Thanks to this tooling, developing Scout applications is made simpler, more productive and also more
robust. Initially, a solid understanding of the Java language is sufficient to start developing Scout
applications and only a rough understanding of the underlying Eclipse/OSGi/JEE technologies is
required.

The Scout SDK consists of navigation support for the application model defined by the Scout runtime
and provides many intuitive component wizards. This creates an ideal environment for beginners to
build complete, high-quality Scout applications. Typically Java developers only need a few days of
Scout training to start creating their own advanced client server business applications.

The Scout SDK also helps developers to become more productive. Many repetitive and error prone
tasks run automatically in the background or are taken care of by the component wizards of the Scout
SDK. This starts with the initial creation of a Scout client server application, continues with the wizards
to create complete dialogs and pages and includes the automatic management of the data transfer
objects needed for the client server communication.

Finally, the application code created by the Scout SDK wizards helps to ensure that the resulting Scout
application has a consistent and robust code base and is well aligned with the application model
defined by the Scout runtime framework.

4.1. The Scout SDK

The Scout SDK is added to the Eclipse IDE in the form of the Scout perspective. [45: See Appendix [apx-
eclipse_perspective] for additional information regarding Eclipse IDE perspectives.]. To illustrate how
the perspective works, we will re-use the ÒHello WorldÓ Scout project from Chapter ÒHello WorldÓ
Tutorial.

The Scout perspective contains two view parts: the Scout Explorer view and Scout Object Properties
view. Additionally, the Scout SDK contains a comprehensive set of wizards that support the developer
in creating Scout application components.

The Scout Explorer view allows the developer to navigate the Scout application model. Once an
element in the Scout Explorer is selected, the Scout Object properties view allows to validate and
change properties of the selected element. Depending on the selection in the Scout Explorer, the Scout
SDK offers appropriate context menus to start the related wizards.

58



Figure 38. The Scout SDK perspective. On the left hand side the Scout Explorer and the Scout Object
Properties views are visible.

Figure 000 provides a screenshot of the Scout SDK perspective. In the Scout Explorer shown in the
upper left part of the screenshot, the message field in the DesktopForm of the ÒHello WorldÓ
application is selected. In the Scout Object Properties located below, the message fieldÕs appearance,
layout and behavior properties are displayed. On the right hand side, the corresponding source code is
loaded in a Java editor.

When the developer changes a property of the selected element, the Java code is updated accordingly
and vice versa. For example clicking the Mandatory property in the Scout Object Properties of the
message field will insert the method getConfiguredMandatory to the message fieldÕs class. This
demonstrates how the Scout SDK directly works on the Java source code. In fact, the Java source code is
almost the only artifact relevant for the Scout SDK to ÔunderstandÕ the Scout application model. Taking
advantage of this setup, the Scout SDK implements a full round-trip-engineering from creating the Java
code for Scout application components, parsing code changes in the background, and displaying the
current implementation of the Scout application in the Scout Explorer and the Scout Object Properties.

Thanks to the round-trip-engineering provided by the Scout SDK, the information presented in the
Scout Explorer and the Scout Object Properties always stay in sync with the Java code of the Scout

59



application. Start the Eclipse IDE with the workspace containing an ÒHello WorldÓ application. Then,
navigate to method getConfiguredLabel as shown in Figure 000, and add the java snippet shown below
to the class MessageField.

@Override
protected boolean getConfiguredMandatory() {
Ê return true;
}

After having saved the code change, you can observe that the Mandatory property in the section
Behavior of the message fieldÕs Scout Object properties has changed its state. The font of its label is
now presented in bold face and underlined, the checkbox is ticked and a red minus icon is shown on
the right side of the property. Obviously, the Scout SDK is directly operating on the projectÕs source
code and does not rely or need any external meta data. This provides the flexibility to develop Scout
applications with or without the support of the Scout SDK. And this choice offered to the Scout
developer is one of the most important features provided by the Scout SDK. The Scout developer may
take advantage of the development support provided by the Scout SDK without being restricted by the
Scout tooling in any way.

Technically, the Scout SDK is a set of Eclipse plugins that operate on top of the Eclipse JDT and the
Eclipse PDE projects. The Java Development Tools (JDT)  [46: See the Eclipse JDT project page for
details: http://www.eclipse.org/jdt/.] contain the tooling to support the development of any Java
applications, and the Plugin Development Environment (PDE)  [47: See the Eclipse PDE project page for
details: http://www.eclipse.org/pde/.] provides tools to create, develop, test, debug, build and deploy
Eclipse plugins, and additional artifacts relevant for Eclipse based applications. As in the case of the
Scout Runtime, the plugins representing the Scout SDK, the JDT and the PDE are all located in the
plugins directory of your Eclipse installation and named org.eclipse.scout.sdk.*, org.eclipse.jdt.* and
org.eclipse.pde.* .

4.2. The Scout Explorer

The Scout Explorer view is responsible for the navigation support within the Scout application model.
This navigation support is presented in the form of a tree view and includes the client with its UI
components, the server and the shared part of a Scout application. It also includes all Scout application
modules of modular Scout applications. [48: See Section [sec-multi_module_apps] for more information
regarding multi module Scout applications.]. For the actual navigation in the tree representing the
Scout application both the mouse or the keyboard can be used.

To expand or collapse a selected node in the Scout Explorer, you may click on the tiny plus icon or the
minus icon presented to the left of the node. Alternatively, you can also use the Right or the Left cursor
keys.

Once a node in the tree is selected, the Scout Object Properties view presents the associated

60

http://www.eclipse.org/jdt/
http://www.eclipse.org/pde/


configuration of the selected element. If the selected element represents a specific application model
component, the corresponding Java source code can be accessed through a double click on the node, or
hitting the Enter key.

The navigation tree provided in the Scout Explorer view also allows the developer to add elements to
the application. Depending on the selected node in the tree, wizards can be launched using the context
menus. The wizards support the creation of application components, such as forms on the client side
or services on the server side by generating the necessary Java code.

Figure 39. The Scout Explorer view. The grey nodes below the expanded client node represent the
supported UI technologies.

In Figure 000 the top level organization of the client application model is shown as it is represented in
the Scout Explorer. All client specific elements are located under the selected orange client node
org.eclipsescout.helloworld.client. Right below, the three grey UI plugins which represent the support
for the corresponding UI technologies for Swing, SWT and Eclipse RAP. The orange
org.eclipsescout.helloworld.client.mobile node contains all elements that are specific to mobile devices

61



such as the MobileHomeForm.

Specific nodes for the client session and the desktop of the Scout client allow access to the
corresponding Scout application model components. While the client session is the main entry point
for client-server communication, the desktop represents the root component of the visible part of a
Scout client application. Below a set of folders group additional client model components according to
their type. The forms folder for example holds all available forms, such as the desktop form that we
have used in the ÒHello World!Ó tutorial. [49: See Section Walking through the Initial Application for a
description of many of these elements.].

Figure 40. The Scout Explorer view with the expanded shared node.

A screenshot of the expanded green shared node org.eclipsescout.helloworld.shared is provided in
Figure 000. As the name ÒsharedÓ suggests, the corresponding plugin holds all application components
that are required for both the Scout client and the Scout server application. This includes texts, icons,
codes types, permissions and lookup calls. As shown in Figure 000, a separate folder for each resource
type is provided under the shared node.

62



Figure 41. The Scout Explorer view with the expanded server node (left). On the individual nodes, access
to the relevant Scout SDK wizards is provided using context menus (right).

In Figure 000, the blue server node is expanded in the Scout Explorer view. As the primary
responsibility of the Scout server application is to answer client requests, its components are mostly
related to different types of services. The Services folder holds services related to the processing logic
of the application such as retrieving and updating data. The remaining folders group more specific

63



types of server services. Under the Webservices folder the Scout SDK support to provide and consume
web services is located.

The right side of Figure 000 illustrates the access to the Scout SDK wizards using the corresponding
context menus. The New ServiceÉ menu shown in the screenshot will start the wizard to add a new
Scout server service.

The different colored tree nodes discussed above are all represented by their individual Eclipse
plugins. This includes the orange client node, the grey UI nodes, the orange mobile client node, the
green shared node and the blue server node. A Scout Swing client for example contains the plugins
org.eclipsescout.helloworld.client, org.eclipsescout.helloworld.shared and
org.eclipsescout.helloworld.client.ui.swing but not the other UI technology plugins. The Scout server
contains the org.eclipsescout.helloworld.server plugin and the org.eclipsescout.helloworld.shared
plugin.

4.3. The Scout Object Properties

The Scout Object Properties view provides direct access to configurable properties and operations for
the element selected in the Scout Explorer. Before we discuss the typical layout of an object property
view we describe the special case of the property view for a complete Scout application. This property
view is displayed when the applicationÕs top level node is selected in the Scout Explorer as shown in
Figure Representation of the Hello World Application.

64



Figure 42. The Scout Object Properties showing the expanded Technologies section.

The main elements of the top-level application properties are the sections Product Launchers and the
Technologies. As the product launcher section with its launcher boxes has already been covered in
Section Run the Initial Application and Section Run the Initial Application we focus on the technologies
here. The technologies section allows to add features to the application or remove such elements.

When the selection of a technology checkbox is changed, a message box is shown to the user. This box
lists all project resources that are changed when the user confirms the action. Once the dialog is
confirmed, the selected resources are modified by the Scout SDK to add or remove the feature.

This is required for features containing licences not compatible to the Eclipse Public Licence (EPL) or
features in incubation status, because such features cannot be provided as part of the Eclipse Scout
installation package. Instead, the associated artifacts need to be downloaded from a remote updated
site first. Before any non-EPL content is downloaded from the internet, the user needs to review and
confirm the associated licence. For this, a license confirmation dialog is shown upfront. After
confirmation, the required files are downloaded and automatically added to the application. Currently,
the procedure described above is used for the following technologies.

¥ MySQL JDBC Driver for Eclipse Scout

65



¥ Oracle 11g2 JDBC Driver for Eclipse Scout

¥ PostgresSQL 9 JDBC Driver for Eclipse Scout

¥ Docx4j Support

¥ F2 Support

¥ Rayo Swing Look and Feel for Eclipse Scout

¥ RAP FileChooser Support (Incubation)

66



Figure 43. The Scout Object Properties for a complete form (left) and a string form field (right).

For the description of the Scout Object Properties of typical Scout components we use the example
views provided in Figure 000. Both Scout Object Properties example views for the desktop form and
the message field are taken from the ÒHello World!Ó application described in Chapter ÒHello WorldÓ
Tutorial. As in the case of the top-level node representing the complete Scout application, the typical
layout of the Scout Object Properties view is organized into several expandable sections. The content
and ordering of the property sections usually follows the following scheme:

¥ Filter

¥ Links

¥ Properties

¥ Operations

¥ Advanced Properties

¥ Advanced Operations

If a folder node (such as the Forms folder under the orange client node) is selected in the Scout
Explorer, the Scout Object Properties only shows a filter section with a filter field. The content in this

67



filter field then restricts the elements below the folder icon accordingly. This feature is especially
useful for the development of larger applications containing hundreds of forms or services.

The Links section provides a set of hyperlinks as shown on the left hand side of Figure 000. The
provided links all refer to Java classes and interfaces that related to the Scout component represented
by the property view.

The available properties of a Scout component are listed in sections Properties and Advanced
Properties. Basically, all available Java getConfigured methods of a Scout component are listed in one of
the two sections depending on the frequency of their usage. Section Properties shows the often used
properties, while the less frequently used properties are provided in section Advanced Properties. The
examples in Figure 000 show the thematic organization of the sections into Appearance, Layout,
Behavior and other groups.

Access to object operations implemented with Java exec methods is provided in sections Operations
and Advanced Operations. Again, the more and less frequently used operations are assigned to
individual sections.

For all listed properties and operations the corresponding Javadoc is displayed in the form of a tooltip
window. To display the available Javadoc, move the mouse pointer over the method of interest in the
Scout Object Properties. [50: This features is work in progress, as for some methods shown in the Scout
Object Properties the Javadoc content is not yet available.].

So far, we did only describe the content and organization of the Scout Object Properties. In the
reminder of this section we will describe the procedure how to change or update the properties and
operations of Scout components. To indicate non-default property values or non-default behavior, the
font of the property or operation is switched to underlined bold face. As an example, consider the
property Ask If Need Save of the desktop form shown on the left side of Figure 000. The bold font
visualizes that this does not correspond to the default behavior of forms. And underlining of this
property further indicates, that the label has become a clickable link. Clicking on this label will load the
corresponding method into the Java editor in the Scout SDK.

To change a property for a specific Scout component just enter a value in the corresponding field or
tick/untick the provided checkbox. In some cases the value may also be chosen from a dropdown list.
For the label field shown on the right hand side of Figure 000, the ÒMessageÓ value refers to the
translation of the text key to be used in method getConfiguredLabel. To enter a new label text, start
typing the desired translated label and pick the option ÒNew translated textÉÓ.

To reset a property or operation to its default value/behavior, you may click on the red Minus icon
provided on the right side of the property field. This will remove the overridden method from the
objectÕs Java code.

4.4. Scout SDK Wizards

The Scout SDK wizards allow the developer to create Scout application model components with just a

68



few clicks. Creation wizards are provided for all major model components such as forms on the client
side or services on the server side. The usage of wizards not only makes developing Scout applications
efficient but also helps to create robust code and reduces the number of errors.

Scout SDK wizards can do many things. They add and update Java classes, register services in the
plugin.xml files, manage plugin dependencies in the MANIFEST.MF files and update Eclipse product
files when necessary. All these capabilities hide a lot of the complexity of writing Eclipse based
applications. This simplifies the development of Scout application considerably.

In the subsections below, the most commonly used Scout SDK wizards are explained. First, the wizards
to create and export complete Scout applications are described. Then, the wizards to create Scout
application model components are introduced.

4.4.1. Creating a new Scout Project

The New Scout Project wizard creates a new Scout client server application. In the Scout Explorer, the
New Scout ProjectÉ context menu is provided on the top-level Scout Projects folder. The creation of a
form based Scout application has already been introduced in Section Create a new Project for the
ÒHello WorldÓ tutorial. And Section Create a new Project provides background information related to
the artifacts created by this wizard. In the text below, we will describe the different steps of the
creation wizard individually.

69



70



Figure 44. The Scout SDK wizard to create a new Scout application. The first wizard dialog (left) is used to
specify the needed application plugins.  In the next wizard step (right) the application template is selected.

In the first wizard step shown on the left hand side of Figure 000, the project name and the application
plugins must be chosen. The Project Name field is used as base name of the applicationÕs plugins and as
the Java package base names inside of the plugins. If the project name is written as parts separated by
periods, the last part is copied into the Project Alias field.

When building multi module applications, the optional Project Postfix field can be specified to apply a
common naming schemes for the different modules. The resulting application plugins (UI, client,
shared, server) are then named following the scheme <Project Name>.<plugin>.<Project Postfix>.

In the box below the postfix field the list of possible application plugins is provided. Initially, all
possible plugins are checked which is useful to quickly demonstrate a ÒHello WorldÓ application.
However, for a typical setup only one or two UI plugins will be needed. To develop a mobile/web
application only the RAP UI plugin is necessary. For a desktop only client, either the Swing or the SWT
UI plugin will be needed. And in cases where the client needs to run both on the desktop and as a
web/mobile application, the RAP and a desktop UI plugin can be chosen. A Scout application must not
necessarily be a client-server application. It is also possible to create a client only or a server only
application. But make sure to include the shared plugin in all possible use cases.

In the Eclipse Platform field the Eclipse target platform version can be selected. If you choose another

71



platform version than the running Eclipse instance, the platform must be downloaded from the Eclipse
update site. This requires Internet access.

The content of the Alias field is used for the clientÕs executable file, the name of the servlet
representing the Scout server application and to build the product launcher names. And if the Use
default Scout JDT preferences field is checked, the Scout default Java development settings are used.
Otherwise, you start with no settings and can apply your own template.

As we have seen in the ÒHello WorldÓ tutorial, it is sufficient to provide a project name in the first
wizard step and click on the [ Finish ] button to create a form based client server application. But we
can also click on the [ Next ] button to choose an application template.

The second wizard step shown on the right side of Figure 000 allows to choose a Scout application
template for the new project. When choosing the template Empty Application only a minimal code base
is created. The other two application templates represent different application types. The template
Application with a single Form is the default choice used for the ÒHello WorldÓ tutorial. Finally, the
template Outline Tree and Table Form can be used to build explorer like applications. The outline tree is
typically used to navigate between related business entities. And the tables are used to list a number of
business entities with their attributes. We will use this template for the creation of a larger Scout
application in Chapter A Larger Example. As in the case of the first wizard step, you may click
[ Finish ] button to start the creation of an initial Scout application. Or, click on [ Next ] button and
manually step through the third and last wizard step.

Figure 45. The last wizard step is used to specify the RAP target for the new Scout application.

The third wizard step shown in Figure 000 is only available if the RAP UI plugin has been checked in
Step 1. Because the RAP runtime must not be installed into the running Eclipse instance,  a separate
RAP target platform is created and used by the Scout SDK. This target platform then contains all
necessary plugins to run the Scout RAP UI. The different options provided by this wizard step are the
following:

When choosing the option Create new RAP Target, a new RAP target platform will be created at the

72



location specified. This target platform can then be used by several projects.

Option Download RAP Target will downloaded the target platform into the running workspace. This
download will then only be available to the active workspace.

With the option Existing RAP Target an existing RAP target location can be specified. Usually this is a
location that has already been created using option 1.

To manually define a RAP target platform choose option IÕll do it later. With this option, the Scout SDK
does not create a RAP target platform for you. But note that the created project will not compile before
a complete target platform has been created for the Scout application.

4.4.2. Exporting a Scout Project

The Export a Scout Project wizard allows to export a complete Scout client server application as WAR
or EAR files. In the Scout Explorer, the Export Scout ProjectÉ context menu is provided on the main
application node just below the top-level Scout Projects folder.

73



Figure 46. The Scout SDK wizard to a new Scout application into WAR files. The first wizard step (left) is
used to select the artifact to be exported.  In the next wizard step (right) is used to define the server WAR
file name and to select the server product file to be used for the export.

As a simple use case, the usage of the export wizard is described in Section Exporting the Application
of the ÒHello WorldÓ tutorial. And the corresponding background Section Exporting the Application
provides information regarding the content and the organization of the WAR files produced by this
wizard.

In the first export wizard step shown on the left hand side of Figure 000 the target directory and the
type of content to be exported is defined. The Target Directory field is used to define the directory
where the generated WAR files will be exported to. Checking the Export as Enterprise Archive (EAR)
field the WAR file(s) will be packed into a EAR file using the file name provided in the EAR File Name
field.

In the artifact selector box the content to be included in the export can be specified:  * The blue Server
Web Application node represents the Scout server application. If ticked, the corresponding WAR file
will also include a zipped desktop client that will then be provided for download to users (only if a
desktop client exists in the current Scout project).  * Selecting the orange Client Application (ZIP) node
node will put a zipped client into the target directory.  * When working with web/mobile applications
the necessary RAP server is represented by the grey RAP Web Application node.

The default scenario assumes that you work with a Scout client server application including a SWT
desktop client and corresponding web/mobile clients. For this setup you just need to provide a target
directory before you can click the [ Finish ] button to start the export. To verify/update what the export
wizard will create you may click the [ Next ] button to move to the second wizard step.

The second wizard step is shown on the right side of Figure 000. The server WAR file name proposed in
the WAR File field uses the naming scheme <Project Alias>_server.war. In order for this WAR file to
work out-of-the-box it it is recommended to use the proposed value. In the Product File field the server
product file to be used for the creation of the WAR file can be specified. Clicking the [ Next ] button will
move to the next wizard step to select the client product to be exported.

74



Figure 47. The third export wizard step is used to specify the desktop client product file to be used for the
export and the download location for the resulting zipped client.

In the third wizard step shown in Figure 000 the client product file can be selected. If the current Scout
project defines both a Swing and a SWT client, the default will use the SWT client. Clicking on the
dropdown button next to the Client Product to include field will open a Select Product dialog to choose
the right product from all available client products. In the Client Download Location field the path to
the zipped client inside the server WAR file is defined. In order for this WAR file to work out-of-the-box
it is recommended to use the proposed value. With the [ Next ] button the last export wizard step is
shown.

Figure 48. The last export wizard step is used to specify the define the name of the server WAR for the
RAP web/mobile application and the corresponding product file to be used for the export.

The last export wizard step is shown in Figure 000. A RAP server WAR file name is proposed in the
WAR File field based on the naming scheme <Project Alias>.war. In order for this WAR file to work out-
of-the-box it is recommended to use the proposed value. In the Product File field the RAP server
product file to be used for the creation of the WAR file can be specified. The [ Finish ] button will then
start the export.

After the wizard has completed the export, all resulting artifacts will be located in the target directory
specified in the first wizard step.

75



4.4.3. Creating new Forms

The New Form wizard allows to create a new form including the necessary form data, permissions and
server services. In the Scout Explorer, the New FormÉ context menu is provided on the Forms folder
under the orange client node.

76



Figure 49. The Scout SDK wizard to create a new form.

4.4.4. Creating new Form Fields

The New Form Field wizard allows to create a new form field. In the Scout Explorer, the New Form
FieldÉ context menu is provided on Scout Explorer nodes representing composite form fields, such as
the MainBox node below a form node.

77



78



Figure 50. Starting the new form field wizard with the context menu on a composite field (left). The first
wizard step (right) is used to select the field type.

Figure 000 provides screenshots for starting the form field wizard with the context menu and the first
wizard page. In the first wizard step, the list of all available Scout form field types is presented. To
quickly find the desired form field type, a part of the type name can be entered in the search field
above the field type list. In the screenshot on the right hand side of Figure 000 this search field
contains the value ÔsÕ which filters the field type list accordingly. Once the type of the new form field is
selected, the next wizard step can be loaded by clicking on the [ Next ] button.

Figure 51. The second form field wizard step is also used to assign a field label.  By typing a word or a
parts of it into the Name field a list of existing and matching text entries is provided.

In the second wizard step shown in Figure 000 the remaining creation parameters for the new form

79



field can be specified. The Name field is used to define the content of the field label. For this, a
translated text entry has to be defined. By typing a string into the name field, all potentially matching
existing translation entries are shown in a dropdown list. As shown in Figure 000 not only the text key
is used to find matching entries but also translated text entries. When assigning the label for a
preferences string field, the substring ÒPrefÓ lists a set of text keys that have a matching entries.

Figure 52. Adding a text translation for a field label (left) and specifying the ordering of the fields (right).

One of the presented options in the list of text entries is the New translated textÉ entry. A double click

80



on this entry starts the wizard to create a new text entry as shown on the left hand side of Figure 000.
The Key Name field holds the text key that is used to access translated text. [51: The access to the
translated texts using TEXTS.get is described in the ÒHello WorldÓ UI background chapter in Section
The User Interface Part.]. In the tabs below the key name field, the text translations for the registered
languages can be provided. Make sure to at least provide a text in the default tab. This text will be used
in the Scout application if no translation is available that better matches the logged in userÕs locale.

Once the name field is filled in, the entered text key is also used to create a proposal for the Class Name
field using the pattern <Field Name>Field. In contrast to the label field, the class name field is
mandatory. If the field does not need a label the name field can remain empty. In that case, a class
name still needs to be provided as described in Section The User Interface Part for the DesktopBox
class in the ÒHello WorldÓ application.

The Sibling field is used to define the ordering of the form fields in the parent container. As shown on
the right hand side of Figure 000, the new PreferencesField is to be placed before the message field.

4.4.5. Creating new Outlines

The New Outline wizard allows to create the container to display data of pages. In the Scout Explorer,
the New OutlineÉ context menu is available on the Outlines folder below the Desktop node under the
applications client node. The New Outline wizard is shown in Figure 000.

Figure 53. The Scout SDK wizard to create a new outline.

4.4.6. Creating new Pages

The New Page wizard allows to create pages which are shown in the corresponding outlines. In the
Scout Explorer, the New PageÉ context menu is available below outlines, below other pages or in the
All Pages folder. The New Page wizard is shown in Figure 000.

81



82



Figure 54. The Scout SDK wizard to create a new page with table.

4.4.7. Creating new Table Columns

The New Column wizard allows to create columns in a table. In the Scout Explorer, the New ColumnÉ
context menu is available below tables, on the Columns folder. The New Column wizard is shown in
Figure 000.

83



Figure 55. The Scout SDK wizard to create a new table column.

84



Figure 56. Column Properties.

85



4.4.8. Creating new Search Forms

The New Search Form wizard allows to create a new Scout form to search for elements displayed in
pages. In the Scout Explorer, the Create Search FormÉ context menu is provided on the Search Forms
folder under the orange client node. If you have already a page and the corresponding column created,
you can directly create a search form based on that table as shown in Figure 000.

Figure 57. Start the Scout SDK search form wizard for an existing table page.

4.4.9. Creating new Services and Operations

The New Service wizard allows to create new services to execute tasks and provide data to a client. In
the Scout Explorer, the New ServiceÉ context menu is provided on the Services folder under the
orange client node and the blue server node. This reflects the fact that services may be defined on both
the client and the server side.

86



Figure 58. Starting the service creation wizard to add a new server service.

87



Figure 59. The Scout SDK wizard to create a new service.

4.4.10. Creating new Code Types and Codes

The New Code Type wizard allows to create new code types. As access to code types and codes is
required from both client and server applications they are located in the applicationÕs shared plugin.
Consequently, the New Code TypeÉ context menu is provided on the Code Types folder under the
green shared node in the Scout Explorer.

88



Figure 60. The Scout SDK wizards to create a new code type (left) and a new code (right).

A screenshot of the wizard to create a new code type is shown on the left side of Figure 000. The Code
Id field contains the ID that will be assigned to the new code type. Take care to ensure that the content
of this field matches with the type provided in the Datatype of CodeType Id field. The Name contains an
optional name for the code type, and the Class Name field the name of the Java class to be created. If
the name field is filled in, the class name field is automatically derived from the provided name.

89



The New Code wizard shown on the right side of Figure 000 allows to create individual codes. In the
Scout Explorer it can be accessed through the New Code É context menu on existing code type nodes.
For hierarchical code types, this wizard is also made available on existing codes to create inner codes.

4.4.11. Creating new Library Bundles

The New Library Bundle wizard allows to add functionality provided in standard JAR files to a Scout
application. In the Scout Explorer, the New Library BundleÉ context menu is provided on the top-
level Libraries folder and individually under the orange client node, the green shared node and the
blue server node.

90



Figure 61. The Scout SDK wizard to add external JAR files in the form of a library bundle to a Scout
project.

4.4.12. Creating new Application Modules

In some projects it may be desired to split the application into several modules. This allows to split the
application into smaller parts and allows to deliver multiple versions with different features (e.g. a
"Professional Edition" that contains more functionality). For this an additional set of client, shared and
server plugins can be created to group e.g. all the "Professional Edition" features. To create a new
module the Create new Scout Bundles wizard can be started by using the Add Scout BundlesÉ context
menu on the project node (like org.eclipsescout.helloworld).

91



92



Figure 62. The Scout SDK wizard to create a new application module.

4.4.13. The NLS Editor

93



Figure 63. The NLS editor provided by the Scout SDK. This editor is opened via the Open NLS Editor É link
in the Scout Object Properties of the DefaultTextProviderService node.

Access to translated texts in Scout applications is provided through text provider services located in the
applicationÕs shared plugin. This setup makes translated texts available in the client and the server
part of the application. Consequently, the Scout SDK provides access to the NLS Editor to manage
translated texts and application languages under the green shared node in the Scout Explorer view as
shown in Figure 000.

To open the NLS editor, select the green shared node in the Scout Explorer view and expand its Text
Provider Services folder. Then, select the contained element <Project Alias>TextProviderService. As
shown in Figure 000, the NLS editor can be opened using the Open NLS Editor É link in the Scout
Object Properties view. In the NLS editor translations can be edited individually by pressing F2 or
double-clicking into a text cell. This opens the editor to change the text to the desired value. To add a
new translated text, the corresponding dialog can be opened by clicking on the button with the ÔTÕ icon
next to the 'New language' button (shown in Figure 000).

In Scout applications, translated texts are obtained with the method TEXTS.get("key") where "key"
represents the language independent text key. In a default Scout project setup, calling TEXTS.get uses
the <Project Alias>TextProviderService in the background. And this text provider service defines the
access path for the text property files that are located in the applications shared plugin. Typically, these
property files are collected in the pluginÕs <youraplication>.shared/resources/texts directory according
to the right hand side of Figure 000. To resolve the provided text key at runtime, the userÕs locale

94



settings is used to access the correct text property file.

Figure 64. In the dialog Add a Language shown on the left side the desired language and localization can
be specified. On the right side, the location of property file Texts_es_ES.properties in the shared plugin of
the ÒHello WorldÓ application is shown.

Adding support for a new language to a Scout project is also directly supported by the Scout SDK. To
add support for a new translated language, click on the corresponding icon of the NLS editor as shown
in Figure 000. In the opened language dialog, add the desired language and country localization and
the target directory as shown in Figure 000. A new language properties file is then added to the shared
plugin project as shown in Figure 000. The new language is now available as an additional column in
the NLS editor and as a separate tab in the dialog to add new translated texts.

95



5. A Larger Example
In this chapter we will create the ÒMy ContactsÓ Scout application. This small. [52: Small in comparison
with real world application. But significantly larger and complexer than the ÒHello WorldÓ application
of Chapter ÒHello WorldÓ Tutorial.] application covers additional aspects of the Eclipse Scout
framework. The presented demo application borrows heavily from a Scout tutorial published 2012 in
the German Java Magazin. [53: Java Magazin 7.12: https://jaxenter.de/magazines/JavaMagazin72012.]
for the Scout release 3.8 (Juno). Compared to the 2012 tutorial, the version presented in this chapter
has been slightly polished and updated to the Scout release 4.0 (Luna).

According to this step-by-step tutorial, we will build an outline based Scout application featuring a
navigation tree and pages to present information in tabular form. In addition, the application also
shows how to work with forms to enter and/or update data, menus and context menus. On the server
side, we show how to work with databases, how to use logging in Scout applications and how to
include standard Java libraries in the form of JAR files.

The chapter is organized as follows. In the first section, the finished demo application is explained
from the user perspective. The remaining sections focus on the individual steps to implement the ÒMy
ContactsÓ application. To be able to easily follow the text, we assume that the reader is familiar with
the ÒHello WorldÓ tutorial and the Scout SDK as described in Chapter Scout Tooling.

5.1. The ÒMy ContactsÓ Application
The ÒMy ContactsÓ application is a client server application to manage personal contacts. Persistence of
entered data is achieved through a database backend.

As social networking services. [54: Social networking services in Wikipedia:
http://en.wikipedia.org/wiki/Social_network_service] such as Facebook, LinkedIn or Xing are widely
used, the application also provides an example integration with the LinkedIn. [55:
http://www.linkedin.com/] platform. The implemented integration allows to download the personal
contacts into the local database. In the local database it is possible to mix persons entered manually
with contact data downloaded from LinkedIn.

96

https://jaxenter.de/magazines/JavaMagazin72012
http://en.wikipedia.org/wiki/Social_network_service
http://www.linkedin.com/


Figure 65. The SWT client of the ÒMy ContactsÓ application.

After starting the Scout server application a client application may be started that then connects to the
server. In Figure 000 the SWT desktop client is shown. In the background, the main application
window is visible showing a navigation tree on the left hand side. On the right side, a table holds the
elements corresponding to the selected tree node. Using an edit context menu on the selected table
row, a form to edit the relevant data may be opened as shown in the example screen shot for ÔAliceÕ.
Clicking on the link 'Show Map É' in the person form opens the personÕs location information in a map
form using the data provided by Google Maps Image API. [56: The Google Maps Image APIs:
https://developers.google.com/maps/documentation/imageapis/.].

97

https://developers.google.com/maps/documentation/imageapis/


Figure 66. To refresh/generate an access token for reading LinkedIn contacts data select the menu shown
in the screen shot.

98



Figure 67. To refresh/create the access token click on the provided 'Open Auth URL' link first (left). Then,
the security code field is enabled and the user can fill in the security code provided on the LinkedIn web
page.

Before any LinkedIn data can be accessed from the ÒMy ContactsÓ application an access token needs to
be retrieved from LinkedIn. To obtain such a token use the Refresh LinkedIn Token É menu as
shown in Figure 000. This opens the refresh token form shown on the left side of Figure 000.

99



Figure 68. The LinkedIn granting dialog steps shown in a web browser. In the first step (right) confirm the
access request, then the security code to create an access token is provided in the second step (left).

Clicking on the 'Open Auth URL' link then opens the granting page provided by LinkedIn shown on the
left hand side of Figure 000. After logging into your LinkedIn account. [57: Yes, for this use case you
need a LinkedIn account. But at least itÕs free and you will not need to provide very sensitive
information such as a mobile phone number, a credit card number or a social security number.] you
can specify the desired access duration and confirm the ÒOAuth test for ScribeÓ access. [58: This is the
name of the example code provided with the Scribe library that is used with the ÒMy ContactsÓ
application.] to your LinkedIn data. If the authorization is successful, a security code as shown on the
right side of Figure 000 is presented by LinkedIn. This code needs then to be entered into the Security
Code field as shown on the right side of Figure 000. Then, click the [ OK ] button to refresh the access
token.

Figure 69. Executing the 'Update LinkedIn Contacts for the first time imports the users LinkedIn contacts
into the ÒMy ContactsÓ application.

To import/update your LinkedIn contacts into your ÒMy ContactsÓ application select the Update

100



LinkedIn Contacts menu as shown in Figure 000. Once you have downloaded or entered a number of
persons in your ÒMy ContactsÓ application, try to get yourself familiar with the applicationÕs person
table. This is one of the very powerful Scout widgets. Columns may be filtered, moved, hidden or
sorted (including multi level sort) using the table header context menus Organize ColumnsÉ | ]
menu  and menu:Column FilterÉ[ menu.

Editing and viewing of person data is available by the Edit PersonÉ context menu on a selected row.
To manually add a person use the New PersonÉ context menu available on the table header or in the
white area outside the displayed columns.

Figure 70. After importing the contacts from LinkedIn the data is shown in the person page. The filter
applied on the headline column is indicated by the filter icon. In the front, the filter form shows the filter
criteria ÔEclipseÕ.

101



Figure 71. The ÒMy ContactsÓ application running in the browser as web application. The Excel sheet
shown in the front is exported from the person page using the 'Tools/Export to Excel' menu.

102



103



Figure 72. The ÒMy ContactsÓ application running on an iPhone device. On the left hand side, the person
page is shown. The person form is shown on the right.

In Figure 000 the ÒMy ContactsÓ application is running in a web browser. In this example, the Tools |
Export to Excel menu is used to export the selected row into an Excel sheet. Finally, the ÒMy ContactsÓ
application is also running on iPhone and Android mobile devices out of the box. Two example screens

104



are provided in Figure 000.

Once you no longer feel confident about having the ÒMy ContactsÓ application accessing you data you
can revoke this access permission in the LinkedIn menu ÒPrivacy and SettingsÓ. In the lower part of the
settings page switch to the tab ÒGroups, Companies and ApplicationsÓ and click on the link ÒView your
applicationsÓ. There, you will find again the partner name ÒOAuth test for ScribeÓ. To revoke the
access, select the associated checkbox and click the ÒRemoveÓ button. The next time you try to refresh
your LinkedIn data from the ÒMy ContactsÓ application will result in an Error message. Before you can
again access data from your LinkedIn account you just need to refresh the access token as described
above.

To run the ÒMy ContactsÓ Scout application without implementing it first, you may take advantage of
the fact that the application is hosted in the same Github repository as this book. If you are familiar
with Github. [59: Github: https://en.wikipedia.org/wiki/GitHub.], fork the Scout Book repository. [60:
Scout Book repository: https://github.com/BSI-Business-Systems-Integration-AG/scoutbook.] and start
from there. Alternatively, you can follow the description provided in the Scout wiki. [61: Download and
installation of the ÒMy ContactsÓ application:
http://wiki.eclipse.org/Scout/Book/3.9#Download_and_Run_the_Scout_Sample_Applications.] to
download, install and run the ÒMy ContactsÓ application.

5.2. Setting up the new Scout project

105

https://en.wikipedia.org/wiki/GitHub
https://github.com/BSI-Business-Systems-Integration-AG/scoutbook
http://wiki.eclipse.org/Scout/Book/3.9#Download_and_Run_the_Scout_Sample_Applications


106



Figure 73. Start with creating a new Scout project.

The initial code for the ÒMy ContactsÓ application is generated using the New Scout Project wizard as
described in Section Creating a new Scout Project. For the Project Name field use the name
org.eclipsescout.contacts as shown on the left side of Figure 000 and click on the [ Next ] button. In the
second wizard step select the application template Outline Tree and Table Form as shown on the right
side of Figure 000.

107



108



Figure 74. The setting of the Technology section in the Scout Object Properties of the ÒMy ContactsÓ
application.

After the Scout SDK has created the initial application code select the top-level org.eclipsescout.contacts
node in the Scout Explorer. In the technology section of the corresponding Scout Object Properties
select the Derby database driver, the Docx4j support and the Rayo look and feel as shown on the right
side of Figure 000. In case you have not yet used the Scout Docx4j support or the Rayo look and feel
components, the Scout SDK will need to download these packages from the Eclipse Marketplace. [62:
See Section The Scout Object Properties for additional information regarding the download of
marketplace packages] first.

109



Listing 10. The ExportToExcelMenu class added by the Docx4j support to the applicationÕs tools menu.

Ê   @Order(20.0)
Ê   public class ExportToExcelMenu extends AbstractExtensibleMenu {

Ê     @Override
Ê     protected String getConfiguredText() {
Ê       return TEXTS.get("ExportToExcelMenu");
Ê     }

Ê     @Override
Ê     protected void execAction() throws ProcessingException {
Ê       if (getOutline() != null && getOutline().getActivePage() != null) {
Ê         ScoutXlsxSpreadsheetAdapter s = new ScoutXlsxSpreadsheetAdapter();
Ê         File xlsx = s.exportPage(null, 0, 0, getOutline().getActivePage());
Ê         SERVICES.getService(IShellService.class).shellOpen(xlsx.getAbsolutePath());
Ê       }
Ê     }
Ê   }

Remark: Adding the Docx4j support will add the Export to Excel menu under tools menu on the
applicationÕs desktop. This presence of this feature will then allow to export contacts shown in the
application to an Excel sheet. As shown in Listing ExportToExcelMenu, the
ScoutXlsxSpreadsheetAdapter first creates an excel file based on the currently active page in the
execAction method. Then the file is opened on the client using the shellOpen method.

110



Figure 75. Configure the application name ÒMy ContactsÓ in the title field of the DesktopÕs properties.

After this initial project setup step we first define the applicationÕs name shown on the main dialog. For

111



this, select the Desktop node under the orange client node in the Scout Explorer. This opens itÕs Scout
Object Properties as shown in Figure 000. In the Title field enter the string ÒMy ContactsÓ and create a
new translated text entry.

Listing 11. The execOpened method of desktop class of the "My Contacts" application. The applicationÕs
organisation into a tree and a table form is defined here.

Ê @Override
Ê protected void execOpened() throws ProcessingException {
Ê   //If it is a mobile or tablet device, the DesktopExtension in the mobile plugin takes
care of starting the correct forms.
Ê   if (!UserAgentUtility.isDesktopDevice()) {
Ê     return;
Ê   }

Ê   // outline tree
Ê   DefaultOutlineTreeForm treeForm = new DefaultOutlineTreeForm();
Ê   treeForm.setIconId(Icons.EclipseScout);
Ê   treeForm.startView();

Ê   //outline table
Ê   DefaultOutlineTableForm tableForm = new DefaultOutlineTableForm();
Ê   tableForm.setIconId(Icons.EclipseScout);
Ê   tableForm.startView();

Ê   IOutline firstOutline = CollectionUtility.firstElement(getAvailableOutlines());
Ê   if (firstOutline != null) {
Ê     setOutline(firstOutline);
Ê   }

Ê }

As shown in Listing execOpened the applicationÕs organisation into a tree and a table form is explicitly
defined in method execOpened. Click on the Exec Opened link in the desktopÕs Scout Object Properties
to access the Java code of this method. First, using the UserAgentUtility class, the method checks if the
client is working with a desktop, a web or a mobile client. If the user is not working with a desktop
client, execOpened returns immediately and the tree and table setup is not used. Instead, the
MobileHomeForm defined in plugin org.eclipsescout.contacts.client.mobile is used. In case the user is
working with a web client or a desktop client, the default tree and table forms are created and started.
Finally, the currently active outline is set to the StandardOutline, as this is the only outline defined in
this application.

5.3. Adding the Person Page

112



Figure 76. Create a new page as a child page of the standard outline.

113



Figure 77. Create a new page with the corresponding SDK wizard. To present the list of persons in a table,
choose the template AbstractPageWithTable as shown on the left.

The first UI component we add to the application is the person page. For the desktop clients, this page
is represented as a table that will list all available persons in the database of the ÒMy ContactsÓ
application. To start the New Page wizard use the New PageÉ context menu on the Child Pages folder
as shown in Figure 000. On the first wizard step select the template AbstractPageWithTable and click
the [ Next ] button. On the second wizard step, provide the page name ÒPersonÓ to create a new
translated text entry at the same time. Make sure the other fields are filled in as shown in Figure 000
and click the [ Finish ] button to close the wizard.

Listing 12. The execCreateChildPages method of the standard outline. At the current implementation step
the company table page is not (yet) added.

Ê @Override
Ê protected void execCreateChildPages(List<IPage> pageList) throws ProcessingException {
Ê   PersonTablePage personTablePage = new PersonTablePage();
Ê   pageList.add(personTablePage);
Ê   CompanyTablePage companyTablePage = new CompanyTablePage();
Ê   pageList.add(companyTablePage);
Ê }

Listing execCreateChildPages shows the created method execCreateChildPages that links the newly
created person page to the standard outline. Note that your code will only look the same once you have
added the company page in a later step of the implementation of this application.

114



115



Figure 78. Add columns to the person page.

Now, drill down to the Columns folder under the PersonTablePage node as shown in Figure 000. Here
we can add the desired table columns to the person page. Start with the column that will hold the
person id. For this, start the column wizard as shown on the left side of Figure 000 and select the string
column template. In the second wizard step, enter ÒPersonIdÓ into the Class Name field, select the radio
button Create one more column and click on the [ Finish ] button. This will restart the column wizard
to enter the next columns. Create the remaining string columns with the following names.

¥ {First Name}

¥ {Last Name}

¥ {Headline}

116



Figure 79. Configure the PersonId column. Check property Primary Key under the section Advanced
Properties (right).

117



Listing 13. The person id and the first name columns of the PersonTablePage class.

Ê   @Order(10.0)
Ê   public class PersonIdColumn extends AbstractStringColumn {

Ê     @Override
Ê     protected boolean getConfiguredDisplayable() {
Ê       return false;
Ê     }

Ê     @Override
Ê     protected boolean getConfiguredPrimaryKey() {
Ê       return true;
Ê     }
Ê   }

Ê   @Order(20.0)
Ê   public class FirstNameColumn extends AbstractStringColumn {

Ê     @Override
Ê     protected String getConfiguredHeaderText() {
Ê       return TEXTS.get("FirstName");
Ê     }
Ê   }

Once you have created all these columns we will mark the person id column as the primary key
column for the person page. In the Scout Explorer select the PersonIdColumn node to open the
corresponding Scout Object Properties. In this form, deselect the Displayable property to always hide
this technical column from the end user. In the properties Advanced Properties section check the
Primary Key property. The resulting Java code for the primary key column and the first name column
is provided in Listing PersonIdColumn and FirstNameColumn.

118



Figure 80. Add the CompanyId variable to the person page.

Listing 14. The company id variable of the PersonTablePage class.

@PageData(PersonTablePageData.class)
public class PersonTablePage extends AbstractPageWithTable<PersonTablePage.Table> {

Ê private String m_companyId;

Ê @FormData
Ê public String getCompanyId() {
Ê   return m_companyId;
Ê }

Ê @FormData
Ê public void setCompanyId(String companyId) {
Ê   m_companyId = companyId;
Ê }
}

As we will later add and link the person page with a company page, we add a company id variable to
the person page as shown in Figure 000. For the Java representation of such variables the standard
bean pattern is used as shown in Listing PersonTablePage.

5.4. Adding the Company Page

119



Figure 81. Add the person page below the the company page.

Listing 15. Linking the PersonTablePage with the parent CompanyTablePage.

Ê @Override
Ê protected IPage execCreateChildPage(ITableRow row) throws ProcessingException {
Ê   PersonTablePage childPage = new PersonTablePage();
Ê   childPage.setCompanyId(getTable().getCompanyIdColumn().getValue(row));
Ê   return childPage;
Ê }

120



After adding the person page, we also add a company page under the Child Pages node to the standard
outline. To add the company page we use the same wizards as described in the previous section for the
person page. For the Name field we enter the new translated text ÒCompanyÓ and the columns to add
are the following.

¥ {Company Id}

¥ {Name}

¥ {Location}

As in the case of the person table page, the company id column is used as a primary key column. The
Displayable property needs to be set to false and the Primary Key property to true. Now we can link the
person page to the company page using the Add Existing PageÉ context menu as shown on the left
side of Figure 000. In the Link Page wizard, the person page can then be selected according to the right
side of Figure 000. In the Java code generated by the Scout SDK the setting of the company id attribute
is automatically inserted in method execCreateChildPages. Please note that this convenience added by
the Scout SDK wizard only works if the child page defines variables with a naming that matches the
defined primary key columns of the parent table.

5.5. Installing the Database

121



Figure 82. Add the service to access the Derby database under folder SQL Services.

To access a database we first need to install a database service. For the ÒMy ContactsÓ application, this
is done using the New SQL Service wizard on the Scout server under the SQL Services folder as shown
in Figure 000. In the first wizard step shown on the right side of the figure, use ÒDerbySqlServiceÓ for
the Class Name field. From the drop-down list in the Super Class field choose the
AbstractDerbySqlService and click on the [ Finish ] button.

Listing 16. Setting up the database parameters in the Scout serverÕs config.ini file.

### DataSource
org.eclipsescout.contacts.server.services.common.sql.DerbySqlService#directJdbcConnection
=true
org.eclipsescout.contacts.server.services.common.sql.DerbySqlService#jdbcDriverName=org.a
pache.derby.jdbc.EmbeddedDriver
org.eclipsescout.contacts.server.services.common.sql.DerbySqlService#jdbcMappingName=jdbc
:derby:${workspace_loc}/../DB_CONTACT;create=true;territory=en_US
org.eclipsescout.contacts.server.services.common.sql.DerbySqlService#username=contact_use
r
org.eclipsescout.contacts.server.services.common.sql.DerbySqlService#password=secr3t

To setup the database connection the necessary parameters need to be added to the serverÕs config.ini
file as shown in Listing DataSource in config.ini. Comparing the parameter names in this config file
with the package name of the created DerbySqlService service class reveals an interesting framework
feature. All Scout services can be parameterized using the config.ini file with the pattern
<package>.<class name>#<parameter>=<value>. The Scout runtime then sets the service parameters using
matching setter methods such as setPassword for the password parameter.

122



According to the parameter jdbcMappingName=jdbc:derby:${workspace_loc/É} a new Derby database
will be created in the same parent directory as the ÒMy ContactsÓ workspace directory if no database
named DB_CONTACT is found there. This setup is handy for development purposes but you may want to
set the database parameter to create=false in the config.ini of the production product file.

123



Figure 83. Add a database installation service.

124



Figure 84. Add the service operation to create the DB schema.

125



Listing 17. New tables are created if they are not found by getExistingTables in the existing schema.

public class DBInstallService extends AbstractService implements IDBInstallService {

Ê private boolean m_doSetup = true;

Ê public void setDoSetup(boolean doSetup) {
Ê   m_doSetup = doSetup;
Ê }

Ê @Override
Ê public void installStorage() throws ProcessingException {
Ê   boolean addInitialData = true;
Ê   if (m_doSetup) {
Ê     Set<String> tables = getExistingTables();
Ê     createCompanyTable(tables, addInitialData);
Ê     createPersonTable(tables, addInitialData);
Ê     createUsersParamTable(tables, addInitialData);
Ê   }
Ê }

Ê private Set<String> getExistingTables() throws ProcessingException {
Ê   Object[][] existingTables = SQL.select("SELECT tablename FROM sys.systables");
Ê   HashSet<String> result = new HashSet<String>(existingTables.length);

Ê   for (Object[] row : existingTables) {
Ê     String table = (row[0] + "").toUpperCase();
Ê     result.add(table);
Ê   }

Ê   return result;
Ê }

}

5.5.1. Setting up the Database Schema

Having a working database service and a new (empty) Derby database now allows to create the
necessary database schema and populate it with some initial data. For this we add a new
DBInstallService service as shown in Figure 000 below the Services node of the Scout server. To this
install service we then add the installStorage operation according to Figure 000. The implementation of
this method is provided in Listing DBInstallService. The method first checks if a setup is required. For
this, the member variable m_doSetup is used that might also be set by the setDoSetup setter method via
the serverÕs config.ini file.

126



Listing 18. Setting up the COMPANY table of the ÒMy ContactsÓ application.

Ê private void createCompanyTable(Set<String> tables, boolean addInitialData) throws
ProcessingException {
Ê   if (!tables.contains("COMPANY")) {
Ê     SQL.insert("CREATE TABLE COMPANY ("
Ê         + " company_id VARCHAR(64) NOT NULL CONSTRAINT COMPANY_PK PRIMARY KEY, "
Ê         + " name VARCHAR(64), "
Ê         + " location VARCHAR(64), "
Ê         + " url VARCHAR(64))");

Ê     if (addInitialData) {
Ê       SQL.insert("INSERT INTO COMPANY (company_id, name, location, url) "
Ê           + "VALUES (:company_id, 'Alice''s Adventures in Wonderland', 'London,
England', 'http://en.wikipedia.org/wiki/Alice%27s_Adventures_in_Wonderland')",
Ê           new NVPair("company_id", UUID.randomUUID().toString()));

Ê       SQL.insert("INSERT INTO COMPANY (company_id, name, location, url) "
Ê           + "VALUES (:company_id, 'BSI Business Systems Integration AG', 'Daettwil,
Baden, Switzerland', 'http://www.bsiag.com')",
Ê           new NVPair("company_id", UUID.randomUUID().toString()));
Ê     }
Ê   }
Ê }

127



Listing 19. Setting up the PERSON table of the ÒMy ContactsÓ application.

Ê private void createPersonTable(Set<String> tables, boolean addInitialData) throws
ProcessingException {
Ê   if (!tables.contains("PERSON")) {
Ê     SQL.insert("CREATE TABLE PERSON ("
Ê         + " person_id VARCHAR(64) NOT NULL CONSTRAINT PERSON_PK PRIMARY KEY, "
Ê         + " company_id VARCHAR(64), "
Ê         + " first_name VARCHAR(64), "
Ê         + " last_name VARCHAR(64), "
Ê         + " headline VARCHAR(512), "
Ê         + " location VARCHAR(512), "
Ê         + " date_of_birth DATE, "
Ê         + " picture_url VARCHAR(512), "
Ê         + " CONSTRAINT COMPANY_FK FOREIGN KEY (company_id) REFERENCES COMPANY
(company_id))");

Ê     if (addInitialData) {
Ê       SQL.insert("INSERT INTO PERSON (person_id, first_name, headline, location,
company_id, picture_url, date_of_birth)"
Ê           + "VALUES (:person_id, 'Alice', 'The curious girl', 'Daresbury, Cheshire,
England', "
Ê           + "(SELECT company_id FROM COMPANY WHERE name = 'Alice''s Adventures in
Wonderland'), 'http://www.uergsel.de/uploads/Alice.png', :dob)",
Ê           new NVPair("person_id", UUID.randomUUID().toString()),
Ê           new NVPair("dob", DateUtility.parse("26.11.1865", "dd.mm.yyyy")));
Ê     }
Ê   }
Ê }

Listing 20. Setting up the USERS_PARAM table of the ÒMy ContactsÓ application.

Ê private void createUsersParamTable(Set<String> tables, boolean addInitialData) throws
ProcessingException {
Ê   if (!tables.contains("USERS_PARAM")) {
Ê     SQL.insert("CREATE TABLE USERS_PARAM ("
Ê         + " username VARCHAR(32) NOT NULL, "
Ê         + " param VARCHAR(32) NOT NULL, "
Ê         + " value VARCHAR(512), "
Ê         + " CONSTRAINT PARAM_PK PRIMARY KEY (username, param))");

Ê     if (addInitialData) {
Ê       // nop
Ê     }
Ê   }
Ê }

128



Setting up the schema to contain the individual tables for the ÒMy ContactsÓ application is
implemented in a separate method per table. The table definition for the company table is provided in
Listing COMPANY table setup. In this method two Scout aspects are of interest.

The first Scout feature used is the absence of a COMMIT statement after the two INSERT INTO
statements. This is possible, as all Scout service calls run in a transaction context that is transparent to
the Scout developer. If a service method exits without errors, the enclosing transaction is committed.
And if any runtime exception occurs in a service call the Scout runtime framework performs a
rollback.

The second feature is the parameter binding used in the INSERT INTO statements. When SQL
statements are executed using any of the static SQL methods, an internal statement processor replaces
all bind variables found in the provided statement string. In Scout, SQL bind variables need to use the
pattern :<variable name>. The values for the bind variables can then be provided in the form of
additional arguments. In the concrete example of Listing COMPANY table setup, the content for the
bind variable :company_id is provided as a NVPair object. [element]_NVPair_s are the simplest possible
form to represent bind variables. The first constructor argument is the variable name of the bind
variable, in this case company_id. The actual content of the bind variable is provided in the form of an
object. Here, the Java runtime class UUID.randomUUID().toString() is used to create a new company
key.

Setting up the person table and the user parameter table is defined according to Listing PERSON table
setup and Listing USER_PARAM table setup. To create a data object for the persons day of birth, the
Scout utility class DateUtility is used.

129



Listing 21. Scheduling the database installation in the start method of the ServerApplication class during
the server application startup.

public class ServerApplication implements IApplication {
Ê private static IScoutLogger logger = ScoutLogManager.getLogger(ServerApplication.class
);

Ê @Override
Ê public Object start(IApplicationContext context) throws Exception {
Ê   ServerSession serverSession = SERVICES.getService(IServerSessionRegistryService.
class).newServerSession(ServerSession.class, Activator.getDefault().getBackendSubject());

Ê   ServerJob installJob = new ServerJob("Install contacts DB schema", serverSession) {
Ê     @Override
Ê     protected IStatus runTransaction(IProgressMonitor monitor) {
Ê       try {
Ê         SERVICES.getService(IDBInstallService.class).installStorage();
Ê         logger.info("Contacts DB schema successfully created");
Ê       }
Ê       catch (Throwable t) {
Ê         return new Status(IStatus.ERROR, Activator.PLUGIN_ID, "Error while installing
contacts DB schema", t);
Ê       }

Ê       return Status.OK_STATUS;
Ê     }
Ê   };
Ê   installJob.schedule();
Ê   installJob.join(20000);

Ê   logger.info("Contacts server application started");
Ê   return EXIT_OK;
Ê }

}

The only piece missing to setup the database is calling the installStorage operation during the startup
of the ÒMy ContactsÓ server application. The proper way to implement such a scenario is to schedule an
installation job in the ServerApplication class of the Scout server. In the ÒMy ContactsÓ application this
is implemented according to Listing database installation. To create a server job, a new server session
object needs to be obtained first. However, during the startup time of the server we do not have any
logged in users yet. That is why the session is created for the backend subject representing the server
application. Using this serverSession object, the installJob can be created. In itÕs runTransaction
method we can then call the installStorage operation to setup the ÒMy ContactsÓ database.

130



5.5.2. Scout Logging

Listing 22. The logging configuration in the Scout serverÕs config.ini file.

eclipse.consoleLog=true
org.eclipse.scout.log=eclipse
org.eclipse.scout.log.level=INFO

An additional Scout topic that is touched in this ServerApplication class is the Scout logging. As shown
in Listing database installation, a static logger object is created using ScoutÕs ScoutLogManager class.
Events can then be logged with the logger.info method where info refers to the log level attached to
this message. Similar to the database setup described above, the logging setup is defined in the
config.ini file. The default setup defined for the development product is provided in Listing logging
configuration. Further information regarding logging in Eclipse Scout is available in the Scout wiki.
[63: Logging in Eclipse Scout: http://wiki.eclipse.org/Scout/Concepts/Logging.].

5.6. Fetching Data from the Database

131

http://wiki.eclipse.org/Scout/Concepts/Logging


Figure 85. Add the service operation to fetch the data for the person table.

In the section before we have implemented and configured the SQL service to access the Derby
database from the Scout server. And during the first server startup, the applicationÕs database schema
is created and populated with some initial data.

Now, this SQL service is ready to be used to fetch the data for the client applicationÕs person page and
the company page. The best place to implement these data provider methods is in the serverÕs
StandardOutlineService class. This class has been created by the Scout SDK during the initial project
creation step. It is meant to hold the operations that fetch the data for populating the elements visible
in the outline tree and outline pages.

For the ÒMy ContactsÓ application, we first create the getPersonTableData operation as shown in Figure
000. In the wizard dialog enter ÒgetPersonTableDataÓ into the Operation Name field. For the return type
we simply use a two dimensional object array. As the person page is also displayed under the company
page, we need to have a way to only return the persons working for a specific company. To allow for
this use case, we add the parameter ÒcompanyIdÓ as the first argument to the getPersonTableData
operation before we close the wizard with [ Finish ] button.

The next operation we need is the getCompanyTableData method. You may use the same creation steps
as described above for the person table page data. But for fetching company table data we do not need
an additional argument. The company page in the ÒMy ContactsÓ application will always show all
available companies.

132



Listing 23. Fetching the table data for the person and the company page of the ÒMy ContactsÓ application.
The list of persons is restricted to employees of a specific company if a company id parameter is provided.

public class StandardOutlineService extends AbstractService implements
IStandardOutlineService {

Ê @Override
Ê public Object[][] getPersonTableData(String companyId) throws ProcessingException {
Ê   String stmt = "SELECT person_id, first_name, last_name, headline FROM PERSON";

Ê   if (StringUtility.isNullOrEmpty(companyId)) {
Ê     return SQL.select(stmt);
Ê   }

Ê   return SQL.select(stmt + " WHERE company_id = :companyId",
Ê       new NVPair("companyId", companyId));
Ê }

Ê @Override
Ê public Object[][] getCompanyTableData() throws ProcessingException {
Ê   return SQL.select("SELECT company_id, name, location FROM COMPANY");
Ê }
}

For the actual implementation of the two data fetching operations the code provided in Listing
StandardOutlineService is used. The implementation is straight forward and almost trivial. However,
we can use the getPersonTableData example to introduce one of the many Scout utility classes.

133



Figure 86. Accessing the Scout utility classes with the pattern org.eclipse.scout.*Utility.

The class StringUtility is one of the many utility classes provided by the Scout framework. Here, it is
used for the typical null or empty check. To get a quick overview, hit the CtrlShiftT key combination.
In the type dialog that appears enter org.eclipse.scout.*Utility into the pattern field. This will display
the complete list of the Scout utility classes as shown in Figure 000.

134



135



Figure 87. Adding method execLoadTableData to the person table page.

Listing 24. Loading the person data into the person table page.

Ê @Override
Ê protected Object[][] execLoadTableData(SearchFilter filter) throws ProcessingException
{
Ê   return SERVICES.getService(IStandardOutlineService.class).getPersonTableData
(getCompanyId());
Ê }

As we have implemented the server service methods to load person and company data from the
database, we can now use these services to load the data into the client. For this, we first navigate to
the PersonTablePage under the orange client node in the Scout SDK. In the corresponding Scout Object
Properties we add method execLoadTableData by clicking on the green plus icon as shown in Figure
000. Fetching the actual data is now implemented in a single line of code according to Listing
execLoadTableData.

For the company table page, the process described above can be repeated. The only difference is the
implementation of the method execLoadTableData. Here, we can use the server service method
getCompanyTableData() to fetch the company data from the server.

5.7. Creating the Person Form

136



Figure 88. Add the person form.

In this section we will create the person form that is used to display and edit the persons stored in the
ÒMy ContactsÓ application. To add the person form use the Scout SDK New Form wizard as shown in
Figure 000. In the first wizard step you just need to enter ÒPersonÓ as a new translated text into the
Name field and add Òui.formsÓ as the sub-package name in the corresponding wizard field. Then click
the [ Finish ] button.

The wizard will create the necessary artefacts in the applicationÕs client, the shared and the server
plugin projects. On the client side the PersonForm class with the necessary form handlers is created, in
the shared part, the PersonFormData transfer object is added. On the server side, a
PersonProcessService with all necessary service operations referenced by the form handlers is
implemented.

137



Figure 89. Add the PersonId variable to the person form.

To hold the persons primary key in the person form we also need to add a corresponding variable. For
this, use the New Property Bean wizard as shown in Figure 000. In the wizard dialog, enter ÒPersonIdÓ
into the Name field and pick String from the dropdown list provided in the Bean type field. Then, click
the [ Finish ] button to close the wizard.

5.7.1. Creating the Form Layout with From Fields

138



Figure 90. Add the first group box field to the person form.

As a next step we create the main layout structure of the person form. According to the screenshot of
the person form shown in Figure 000 the form is organized into an upper box including the first name,
the last name and a picture field. In the ÒDetailsÓ box in the lower half of the form some additional
fields are found, such as the date of birth field. And the bottom of the form holds a ÒShow Map ÉÓ link.
We start with the general layout by adding the PersonBox according to Figure 000. In the first step
(omitted in Figure 000) of the new form field wizard the field type GroupBox has to be selected. Below

139



the person box we add the detail group box. As before, we select the  GroupBox field type and click on
the [ Next ] button. In the second wizard step we then enter the text ÒDetailÓ into the Name field.

We now add the form fields listed below using the the New Form Field wizard multiple times. Most
fields are of type StringField and different field types are separately indicated.

¥ PersonBox

" ÒFirst NameÓ

" ÒLast NameÓ

" ÒPicture URLÓ

" PictureField (ImageField)

¥ ÒDetailÓ DetailBox

" ÒHeadlineÓ

" ÒLocationÓ

" ÒDate of BirthÓ (DateField)

140



Figure 91. Add the picture field to the first group box of the person form.

As an example for adding the form fields, the process is illustrated in Figure 000 for the creation of the
picture field. In the field list we need to set non default properties for the PictureUrlField field and the
PictureField field. The picture URL field will hold an URL pointing to the picture of the person to be
displayed. As in the person form only the picture is to be displayed but not the picture URL, we need to
make this field invisible. For this, select the PictureUrlField node in the Scout Explorer and then untick
the Visible field in the Scout Object Properties. Note that to access the visibility property you need to
open the section Advanced Properties first.

141



Figure 92. Set the properties for the picture field of the person form.

142



As the configuration of the picture field is more complex than the other fields, the changed properties
are shown in the screenshots provided in Figure 000. First, no label is shown for the picture field as
shown in the unticked Label Visible field of the Scout Object Properties. Then, property Grid H is set to
5. This results in the picture to cover the vertical space of 5 form fields.

Listing 25. The behaviour of the person formÕs PictureField is triggered by changes in field
PictureUrlField.

Ê       @Override
Ê       protected boolean getConfiguredVisible() {
Ê       }

Ê       @Override
Ê       protected boolean getConfiguredLabelVisible() {
Ê         return false;
Ê       }

Ê       @Override
Ê       protected Class<? extends IValueField> getConfiguredMasterField() {
Ê         return PersonForm.MainBox.PersonBox.PictureURLField.class;
Ê       }

Ê       @Override
Ê       protected void execChangedMasterValue(Object newMasterValue) throws
ProcessingException {
Ê         try {
Ê           URL url = new URL((String) newMasterValue);
Ê           setImage(IOUtility.getContent(url.openStream()));
Ê           form.startModify();
Ê           form.waitFor();

Finally, we want the picture to be refreshed whenever the content of the picture URL is changed. For
this, the property Master Field is set to the PictureUrlField. The implementation of the corresponding
method execChangedMasterValue is provided in Listing execChangedMasterValue PictureField. As we
can see, the Scout helper class IOUtility is used to read the image content from the provided URL. This
content is then used to assign the image content with the image fieldÕs method setImage. Method
setAutoFit is called to adapt the picture to the dimensions available to the image field.

5.7.2. A simple Form to edit the Picture URL

143



144



Figure 93. Add the URL editor form. This form does not need any connections to the server. Therefore, the
related components such as services and the form data can be removed in the second wizard step shown
on the right side.

To edit a personÕs picture link, we create a simple URL editor form as shown in Figure 000. As we only
need this form to update the URL information of a personÕs picture field, we do not need any
connectivity to the backend of the ÒMy ContactsÓ application. That is why almost all form and service
artefacts are deselected in the second wizard step shown on the right side of Figure 000.

145



Listing 26. The UI structure of the PictureURLForm used to update the URL of the picture field in the
person form.

public class PictureURLForm extends AbstractForm {

Ê @Order(10.0)
Ê public class MainBox extends AbstractGroupBox {

Ê   @Order(10.0)
Ê   public class URLBox extends AbstractGroupBox {

Ê     @Order(10.0)
Ê     public class PictureURLField extends AbstractStringField {

Ê       @Override
Ê       protected String getConfiguredLabel() {
Ê         return TEXTS.get("PictureURL");
Ê       }
Ê     }
Ê   }
Ê }
}

As this form only holds a single URL field, we omit the description of the creation of the URL editor
formÕs content and provide the resulting Java code instead. In Listing PictureURLField just the formÕs
MainBox code is shown.

146



Figure 94. Add the URL edit menu to the picture field.

This form is then started via an ÒEdit URL ÉÓ contextmenu on the image field. The creation of this
contextmenu is shown in Figure 000. See Listing EditPersonMenu for the actual implementation of the
execAction for this contextmenu.

147



Listing 27. The edit menu implemented in class EditURLMenu of the picture field. If the URL was changed
the picture URL field of the person form is set accordingly in method execAction

Ê           setAutoFit(true);
Ê         }
Ê         catch (Exception e) {
Ê           e.printStackTrace();
Ê         }
Ê       }

Ê       @Order(10.0)
Ê       public class EditURLMenu extends AbstractExtensibleMenu {

Ê         @Override
Ê         protected String getConfiguredText() {
Ê           return TEXTS.get("EditURL");
Ê         }

Ê         @Override
Ê         protected void execAction() throws ProcessingException {
Ê           PictureURLForm form = new PictureURLForm();

Once the edit URL form is started with form.startModify() the client waits in method form.waitFor until
the form is closed by the user. If the user has changed any field content (the picture URL in our case)
and closed the form with the [ OK ] button, the method form.isFormStored returns true, and we can
copy the new URL from the editor form field into the picture URL field of the person form. Such a
change will then trigger method execChangedMasterValue of the PictureField which in turn updates
the image shown in the person form.

5.7.3. Linking the Person Form to the Person Page

148



Figure 95. Add the Person edit menu to the person page.

149



Listing 28. The EditPersonMenu to edit the person selected in the person table. The person id taken from
the corresponding (invisible) column is transferred to the person form before the form is started.

Ê   @Order(10.0)
Ê   public class EditPersonMenu extends AbstractExtensibleMenu {

Ê     @Override
Ê     protected String getConfiguredText() {
Ê       return TEXTS.get("EditPerson");
Ê     }

Ê     @Override
Ê     protected void execAction() throws ProcessingException {
Ê       PersonForm form = new PersonForm();
Ê       form.setPersonId(getPersonIdColumn().getSelectedValue());
Ê       form.startModify();
Ê       form.waitFor();
Ê       if (form.isFormStored()) {
Ê         reloadPage();
Ê       }
Ê     }
Ê   }

The user of the ÒMy ContactsÓ application wants to use the person form to show/edit attributes of a
specific person. To support this use case, we need to link this form with the ÒMy ContactsÓ application.
As we already have person pages that show some of the personÕs attribute, we can now add context
menus to this list to open/edit existing persons in the person form and to create new persons as well.
This is achieved by using the New Menu wizard on the Menus node of the table of the person page
according to Figure 000. In the Name field enter the new translated text ÒEdit Person ÉÓ. The form to
start is the PersonForm and the ModifyHandler is the form handler to be used to start the form. As we
have defined a meaningful primary key column on the person page and a matching variable is
available for the person form, the Scout SDK wizard is generating the necessary code automatically.
The implementation of the execAction method provided in [lst-
mycontacts.desktop.outline.personpage.editmenu] works out of the box and should not need any
manual tuning. Now, you may also add the ÒNew Person ÉÓ menu in the same way. Except that you
pick the NewHander in the New Menu wizard instead of the modify handler.

150



Figure 96. Set the behaviour for the row level action on the person table.

151



Listing 29. The execRowAction method on table pages is used to trigger an action when a row is selected
with a double click or <Enter>.

Ê   @Override
Ê   protected void execRowAction(ITableRow row) throws ProcessingException {
Ê     getMenu(EditPersonMenu.class).execAction();
Ê   }

To open the person form with a double click on a person row or by hitting the Enter key, you may add a
corresponding execRowAction on the person page. This method can be added to the person table by
clicking on the green plus icon next to the operation Exec Row Action as shown in Figure 000. For the
implementation of this method you may reuse the functionality implemented for the context menu
according to Listing execRowAction.

5.7.4. Adding the Company Smartfield

At the current stage of the ÒMy ContactsÓ application, we have no option to manage the relationship
between people and companies. To manage this relation, we now add a company smart field to the
person form. This smart field will then hold the current assignment of the person represented in the
person form.

A Scout smart field can be viewed as user friendly dropdown field on steroids that also implements
search-as-you-type to pick a specific entry. In the simplest case the smart field provides access to a
small and locally provided list of key value pairs. But for the intended use in the ÒMy ContactsÓ
application, we will need to access a list of elements provided by the server that will be compiled
dynamically at runtime.

Figure 97. Add a lookup call to the applications shared node.

152



Figure 98. The two wizard steps to enter the details of the company lookup call.

To create the access to this list, we start with the creation of the company lookup call. As shown in
Figure 000 the lookup call is added on the Lookup Calls folder under the green shared node of the ÒMy

153



ContactsÓ application. This opens the New Lookup Call wizard as shown in Figure 000. In the first
wizard step, enter ÒCompanyÓ into the Class Name field, Òservices.lookupÓ into the Sub Package field
and ÒStringÓ into the Key Type field. Now verify that the wizard step looks the same as the screenshot
shown on the left hand side of Figure 000. Before the wizard is closed, click on the [ Next ] button to
move to the second wizard step. As shown on the right hand side of Figure 000, the wizard will also
create a corresponding CompanyLookupService on the applicationÕs server. We can now close this
wizard with the [ Finish ] button and add the business logic to this company lookup service.

Listing 30. The company lookup call with its getConfiguredService method in the applicationÕs shared
plugin.

public class CompanyLookupCall extends LookupCall<String> {

Ê private static final long serialVersionUID = 1L;

Ê @Override
Ê protected Class<? extends ILookupService<String>> getConfiguredService() {
Ê   return ICompanyLookupService.class;
Ê }
}

Listing 31. The company lookup service in the applicationÕs server plugin. The key and the text criteria are
used to search for values by key or by the provided name substring.

public class CompanyLookupService extends AbstractSqlLookupService<String> implements
ICompanyLookupService {

Ê @Override
Ê protected String getConfiguredSqlSelect() {
Ê   return "SELECT "
Ê       + "company_id, "
Ê       + "name "
Ê       + "FROM COMPANY "
Ê       + "WHERE 1=1 "
Ê       + "<key> AND company_id = :key </key> "
Ê       + "<text> AND UPPER(name) LIKE UPPER(:text) </text> "
Ê       + "<all> </all> ";
Ê }
}

The CompanyLookupCall just created by the Scout SDK wizard is provided in Listing
CompanyLookupCall. As we can see, the only method implemented is getConfiguredService that points
to the specific server service to be used. In the Scout Explorer, the new company lookup service can be
found in the Lookup Services folder under the blue server node of the application. In this service, we

154



need to implement method getConfiguredSqlSelect as shown in Listing CompanyLookupService. For
Scout lookup services, specific key, text and all criteria blocks need to be provided. This criteria are
included in the SELECT statement using the <key>, <text> and <all> tags as shown in the listing. The
Scout runtime uses the <key>-block in cases where a specific key is already assigned to the smart field.
The <text>-block is used as a query criteria to create the dynamic search-as-you-type hit list based on
the (sub)string entered by the user so far. Finally, the <all>-block is used to define the hit list to be
shown when the user does not enter any text into the smart field but clicks on the fieldÕs search icon
instead. The bind variable :key and :text are provided by Scout and hold the value of the assigned key
or the text entered into the smart field.

Figure 99. Add a smart field to the person form.

155



Figure 100. Create the company smart field for the person form. In the second wizard step shown on the
right side, first remove the content in the Generic Type field and then select the company lookup call into
the corresponding field.

We are now ready to add the company smart field to the person form. To start the New Form Field
wizard we use the context menu on the DetailBox of the person form as shown in Figure 000. In the
first wizard step, we chose the SmartField entry as the field type and click the [ Next ] button. Then, we
enter ÒCompanyÓ into the Name field as shown on the right hand side of Figure 000. Make sure that you
select the String entry in the Generic Type field as we are using string values to identify companies in
the ÒMy ContactsÓ application. And in the LookupCall field, we can now select the CompanyLookupCall
that we have just created before. Finally, the position of the new company smart field can be set in the
Sibling field before the location field before the wizard is closed with the [ Finish ] button.

156



Listing 32. The smart field CompanyField of the person form and its wiring with the company lookup call.

Ê       @Override
Ê       protected String getConfiguredLabel() {
Ê         return TEXTS.get("DateOfBirth");
Ê       }
Ê     }

Ê     @Order(40.0)
Ê     public class CompanyField extends AbstractSmartField<String> {

Ê       @Override
Ê       protected String getConfiguredLabel() {
Ê         return TEXTS.get("Company");
Ê       }

The implementation of the company smart field created by the Scout SDK wizard is provided in Listing
CompanyField. A look at the implementation of the CompanyField class shows the wiring with the
company lookup service.

5.7.5. Adding the Map Form

We now want to add the ÒMapÓ form shown in the front of Figure 000. The purpose of this form is to
show a map corresponding to the address entered into the location field of the person form using the
Google Maps Image API. [64: The Google Maps Image API can be used to fetch static map images:
https://developers.google.com/maps/documentation/imageapis/.]. This implies that map images will
only be shown in the map form if the entered address can be parsed by the Google Maps Image API.

To create the maps form we start the New Form wizard and enter the new translated text ÒMapÓ into
the Name field and Òui.formsÓ into the Sub Package field of the first wizard step. Then, we click the
[ Next ] button to configure the artefacts to be created by the wizard. For the map form we can use the
configuration as shown on the right hand side of Figure 000 with the difference that we do not need
the cancel button. Having deselected all artefacts except for the ok button and the modify handler, the
wizard can be closed with the [ Finish ] button.

After the form creation wizard has been closed, we can add an ÒAddressÓ variable to the form by
starting the New Property Bean wizard on the Variables node of the newly created map form. In the
property bean wizard, enter ÒAddressÓ into the Name field and set the Bean type field to String.

As the next step, the map image field is added to the from. For this, start the New Form Field wizard
directly on the formÕs MainBox node. In the first form field wizard step, select ImageField as the field
type and click on the [ Next ] button. Now enter ÒMapÓ into the Class Name field and close the second
wizard step with the [ Finish ] button. To set the properties of the new map field, select the MapField
node below the main box node of the map form. In the MapField's Scout Object Properties untick the
Label Visible property and add an execInitField method by clicking on the green plus icon next to this
operation. The configuration of the map field can then be completed in section Advanced Properties.

157

https://developers.google.com/maps/documentation/imageapis/


Here, we set the Grid H property to 6 and update the Width in Pixel property and the Height in Pixel
property to a value of 400 each.

Listing 33. In the execInitField method of the map form the image content is fetched from the Google
Maps API.

Ê     @Override
Ê     protected void execInitField() throws ProcessingException {
Ê       String address = StringUtility.nvl(getAddress(), "");
Ê       String size = "" + getConfiguredHeightInPixel() + "x" +
getConfiguredWidthInPixel();
Ê       String url = null;
Ê       try {
Ê         url = "http://maps.googleapis.com/maps/api/staticmap?center=" +
Ê             URLEncoder.encode(address, "ISO-8859-1") +
Ê             "&zoom=13&size=" + size + "&maptype=roadmap&sensor=false";
Ê         setImage(IOUtility.getContent((new URL(url)).openStream()));
Ê       }
Ê       catch (Exception e) {
Ê         setErrorStatus(new ProcessingStatus("Bad Link: '" + url + "', please check",
Ê             ProcessingStatus.ERROR));
Ê         setImage(null);
Ê         e.printStackTrace();
Ê       }
Ê     }
Ê   }

To add the Java code to display the map in the image field, click on the execInitField link in the Scout
Object Properties of the map field. According to the implementation provided in Listing execInitField,
an URL for the Maps Image API is first constructed. This url also contains the content of the map formÕs
address variable and the configured dimension of the map field. The map picture returned by the
Google API is then read using IOUtility.getContent and directly fed into the image fields setImage
method.

The last step involving the implementation of the map form feature is its integration into the person
form. As visible on the lower left part of the person form shown in Figure 000, a Show Map É link is
available. We now add such a link to the person form including the necessary wiring for opening the
newly created map form. For this, navigate to the person form in the Scout SDK and click on its
MainBox node below. Then, open the context menu on the MainBox node and start the New Form Field
wizard. In the first wizard step, select the LinkButton from the available field types and click the
[ Next ] button to load the second wizard step. Here, just enter the new translated text ÒShow Map ÉÓ
into the Name field and close the wizard with the [ Finish ] button.

158



Listing 34. The implementation of the ÒShow Map ÉÓ link button. %In method execClickAction a new map
form is first created, the the address variable is set with the content of the personÕs location and the form
is opened with startModify.

Ê   public class OkButton extends AbstractOkButton {
Ê   }

Ê   @Order(40.0)
Ê   public class CancelButton extends AbstractCancelButton {
Ê   }

Ê   @Order(50.0)
Ê   public class ShowMapButton extends AbstractLinkButton {

Ê     @Override
Ê     protected String getConfiguredLabel() {
Ê       return TEXTS.get("ShowMap");
Ê     }

Ê     @Override

To add the necessary wiring code to the link button double click the ShowMapButton node in the Scout
Explorer and implement its execClickAction method. As shown in Listing ShowMapButton, we only
need to create a new map form in the click action, set its address variable and open the form with
form.startModify.

5.8. Managing Person Data on the Server Side

159



Listing 35. The execLoad and the  execStore methods of the person formÕs modify handler.

Ê       MapForm mapForm = new MapForm();
Ê       mapForm.setAddress(getLocationField().getValue());
Ê       mapForm.startModify();
Ê     }
Ê   }
Ê }

Ê public class ModifyHandler extends AbstractFormHandler {

Ê   @Override
Ê   protected void execLoad() throws ProcessingException {
Ê     IPersonService service = SERVICES.getService(IPersonService.class);
Ê     PersonFormData formData = new PersonFormData();
Ê     exportFormData(formData);
Ê     formData = service.load(formData);
Ê     importFormData(formData);
Ê     setEnabledPermission(new UpdatePersonPermission());
Ê   }

Ê   @Override
Ê   protected void execStore() throws ProcessingException {

In the ÒMy ContactsÓ client application the person form is opened via the context menues ÒEdit Person
ÉÓ and ÒNew Person ÉÓ on the person page. And for each context menu, the person form is started
with the corresponding form handler. The new handler is used to start the form in the mode to create
new persons while the modify handler is implemented to start the form for updating existing persons.
When we look at the implementation of the modify handler provided in Listing ModifyHandler, we see
that it only contains the two methods execLoad and execStore. As described in Section Form Handler
of the ÒHello WorldÓ tutorial, execLoad is called by the Scout framework when the form is started. And
method execStore is called by the Scout framework after the user has clicked the [ OK ] button of a
form.

Listing 36. The load and the store methods of the serverÕs PersonService.

public class PersonService extends AbstractService implements IPersonService {

Ê @Override
Ê public PersonFormData load(PersonFormData formData) throws ProcessingException {
Ê   if (!ACCESS.check(new ReadPersonPermission())) {
Ê     throw new VetoException(TEXTS.get("AuthorizationFailed"));
Ê   }

Ê   SQL.selectInto("SELECT "
Ê       + "picture_url, "

160



Ê       + "first_name, "
Ê       + "last_name, "
Ê       + "company_id, "
Ê       + "headline, "
Ê       + "location, "
Ê       + "date_of_birth "
Ê       + "FROM PERSON "
Ê       + "WHERE PERSON_ID = :personId "
Ê       + "INTO "
Ê       + ":pictureURL, "
Ê       + ":firstName, "
Ê       + ":lastName, "
Ê       + ":company, "
Ê       + ":headline, "
Ê       + ":location, "
Ê       + ":dateOfBirth",
Ê       formData);

Ê   return formData;
Ê }

Ê @Override
Ê public PersonFormData store(PersonFormData formData) throws ProcessingException {
Ê   if (!ACCESS.check(new UpdatePersonPermission())) {
Ê     throw new VetoException(TEXTS.get("AuthorizationFailed"));
Ê   }

Ê   SQL.update("UPDATE PERSON SET "
Ê       + "picture_url = :pictureURL, "
Ê       + "first_name = :firstName, "
Ê       + "last_name = :lastName, "
Ê       + "headline = :headline, "
Ê       + "company_id = :company, "
Ê       + "location = :location, "
Ê       + "date_of_birth = :dateOfBirth "
Ê       + "WHERE person_id = :personId ",
Ê       formData);

Ê   return formData;
Ê }
}

In both the execLoad and the execStore methods, the person service is used. In execLoad by calling
service.load to fetch the personÕs data from the Scout server, and in execStore by calling service.store
to transfer the updated data to the Scout server. The implementation of the Scout serverÕs load and
store methods for the PersonService is provided in Listing PersonService load and store. To load the
correct person data, the load method expects the personÕs id as an input parameter personId in the

161



formData.

For the data binding between the formData and the attributes in the database tables Scout provides
support in the methods of the SQL class. This support is first searching for the pattern Ò:<variable>Ó in
the provided SQL statement. For all such patterns found, the binding to the corresponding getVariable
and setVariable methods of the form data object is performed by the Scout framework at runtime.

The implementation of the person formÕs new handler is implemented similar to itÕs modify handler.
Instead of calling the service operations load and store, the methods  prepareCreate and create are
used. In principle, method prepareCreate is not needed for the ÒMy ContactsÓ application. As its
implementation has been created by the Scout SDK wizard, it does not do any harm and the method
can be left unchanged.

Listing 37. The create method of the serverÕs PersonService.

public class PersonService extends AbstractService implements IPersonService {

Ê @Override
Ê public PersonFormData create(PersonFormData formData) throws ProcessingException {
Ê   if (!ACCESS.check(new CreatePersonPermission())) {
Ê     throw new VetoException(TEXTS.get("AuthorizationFailed"));
Ê   }

Ê   if (StringUtility.isNullOrEmpty(formData.getPersonId())) {
Ê     formData.setPersonId(UUID.randomUUID().toString());
Ê   }

Ê   SQL.insert("INSERT INTO PERSON (person_id) "
Ê       + "SELECT :personId "
Ê       + "FROM PERSON "
Ê       + "WHERE person_id = :personId "
Ê       + "HAVING count(*) = 0",
Ê       formData);

Ê   return store(formData);
Ê }

}

In Listing PersonService create the implementation of the PersonService's create method is provided.
First, the implementation checks if the provided form data contains a person id. If the person has been
entered manually, a person id is initially missing and a new one needs to be created and assigned. For
this, method randomUUID() of the Java class java.util.UUID is used. The only responsibility of the
INSERT statement following the person id check is to make sure we will have a row in the PERSON
table for the person to be created. To save all the other form data parameters, we can reuse the

162



previously implemented store method.

5.9. Creating the Company Form
Creating the company form and the necessary backend services is not described here. Instead, this task
is left as an exercise to the reader and in the text below some minimal guidelines are provided.

To create the company form, start with the New Form wizard as in the case of the person form. This
will then create all necessary artefacts including the forms, the server service, and the form data for
the communication between the client and the server. And donÕt forget to add a companyId variable to
the company form. To decide on the fields that need to be on the company form you may check the
setup of the database schema provided in Listing COMPANY table setup. If in doubt about what to do,
please refer to the procedure used to create the person form.

In case you get lost completely, you may download the ÒMy ContactsÓ application from this books
Github repository as described in the Scout wiki. [65: Download and installation of the ÒMy ContactsÓ
application:
http://wiki.eclipse.org/Scout/Book/4.0#Download_and_Run_the_Scout_Sample_Applications.].

5.10. Adding the Scribe Library to the Application
To access data from sites such as LinkedIn, Xing, Google+ or Facebook, most social networks provide an
API that requires user authentication. The current defacto standard for such authentication is the
Open Authentication Protocol (OAuth). [66: For more information regarding the OAuth standard, see:
http://oauth.net/.]

The big advantage of the OAuth standard is the authentication based on access tokens. If an application
such as the ÒMy ContactsÓ example is in possession of an access token, it can fetch data from the
hosting site or even act on the users behalf. The access token itself just contains two values, the token
and the secret. And both values are completely separate from the userÕs username and password
credentials. This means that an access token may be safely stored in other applications. Should such an
application or its data get compromised, the username and password are still save and the user just
has to remove/invalidate the compromised access token.

For the ÒMy ContactsÓ application we use the Scribe Java library. [67: The Scribe OAuth Java library:
https://github.com/fernandezpablo85/scribe-java.] This library makes accessing social services very
simple. At the same time the Scribe library is used here to demonstrate the integration of external Java
libraries in Scout applications.

163

http://wiki.eclipse.org/Scout/Book/4.0#Download_and_Run_the_Scout_Sample_Applications
http://oauth.net/
https://github.com/fernandezpablo85/scribe-java


Figure 101. Add a new bundle to hold the Scribe JARs.

164



Figure 102. Specify the JARs to be contained in the library bundle and the library name.

As we will use the Scribe library only on the Scout server side start the Scout SDK New Library Bundle
wizard below the blue server node as shown in Figure 000. In the first wizard step shown on the left
side of Figure 000 add the files scribe-1.3.5.jar and commons-codec-1.9.jar. [68: See the getting started
page for more information regarding the two necessary JAR file:
https://github.com/fernandezpablo85/scribe-java/wiki/getting-started.] using the [ Add ] button. Once
the two JAR files are listed in the library list of the wizard click the [ Next ] button. On the second
wizard step, enter Òorg.scribeÓ into the Bundle Name field as shown on the right side of Figure 000.
Then, close the wizard with the [ Finish ] button.

The Scout SDK wizard then creates the corresponding library plugin and updates the server product
files and the plugin dependencies of the applications server plugin accordingly. Once the wizard has
completed the classes defined in the two JAR files can directly be accessed from the ÒMy ContactÓ
applicationÕs server plugin.

5.11. Integrating LinkedIn Access with Scribe

165

https://github.com/fernandezpablo85/scribe-java/wiki/getting-started


Listing 38. The LinkedInService service with itÕs initializeService method defined in the IService interface.

public class LinkedInService extends AbstractService implements ILinkedInService {
Ê private final static String LINKEDIN_TOKEN = "linkedin_access_token";
Ê private final static String LINKEDIN_SECRET = "linkedin_access_secret";
Ê private final static String LINKEDIN_CONNECTIONS =
"http://api.linkedin.com/v1/people/~/connections";
Ê private static IScoutLogger LOG = ScoutLogManager.getLogger(LinkedInService.class);
Ê private OAuthService m_service = null;
Ê private Token m_requestToken = null;
Ê private Token m_accessToken = null;

Ê @Override
Ê public void initializeService(ServiceRegistration registration) {
Ê   super.initializeService(registration);

Ê   m_service = new ServiceBuilder()
Ê       .provider(LinkedInApi.withScopes("r_network"))
Ê       .apiKey("CiEgwWDkA5BFpNrc0RfGyVuSlOh4tig5kOTZ9q97qcXNrFl7zqk-Ts7DqRGaKDCV")
Ê       .apiSecret("dhho4dfoCmiQXrkw4yslork5XWLFnPSuMR-8gscPVjY4jqFFHPYWJKgpFl4uLTM6")
Ê       .build();
Ê }

}

To access the LinkedIn data with Scribe we first create a new service LinkedInService with the New
Service wizard in the Services folder under the blue server node. In the wizard, enter ÒLinkedInÓ into
the Class Name field and ÒservicesÓ into the Sub Package field. Before we add any service operations to
the LinkedIn service, the service initialization method is implemented according to Listing
LinkedInService initialize. This initialization is not discussed further here. Instead, the interested
reader is referred to the corresponding LinkedInExample on the Scribe web pages. [69: For the Scribe
LinkedInExample.java example class see: https://github.com/fernandezpablo85/scribe-
java/blob/master/src/test/java/org/scribe/examples/LinkedInExample.java.].

166

https://github.com/fernandezpablo85/scribe-java/blob/master/src/test/java/org/scribe/examples/LinkedInExample.java
https://github.com/fernandezpablo85/scribe-java/blob/master/src/test/java/org/scribe/examples/LinkedInExample.java


Figure 103. Add the operation to retrieve an authentication URL.

167



Listing 39. The getAuthUrl method of the LinkedIn service.

Ê @Override
Ê public String getAuthUrl() throws ProcessingException {
Ê   m_requestToken = m_service.getRequestToken();
Ê   String authLink = m_service.getAuthorizationUrl(m_requestToken);

Ê   return authLink;
Ê }

The first service operation getAuthUrl is added according to Figure 000. This operation will return the
necessary information to create a request token and provides a link to open in a web browser to start
the authentication against the LinkedIn account. For its implementation see Listing LinkedInService
getAuthUrl.

168



Figure 104. Add the operations to refresh the access token and to update the LinkedIn contacts.

The next operations we add are used to refresh the users access token stored in the ÒMy ContactsÓ
application and to refresh or download the users contacts stored in the userÕs LinkedIn account. See
Figure 000 for the necessary details for the creation of the two methods. The New Service Operation
wizard only allows to provide two parameters. As we need three parameters for the method
refreshToken, we have to amend the security code parameter manually. For this, first update the
interface ILinkedInService and amend the parameter list with the additional String parameter
securityCode. Then, open class LinkedInService and add the String parameter securityCode according
to interface just updated before.

169



Listing 40. The refreshToken method is used to create a new access token to fetch data from the LinkedIn
API.

Ê @Override
Ê public void refreshToken(String securityCode) throws ProcessingException {
Ê   // turn request token into access token
Ê   m_accessToken = m_service.getAccessToken(m_requestToken, new Verifier(securityCode));

Ê   // make sure current user has param records for linkedin token
Ê   String userName = ServerSession.get().getUserId();
Ê   SQL.insert("INSERT INTO USERS_PARAM (username, param) ("
Ê       + "SELECT :username as username, :param as param "
Ê       + "FROM USERS_PARAM "
Ê       + "WHERE username = :username AND param = :param HAVING count(*) = 0"
Ê       + ")",
Ê       new NVPair("username", userName), new NVPair("param", LINKEDIN_TOKEN));

Ê   SQL.insert("INSERT INTO USERS_PARAM (username, param) ("
Ê       + "SELECT :username as username, :param as param "
Ê       + "FROM USERS_PARAM "
Ê       + "WHERE username = :username AND param = :param HAVING count(*) = 0"
Ê       + ")",
Ê       new NVPair("username", userName), new NVPair("param", LINKEDIN_SECRET));

Ê   // update param records with new access token
Ê   SQL.update("UPDATE USERS_PARAM set value = :value "
Ê       + "WHERE param = :param AND username = :username",
Ê       new NVPair("value", m_accessToken.getToken()),
Ê       new NVPair("username", userName), new NVPair("param", LINKEDIN_TOKEN));

Ê   SQL.update("UPDATE USERS_PARAM set value = :value "
Ê       + "WHERE param = :param AND username = :username",
Ê       new NVPair("value", m_accessToken.getSecret()),
Ê       new NVPair("username", userName), new NVPair("param", LINKEDIN_SECRET));
Ê }

Method refreshToken can now be implemented according to Listing LinkedInService refreshToken.
Using the provided token parameters and the security code, the access token is created using the
m_service.getAccessToken method. Then, the user id of the currently logged in user is obtained with
ServerSession.get().getUserId(). Once we have both the access token and the user id available in
method {refreshToken}, we can store the token and the secret values for the current user in table
USERS_PARAM according to Listing LinkedInService refreshToken.

170



Listing 41. The readContacts method to fetch the users connection using the LinkedIn API. The necessary
access token is created in method getToken based on the information stored in the database for the logged
in user.

Ê private NodeList readContacts() throws ProcessingException {
Ê   // check if we need to load the access token
Ê   if (m_accessToken == null) {
Ê     m_accessToken = getToken();
Ê   }

Ê   // create singned linkedin request and get response
Ê   OAuthRequest request = new OAuthRequest(Verb.GET, LINKEDIN_CONNECTIONS);
Ê   m_service.signRequest(m_accessToken, request);
Ê   Response response = request.send();

Ê   // parse linkedin response stream
Ê   Element element = null;

Ê   try {
Ê     DocumentBuilder builder = DocumentBuilderFactory.newInstance().newDocumentBuilder(
);
Ê     Document document = builder.parse(response.getStream());
Ê     element = document.getDocumentElement();
Ê   }
Ê   catch (Exception e) {
Ê     throw new ProcessingException(e.getMessage(), e);
Ê   }

Ê   // basic error handling
Ê   if (element.getNodeName().equals("error")) {
Ê     LOG.error(DomUtility.getString(element));
Ê     throw new ProcessingException(DomUtility.getString(element));
Ê   }

Ê   return element.getChildNodes();
Ê }

171



Listing 42. The necessary access token is created in method getToken based on the information stored in
the database for the logged in user.

Ê private Token getToken() throws ProcessingException {
Ê   String userName = ServerSession.get().getUserId();
Ê   StringHolder value = new StringHolder();
Ê   StringHolder secret = new StringHolder();

Ê   SQL.selectInto("SELECT value INTO :value FROM USERS_PARAM "
Ê       + "WHERE param = :param AND username = :username",
Ê       new NVPair("value", value),
Ê       new NVPair("param", LINKEDIN_TOKEN),
Ê       new NVPair("username", userName));

Ê   SQL.selectInto("SELECT value INTO :secret FROM USERS_PARAM "
Ê       + "WHERE param = :param AND username = :username",
Ê       new NVPair("secret", secret),
Ê       new NVPair("param", LINKEDIN_SECRET),
Ê       new NVPair("username", userName));

Ê   if (StringUtility.isNullOrEmpty(value.getValue())) {
Ê     String message = "No valid LinkedIn token stored for user "
Ê         + "'" + userName + "'. Please (re)create a token";
Ê     LOG.error(message);

Ê     throw new ProcessingException(message);
Ê   }

Ê   return new Token(value.getValue(), secret.getValue());
Ê }
}

The next step is to add a method readContacts to fetch the list of contacts from a LinkedIn account.
According to Listing LinkedInService readContacts, this private LinkedInService method reads the data
from LinkedIn into a DOM tree. [70: DOM stands for Document Object Model. See
http://www.w3.org/DOM/ for more information.]. For this, a signed OAuth request is first created using
the access token provided by method getToken according to Listing LinkedInService getToken. The
request specified by constant LINKEDIN_CONNECTIONS is defined as
http://api.linkedin.com/v1/people/textasciitilde/connections. According to the API specification. [71: See
the LinkedIn API documented for more specific information:
https://developer.linkedin.com/documents/linkedin-api-resource-map.], this returns all connections of
the user in the response. The response in the form of an XML document can then be parsed and
returned in the form of a node list.

To sign the request to fetch the data from LinkedIn, the access token is retrieved from the database of
the ÒMy ContactÓ application using method getToken. According to the implementation provided in

172

http://www.w3.org/DOM/
https://developer.linkedin.com/documents/linkedin-api-resource-map


Listing LinkedInService readContacts the user id is first obtained from the userÕs server session. The
necessary parameters to create the access token are then retrieved from the USERS_PARAM table.

Listing 43. Sample XML from LinkedIn XML content.

<?xml version="1.0" encoding="UTF-16"?>
<person>
Ê   <id>f7R6wGcblj</id>
Ê   <first-name>Mike</first-name>
Ê   <last-name>Milinkovich</last-name>
Ê   <headline>Executive Director at Eclipse Foundation</headline>
Ê   <picture-url>http://m3.licdn.com/mpr/mprx/0_IUM7Se9vBU...SbRbQZ4</picture-url>
Ê   <site-standard-profile-request>
Ê     <url>http://www.linkedin.com/profile/view?id=14949387...05720*s114280*</url>
Ê   </site-standard-profile-request>
Ê   <location>
Ê     <name>Ottawa, Canada Area</name>
Ê     <country>
Ê       <code>ca</code>
Ê     </country>
Ê   </location>
Ê   <industry>Computer Software</industry>
Ê </person>

Before we proceed, we take a look at the actual form of the data that will be provided by the LinkedIn
API. From the sample XML extract provided in Listing XML sample, we can identify the person id
f7R6wGcblj, the first name Mike and some other attribute names with associated attribute values. A
closer look reveals the identity of the person to be Mike Milinkovich, a well known character in the
Eclipse community. For the purpose of the ÒMy ContactsÓ application it is sufficient to be able to extract
the top-level elements that hold the name, headline, and location information. As the location string is
contained in a name element inside the location element of the person, we need to be able to extract
the content of either top level elements or the level directly below. To simplify access to this data
provided by the LinkedIn API we implement a small helper class named DomUtility.

173



174



Figure 105. Adding the DomUtility class to the server package.

175



Listing 44. The DomUtility class provides functions to parse the XML data structure provided by the
LinkedIn API.

public class DomUtility {
Ê private static Node getSubElement(Node parent, String name) {
Ê   NodeList nodes = ((Element) parent).getElementsByTagName(name);
Ê   if (nodes.getLength() == 0) {
Ê     return null;
Ê   }
Ê   return nodes.item(0);
Ê }

Ê public static String getValue(Node node, String name) {
Ê   Node n = getSubElement(node, name);
Ê   if (n == null) {
Ê     return "";
Ê   }
Ê   return n.getTextContent();
Ê }

Ê public static String getValue(Node node, String name, String subName) {
Ê   Node n = getSubElement(node, name);
Ê   if (n == null) {
Ê     return "";
Ê   }
Ê   return getValue(n, subName);
Ê }

Ê public static String getString(Element element) {
Ê   Document document = element.getOwnerDocument();
Ê   DOMImplementationLS domImplLS = (DOMImplementationLS) document.getImplementation();
Ê   LSSerializer serializer = domImplLS.createLSSerializer();
Ê   return serializer.writeToString(element);
Ê }
}

For adding the class DomUtility, the Eclipse New Java Class wizard can be used according to Figure 000.
This wizard can by started by pressing the CTRL+n keys. In the first wizard step select the class element
under the Java folder and click the [ Next ] button. And in the second wizard step ensure that the new
class will be created in the org.eclipsescout.contacts.server.services package. Then enter ÒDomUtilityÓ
into the Name field and close the wizard with the [ Finish ] button. The implementation of the class is
provided in Listing DomUtility. Before the class can be saved, the necessary imports need to be fixed by
pressing CTRL+SHIFT+o and selecting the components provided in the org.w3c.dom packages.

176



Listing 45. The updateContacts method is used to enter/update existing contacts based on new data
fetched from LinkedIn.

Ê @Override
Ê public void updateContacts() throws ProcessingException {
Ê   try {
Ê     IPersonService service = SERVICES.getService(IPersonService.class);
Ê     NodeList persons = readContacts();

Ê     for (int i = 0; i < persons.getLength(); i++) {
Ê       if (persons.item(i) instanceof Element) {
Ê         Element person = (Element) persons.item(i);
Ê         LOG.info(DomUtility.getString(person));

Ê         // load existing person data
Ê         PersonFormData formData = new PersonFormData();
Ê         formData.setPersonId(DomUtility.getValue(person, "id"));
Ê         service.load(formData);

Ê         formData.getPictureURL().setValue(
Ê             DomUtility.getValue(person, "picture-url"));
Ê         formData.getFirstName().setValue(
Ê             DomUtility.getValue(person, "first-name"));
Ê         formData.getLastName().setValue(
Ê             DomUtility.getValue(person, "last-name"));
Ê         formData.getHeadline().setValue(
Ê             StringUtility.substring(DomUtility.getValue(person, "headline"), 0, 64));
Ê         formData.getLocation().setValue(
Ê             DomUtility.getValue(person, "location", "name"));

Ê         // save new/updated person data
Ê         service.create(formData);
Ê       }
Ê     }
Ê   }
Ê   catch (Exception e) {
Ê     throw new ProcessingException("LinkedIn Error", e);
Ê   }
Ê }

We now have finished all necessary parts to implement the method updateContacts of the server
service LinkedInService according to Listing updateContacts. In this method a service reference to the
person process service is obtained first. Then, the LinkedIn contacts provided by method readContacts
are stored in a persons list object. Finally, each person can be updated with the data available from
LinkedIn. To update a  single person the following steps are performed in the person loop. First, a form
data is created and its id parameter is set to DomUtility.getValue(person, "id"). Using the load method of

177



the person process service the personÕs attributes are loaded from the serverÕs database. The LinkedIn
attributes are then used to update the corresponding form data. With service.create(formData) the
updated form data is then stored in the ÒMy ContactsÓ database.

5.12. Fetching Contacts from LinkedIn

178



Figure 106. Add the form to refresh the LinkedIn access token.

The last piece that is missing to complete the ÒMy ContactsÓ application is the user interface for the
LinkedIn integration. To allow the user to create/refresh an access token, we need to implement the
refresh token form shown in Figure 000 at the beginning of this chapter. To create the form code, we
use the New Form wizard of the Scout SDK as shown in Figure 000. For the Name field enter a new
translated text ÒRefresh LinkedIn TokenÓ and fill ui.forms into the Sub Package field field. Then, click
the [ Next ] button to switch to the second wizard step. Here, deselect the elements that will not be
needed for the implementation of the refresh form according to the right hand side of Figure 000. Once
the form has been created by the wizard, add the a Token and a Secret form variable of type string
under the formÕs Variables folder.

179



Figure 107. The token form in the explorer and the properties of the security code field.

The next step is to add the desired layout and the necessary form fields. First, use the New Form Field
wizard to add a new group box TokenBox to the MainBox node. And into the TokenBox add a ÒSecurity
CodeÓ string field as shown on the left hand side of Figure 000. To provide a clickable link that opens a
web browser with the LinkedIn authentication link, add a ÒOpen Auth URL ÉÓ link of type LinkButton
to the main box. To make the user to first click the authentication link button before he tries to fill any
content into the security code field we initially disable this field. For this, first click on the security code
field in the Scout Explorer and then open the Advanced Properties section of the fields Scout Object
Properties. As shown on the right side of Figure 000, deselect the Enabled property.

180



Listing 46. The structure of the refresh token form. The security code field gets enabled in method
execClickAction after the authentication link button is pressed.

public class RefreshLinkedInTokenForm extends AbstractForm {

Ê @Order(10.0)
Ê public class MainBox extends AbstractGroupBox {

Ê   @Order(10.0)
Ê   public class TokenBox extends AbstractGroupBox {

Ê     @Order(10.0)
Ê     public class SecurityCodeField extends AbstractStringField {

Ê       @Override
Ê       protected boolean getConfiguredEnabled() {
Ê         return false;
Ê       }

Ê       @Override
Ê       protected String getConfiguredLabel() {
Ê         return TEXTS.get("SecurityCode");
Ê       }
Ê     }
Ê   }

Ê   @Order(40.0)
Ê   public class OpenAuthURLButton extends AbstractLinkButton {

Ê     @Override
Ê     protected String getConfiguredLabel() {
Ê       return TEXTS.get("OpenAuthURL");
Ê     }

Ê     @Override
Ê     protected void execClickAction() throws ProcessingException {
Ê       String authUrl = SERVICES.getService(ILinkedInService.class).getAuthUrl();
Ê       SERVICES.getService(IShellService.class).shellOpen(authUrl);
Ê       getSecurityCodeField().setEnabled(true);
Ê     }
Ê   }
Ê }

}

The implementation of the forms' structure is provided in Listing RefreshLinkedInTokenForm. In the
execClickAction method of the OpenAuthURLButton link button the necessary information for the auth

181



link is obtained from the server. For this, we are using the getAuthUrl operation implemented in the
previous section. The parameters to create the request token are saved in the formÕs token and secret
variables. Then, the auth link is opened in a web browser with the shellOpen  method of the clientÕs
shell service. Finally, after opening the web browser we can enable the security field with
getSecurityCodeField().setEnabled(true).

Figure 108. Add the menu to open the LinkedIn token form.

We can now integrate the form to refresh the LinkedIn access token under the applications ÒFileÓ
menu. This is done using the New Menu wizard as shown in Figure 000. Enter the translated text

182



ÒRefresh LinkedIn Token ÉÓ into the wizardÕs Name field and pick the element Exit Menu [before] from
the dropdown box of the Sibling field. In the Form to start field select the newly created refresh token
form and use the NewHandler entry in the Form Handler field. To close the wizard, click the [ Finish ]
button.

Listing 47. The menu to refresh the LinkedIn token starts the token form and then sends token parameters
with the new security code to the LinkedIn backend service.

Ê   @Order(10.0)
Ê   public class RefreshLinkedInToken_Menu extends AbstractExtensibleMenu {

Ê     @Override
Ê     protected Set<? extends IMenuType> getConfiguredMenuTypes() {
Ê       return CollectionUtility.<IMenuType> hashSet();
Ê     }

Ê     @Override
Ê     protected String getConfiguredText() {
Ê       return TEXTS.get("RefreshLinkedInToken0");
Ê     }

Ê     @Override
Ê     protected void execAction() throws ProcessingException {
Ê       RefreshLinkedInTokenForm form = new RefreshLinkedInTokenForm();
Ê       form.startNew();
Ê       form.waitFor();

Ê       if (form.isFormStored()) {
Ê         String securityCode = form.getSecurityCodeField().getValue();
Ê         SERVICES.getService(ILinkedInService.class)
Ê             .refreshToken(securityCode);
Ê       }
Ê     }
Ê   }

The implementation of the refresh menu is shown in Listing RefreshLinkedInTokenForm. In method
execAction(), we need to amend the part after starting the refresh token form. If the method
form.isFormStored() returns true, the user has modified the secure code field and it is fair to assume
that the user wants to create/refresh his LinkedIn access token. For this, we first retrieve the necessary
parameters to call the backend service operation refreshToken implemented in the previous chapter.

183



Figure 109. Add the menu to update the LinkedIn contacts.

184



Listing 48. The menu to update the stored persons with current LinkedIn data.

Ê   @Order(20.0)
Ê   public class ExportToExcelMenu extends AbstractExtensibleMenu {

Ê     @Override
Ê     protected String getConfiguredText() {
Ê       return TEXTS.get("ExportToExcelMenu");
Ê     }

Ê     @Override
Ê     protected void execAction() throws ProcessingException {
Ê       if (getOutline() != null && getOutline().getActivePage() != null) {
Ê         ScoutXlsxSpreadsheetAdapter s = new ScoutXlsxSpreadsheetAdapter();
Ê         File xlsx = s.exportPage(null, 0, 0, getOutline().getActivePage());
Ê         SERVICES.getService(IShellService.class).shellOpen(xlsx.getAbsolutePath());
Ê       }
Ê     }
Ê   }
Ê }

As the last missing component of the ÒMy ContactsÓ application, we add the menu to fetch the LinkedIn
contacts and update the database accordingly. The menu entry is created as a sub menu of the ÒToolsÓ
menu. For this, use the new menu wizard on the ToolsMenu node as shown in Figure 000. The
implementation of the menuÕs execAction method shown in Listing RefreshLinkedInToken_Menu is
trivial. We only need to call the operation of the LinkedInService implemented in the server part of the
ÒMy ContactsÓ application.

Appendix A: Licence and Copyright
This appendix first provides a summary of the Creative Commons (CC-BY) licence used for this book.
The licence is followed by the complete list of the contributing individuals, and the full licence text.

A.1. Licence Summary
This work is licensed under the Creative Commons Attribution License. To view a copy of this license,
visit https://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 559 Nathan
Abbott Way, Stanford, California 94305, USA.

A summary of the license is given below, followed by the full legal text.

You are free:

¥ to Share ---to copy, distribute and transmit the work

¥ to Remix---to adapt the work

185

https://creativecommons.org/licenses/by/3.0/


¥ to make commercial use of the work

Under the following conditions:

Attribution ---You must attribute the work in the manner specified by the author or licensor (but not
in any way that suggests that they endorse you or your use of the work).

With the understanding that:

Waiver ---Any of the above conditions can be waived if   you get permission from the copyright holder.

Public Domain ---Where the work or any of its elements is in the public domain under applicable law,
that status is in no way affected by the license.

Other Rights ---In no way are any of the following rights affected by the license:

¥ Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

¥ The authorÕs moral rights;

¥ Rights other persons may have either in the work itself or in how the work is used, such as
publicity or privacy rights.

Notice ---For any reuse or distribution, you must make clear to others the license terms of this work.
The best way to do this is with a link to https://creativecommons.org/licenses/by/3.0/.

A.2. Contributing Individuals
Copyright (c) 2012-2014.

In the text below, all contributing individuals are listed in alphabetical order by name. For
contributions in the form of GitHub pull requests, the name should match the one provided in the
corresponding public profile.

Bresson Jeremie, Fihlon Marcus, Nick Matthias, Schroeder Alex, Zimmermann Matthias

A.3. Full Licence Text
The full licence text is available online at http://creativecommons.org/licenses/by/3.0/legalcode

Appendix B: Scout Installation

B.1. Overview
This chapter walks you through the installation of Eclipse Scout. The installation description (as well as
the rest of this book) is written and tested for Eclipse Scout 4.0 which is delivered as integral part of the

186

https://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/legalcode


Eclipse Luna release train, 2014. Detailed information regarding the scheduling of this release train is
provided in the Eclipse wiki. [72: Luna release plan:
http://wiki.eclipse.org/Luna/Simultaneous_Release_Plan].

We assume that you have not installed any software relevant for the content of this book. This is why
the Scout installation chapter starts with the installation of the Java Development Kit (JDK).
Consequently, you will have to skip some of the sections depending on your existing setup.

In the text below, installation routines are described separately for Windows, Mac, and Linux. As Scout
applications have been built primarily on the Windows platform in the past, Scout also has the highest
maturity level on this platform.

B.2. Download and Install a JDK
The first step to install Scout is to have an existing and working installation of a JDK version 7 or 8. It is
currently recommended to go for the most recent download of Java 7.

Using Scout with Java 8 is possible and has been tested as part of Eclipse release train testing. [73: Scout
4.0 platforms: https://wiki.eclipse.org/Scout/Release/Luna#Tested_Platforms]. We are currently not
aware of any productive installation so far, but this is likely to change in the near future as OracleÕs
published end of public updates for Java 7 is scheduled for April 2015. [74: Java 7 end of public
support: http://www.oracle.com/technetwork/java/eol-135779.html].

You may still use Scout with Java 6. However, this version is no longer tested with Scout and has
reached OracleÕs end of public updates on February 2013. Older Java versions will no longer work
together with the Scout framework.

Currently, we recommend to install the Oracle JDK 7 together with Scout. Although, using OpenJDK
with Scout should work too. To successfully install the JDK you need to have at least local admin rights.
You also need to know your hardware architecture in order to download the correct JDK installer.

For Windows, the steps necessary to determine your hardware architecture are described on
MicrosoftÕs support site. [75: Windows 32/64-bit installation: http://support.microsoft.com/kb/827218].
For Linux several ways to determine if your os is running with 32 or with 64 bits can be found on the
web. [76: Linux 32/64-bit installation example page: http://mylinuxbook.com/5-ways-to-check-if-linux-
is-32-bit-or-64-bit/] For Mac this step is simple, as only a 64 bit package is provided on JDK the
download page.

Once you know your hardware architecture, go to OracleÕs official download site. [77: Official JDK 7
download: http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html]
and accept the licence agreement by clicking on the appropriate radio button. Then, select the
Windows x64 package if you are running 64-bit Windows as shown in Figure 000. If you are running
32-bit Windows, go for the Windows x86 package. It is also recommended to download the Java SE 7
Documentation. The Java API documentation package is available from the official download site. [78:
Java API documentation download:
http://www.oracle.com/technetwork/java/javase/downloads/index.html], located further down under

187

http://wiki.eclipse.org/Luna/Simultaneous_Release_Plan
https://wiki.eclipse.org/Scout/Release/Luna#Tested_Platforms
http://www.oracle.com/technetwork/java/eol-135779.html
http://support.microsoft.com/kb/827218
http://mylinuxbook.com/5-ways-to-check-if-linux-is-32-bit-or-64-bit/
http://mylinuxbook.com/5-ways-to-check-if-linux-is-32-bit-or-64-bit/
http://www.oracle.com/technetwork/java/javase/downloads/jdk7-downloads-1880260.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html


section Additional Resources.

Figure 110. Installer download for Oracle JDK 7. The Windows 64bit installer package is highlighted.

Once you have successfully downloaded the JDK installer, follow the Windows installation guide. [79:
Install the JDK on Windows: http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-
installation-windows.html#Run]. To verify the installation you might want to go through this Java
ÒHello World!Ó tutorial. [80: Windows Java ÒHello World!Ó:
http://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html].

Installation instructions for Linux. [81: Install the JDK on Linux:
http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html] and Mac. [82: Install the JDK
on Mac: http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html.] are also available
from Oracle.

B.3. Download and Install Scout
Before you can install Scout make sure that you have a working Java Development Kit (JDK)
installation of version 7 or 8. To download the Eclipse Scout package visit the official Eclipse download
page as shown in Figure 000.

188

http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html#Run
http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html#Run
http://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html
http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html
http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html


Figure 111. The Eclipse download page. The platform filter is set to Windows and the available Packages
are filtered for Scout.

If the download page shows the wrong platform, manually select the correct platform in the dropdown
list. As shown in Figure 000, the Scout package is available as a 32 bit and a 46 bit package. Make sure
to pick the package that matches your JDK installation. You can check your installation on the
command line as follows.

console-prompt>java -version
java version "1.7.0_55"
Java(TM) SE Runtime Environment (build 1.7.0_55-b13)
Java HotSpot(TM) 64-Bit Server VM (build 24.55-b03, mixed mode)

If the output explicitly mentions the 64 bit installation as shown above, you have a 64 bit installation.
Otherwise, you have a 32 bit JDK installed. Now you can select the correct Scout package from the
Eclipse download site. After the package selection, confirm the suggested download mirror as shown in
Figure 000.

189



Figure 112. Downloading the Scout package from a mirror.

As the Scout package is a simple ZIP (or tar.gz) file, you may unpack its content to a folder of your
choice. Inside the eclipse sub-folder, you will then find the Eclipse executable file, such as the
eclipse.exe file on a Windows plattform. Starting the Eclipse executable brings up the workspace
launcher as shown in Figure 000.

190



Figure 113. Starting the Eclipse Scout package and selecting an empty workspace.

Into the Workspace field you enter an empty target directory for your first Scout project. After clicking
the [ Ok ] button, the Eclipse IDE creates any directories that do not yet exist and opens the specified
workspace. When opening a new workspace for the first time, Eclipse then displays the welcome
screen shown in Figure 000.

191



Figure 114. Eclipse Scout welcome screen.

To close the welcome page and open the Scout perspective in the Eclipse IDE click on the Workbench
icon. As a result the empty Scout perspective is displayed according to Figure 000.

192



Figure 115. Eclipse Scout started in the Scout SDK perspective.

Congratulations, you just have successfully completed the Eclipse Scout installation!

If you have only installed a single JDK you will not need to change the default eclipse.ini file of your
Eclipse installation. In case you have installed multiple JDKs coming with their individual Java
Runtime Environments (JREs), you might want to explicitly specifiy which JRE to use. Open the file
eclipse.ini in a editor of your choice and insert the following two lines at the top of the file:

-vm
C:\java\jre7\bin\javaw.exe

where the second line specifies the exact path to the JRE to be used to start your Eclipse Scout
installation.

If you have explicitly specified the JRE to be used you verify this in the running Eclipse installation.
Fist, select the Help | About Eclipse menu to open the about dialog. Then, click on the [ Installation
Details ] button and switch to the Configuration tab. In the long list of system properties you will find
lines similar to the ones shown below.

193



*** Date: Donnerstag, 19. Juni 2014 10:37:17 Normalzeit

*** Platform Details:

*** System properties:
...
-vm
C:\java\jre7\bin\javaw.exe
...
sun.java.command=... vm C:\java\jre7\bin\javaw.exe -vmargs ...

You have now successfully completed the Eclipse Scout installation on your Windows environment.
With this running Scout installation you may skip the following section on how to add Scout to an
existing Eclipse installation.

B.4. Add Scout to your Eclipse Installation
This section describes the installation of Scout into an existing Eclipse installation. As the audience of
this section is assumed to be familiar with Eclipse, we do not describe how you got your Eclipse
installation in the first place. For the provided screenshots we start from the popular package Eclipse
IDE for Java EE Developers.

Figure 116. Eclipse menu to install additional software

To add Scout to your existing Eclipse installation, you need to start Eclipse. Then select the Help |
Install New SoftwareÉ menu as shown in Figure 000 to open the install dialog.

194



Figure 117. Add the current Scout repository

In the install dialog, click on the [ AddÉ ] button to enter the link to the Scout repository. This opens
the popup dialog Add Repository As shown in Figure 000, you may use ÒScout LunaÓ for the Name field.
For the Location field enter the Scout release repository as specified below.
http://download.eclipse.org/scout/releases/4.0.

195

http://download.eclipse.org/scout/releases/4.0


Figure 118. Select the Scout features to add to the Eclipse installation

After the Eclipse IDE has connected to the Scout repository, select the Scout feature Scout Application
Development as shown in Figure 000. Then, move through the installation with the [ Next ] button. On
the last installation step, accept the presented EPL terms by clicking on the appropriate radio button.
To complete the installation, click the [ Finish ] button and accept the request for a restart of Eclipse.
After the restart of the Eclipse IDE, you may add the Scout perspective using the Window | Open
Perspective | Other É menu and selecting the Scout perspective from the presented list. Clicking on
the Scout perspective button should then result in a state very similar to Figure 000.

B.5. Verifying the Installation
After you can start your Eclipse Scout package you need to verify that Scout is working as intended.
The simplest way to verify your Scout installation is to create a ÒHello WorldÓ Scout project and run the
corresponding Scout application as described in Chapter ÒHello WorldÓ Tutorial.

Appendix C: Apache Tomcat Installation
Apache Tomcat is an open source web server that is a widely used implementation of the Java Servlet
Specification. Specifically, Tomcat works very well to run the server part of Scout client server

196



applications. In case you are interested in getting some general context around Tomcat you could start
with the Wikipedia article. [83: Apache Tomcat Wikipedia:
http://en.wikipedia.org/wiki/Apache_Tomcat.]. Then get introduced to its core component ÒTomcat
CatalinaÓ. [84: MulesoftÕs introduction to Tomcat Catalina: http://www.mulesoft.com/tomcat-catalina.]
before you switch to the official Tomcat homepage. [85: Apache Tomcat Homepage:
http://tomcat.apache.org/].

This section is not really a step by step download and installation guide. Rather, it points you to the
proper places for downloading and installing Tomcat. We recommend to work with Tomcat version
7.0. Start your download from the official download site. [86: Tomcat 7 Downloads:
http://tomcat.apache.org/download-70.cgi].

Figure 119. A successful Tomcat 7 installation.

Once you have downloaded and installed Tomcat 7 (see the sections below for plattform specific
guidelines) you can start the corresponding service or deamon. To verify that Tomcat is actually
running open a web browser of your choice and type http://localhost:8080 into the address bar. You
should then see a confirmation of the successful installation according to Figure 000.

C.1. Platform Specific Instructions
According to the Tomcat setup installation for Windows. [87: Tomcat Windows setup:

197

http://en.wikipedia.org/wiki/Apache_Tomcat
http://www.mulesoft.com/tomcat-catalina
http://tomcat.apache.org/
http://tomcat.apache.org/download-70.cgi
http://localhost:8080


http://tomcat.apache.org/tomcat-7.0-doc/setup.html#Windows] download the package Ò32-bit/64-bit
Windows Service InstallerÓ from the Tomcat 7 download site. Then, start the installer and accept the
proposed default settings.

For installing Tomcat on OS X systems download the Òtar.gzÓ package from the Tomcat 7 download site.
Then, follow the installation guide. [88: Installing Tomcat on OS X:
http://wolfpaulus.com/journal/mac/tomcat7] provided by Wolf Paulus.

For Linux systems download the Òtar.gzÓ package from the Tomcat 7 download site. Then, follow the
description of the Unix setup. [89: Tomcat Linux setup: http://tomcat.apache.org/tomcat-7.0-
doc/setup.html#Unix_daemon] to run Tomcat as a deamon. If you use Ubuntu, you may want to follow
the tutorial. [90: Apache Tomcat Tutorial: http://www.vogella.com/articles/ApacheTomcat/article.html]
for downloading and installing Tomcat provided by Lars Vogel.

C.2. Directories and Files
TomcatÕs installation directory follows the same organisation on all platforms. Here, we will only
introduce the most important aspects of the Tomcat installation for the purpose of this book.

Figure 120. The organisation of a Tomcat installation including specific files of interest. As an example,
the ÒHello WorldÓ server application is contained in subdirectory webapps.

Note that some folders and many files of a Tomcat installation are not represented in Figure 000. We
just want to provide a basic understanding of the most important parts to operate the web server in
the context of this book. In the bin folder, the executable programs are contained, including scripts to
start and stop the Tomcat instance.

198

http://tomcat.apache.org/tomcat-7.0-doc/setup.html#Windows
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/download-70.cgi
http://wolfpaulus.com/journal/mac/tomcat7
http://tomcat.apache.org/download-70.cgi
http://tomcat.apache.org/tomcat-7.0-doc/setup.html#Unix_daemon
http://tomcat.apache.org/tomcat-7.0-doc/setup.html#Unix_daemon
http://www.vogella.com/articles/ApacheTomcat/article.html


The conf folder contains a set of XML and property configuration file. The file server.xml represents
TomcatÕs main configuration file. It is used to configure general web server aspects such as the port
number of its connectors for the client server communication. For the default setup, port number 8080
is used for the communication between clients applications and the web server. The file tomcat-
users.xml contains a database of users, passwords and associated roles.

Folder logs contains various logfiles of Tomcat itself as well as host and web application log files. XXX
need to provide more on what is where (especially application logs and exact setup to generate log
entries from scout apps).

The folder needed for deploying web applications into a Tomcat instance is called webapps. It can be
used as the target for copying WAR files into the web server. The installation of the WAR file then
extracts its content into the corresponding directory structure as shown in Figure 000 in the case of the
file helloworld_server.war.

Finally, folder work contains TomcatÕs runtime ÒcacheÓ for the deployed web applications. It is
organized according to the hierarchy of the engine (Catalina), the host (localhost), and the web
application (helloworld_server).

C.3. The Tomcat Manager Application
Tomcat comes with the pre installed ÒManager AppÓ. This application is useful to manage web
applications and perform tasks such as deploying a web application from a WAR file, or starting and
stopping installed web applications. A comprehensive documentation for the ÒManager AppÓ can be
found under the Tomcat homepage. [91: The Tomcat Manager Application:
http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html.]. Here we only show how to start this
application from the hompage of a running Tomcat installation.

To access this application you can switch to the ÒManager AppÓ with a click on the corresponding
button on the right hand side. The button can be found on the right hand side of Figure 000. Before you
are allowed to start this application, you need to provide username and password credentials of a user
associated with TomcatsÕs manager-gui role.

Ê <tomcat-users>
Ê   <!--
Ê   NOTE: By default, no user is included in the "manager-gui" role required
Ê   to operate the "/manager/html" web application. If you wish to use it
Ê   you must define such a user - the username and password are arbitrary.
Ê   -->
Ê   <user name="admin" password="s3cret" roles="manager-gui"/>
Ê </tomcat-users>

To get at user names and passwords you can open file tomcat-users.xml located in TomcatÕs conf
directory. In this file the active users with their passwords and associated roles are stored. See Listing
[lst-tomcat.users] for an example. From the content of this file, we see that user admin has password

199

http://tomcat.apache.org/tomcat-7.0-doc/manager-howto.html


s3cret and also posesses the necessary role manager-gui to access the ÒManager AppÓ. If file tomcat-
users.xml does not contain any user with this role, you can simply add new user with this role to the
existing users. Alternatively, you also can add the necessary role to an existing user. Just append a
comma to the existing right(s) followed by the string manager-gui. Note that you will need to restart
your Tomcat application after adapting the content of file tomcat-users.xml.

With working credentials you can now start the ÒManager AppÓ as described the ÒHello WorldÓ tutorial
in Section Deploying to Tomcat.

200


	Eclipse Scout: an Introduction
	Table of Contents
	Preface
	1. Introduction
	1.1. What is Scout?
	1.2. Why Scout?
	1.3. What should I read?

	2. “Hello World” Tutorial
	2.1. Installation and Setup
	2.2. Create a new Project
	2.3. Run the Initial Application
	2.4. The User Interface Part
	2.5. The Server Part
	2.6. Add the Rayo Look and Feel
	2.7. Exporting the Application
	2.8. Deploying to Tomcat

	3. “Hello World” Background
	3.1. Create a new Project
	3.2. Walking through the Initial Application
	3.3. Run the Initial Application
	3.4. The User Interface Part
	3.5. The Server Part
	3.6. Add the Rayo Look and Feel
	3.7. Exporting the Application
	3.8. Deploying to Tomcat

	4. Scout Tooling
	4.1. The Scout SDK
	4.2. The Scout Explorer
	4.3. The Scout Object Properties
	4.4. Scout SDK Wizards

	5. A Larger Example
	5.1. The “My Contacts” Application
	5.2. Setting up the new Scout project
	5.3. Adding the Person Page
	5.4. Adding the Company Page
	5.5. Installing the Database
	5.6. Fetching Data from the Database
	5.7. Creating the Person Form
	5.8. Managing Person Data on the Server Side
	5.9. Creating the Company Form
	5.10. Adding the Scribe Library to the Application
	5.11. Integrating LinkedIn Access with Scribe
	5.12. Fetching Contacts from LinkedIn

	Appendix A: Licence and Copyright
	A.1. Licence Summary
	A.2. Contributing Individuals
	A.3. Full Licence Text

	Appendix B: Scout Installation
	B.1. Overview
	B.2. Download and Install a JDK
	B.3. Download and Install Scout
	B.4. Add Scout to your Eclipse Installation
	B.5. Verifying the Installation

	Appendix C: Apache Tomcat Installation
	C.1. Platform Specific Instructions
	C.2. Directories and Files
	C.3. The Tomcat Manager Application


