
Eclipse Scout
Frontend

Matthias Zimmermann

Version 5.2.0-SNAPSHOT

Table of Contents
Preface . 2

1. Introduction . 3

1.1. What is Scout? . 3

1.2. Why Scout? . 10

1.3. What should I read? . 11

2. “Hello World” Tutorial . 14

2.1. Installation and Setup . 14

2.2. Create a new Project . 14

2.3. Run the Initial Application. 17

2.4. Exporting the Application . 19

2.5. Deploying to Tomcat . 21

3. “Hello World” Background . 26

3.1. Create a new Project . 26

3.2. Walking through the Initial Application . 28

3.3. Run the Initial Application. 31

3.4. The User Interface Part . 37

3.5. The Server Part . 39

3.6. Add the Rayo Look and Feel . 41

3.7. Exporting the Application . 42

3.8. Deploying to Tomcat . 45

4. Shared Components . 47

4.1. Texts / i18n / NLS Support . 47

4.2. Icons . 47

4.3. Code Types and Codes . 47

4.4. Lookup Calls and Services . 51

4.5. Permissions . 53

4.6. Form Data Objects . 53

5. Client components . 55

5.1. Client Model. 55

5.2. Splash Screen . 55

5.3. Login Box . 55

5.4. Client Session . 55

5.5. Desktop . 56

5.6. Menus . 56

5.7. Outlines . 56

5.8. Tools . 56

5.9. Forms . 57

5.10. Form Fields . 57

5.11. Trees . 58

5.12. Pages . 58

5.13. Search Forms . 58

5.14. Tables . 58

5.15. Workflows and Wizards . 59

6. The Widgets Demo Application . 60

6.1. The User Interface . 60

6.2. Client Only Architecture . 65

7. Simple Widgets . 67

7.1. Label Fields . 67

7.2. String Fields . 68

7.3. Number Fields . 69

7.4. Decimal Fields . 70

7.5. Date and Time Fields . 71

7.6. Checkbox Fields . 72

7.7. Radio Button Fields . 73

7.8. Buttons and Links . 74

7.9. Message Boxes . 75

8. Advanced Widgets . 77

8.1. List Box . 77

8.2. Tree Box . 78

8.3. Smart Field. 80

8.4. Tree Field . 82

8.5. Table Field . 82

8.6. Image Field . 84

8.7. SVG Field . 84

8.8. HTML Field . 85

8.9. Browser Field . 85

8.10. Calendar Field. 85

9. Layout Widgets . 87

9.1. Group Box . 87

9.2. Tab Box . 87

9.3. Sequence Box . 88

9.4. Split Box . 89

9.5. Page Field . 89

9.6. File Chooser Field . 89

9.7. Master Slave Fields . 90

10. Custom Fields . 91

11. Template Fields . 92

12. Layouting . 93

12.1. The Desktop . 93

12.2. Form Layout . 93

13. Bookmarks . 94

14. Client Notification . 95

15. File Upload and Download . 96

16. Application Branding . 97

16.1. Rayo Look and Feel . 97

16.2. Branding the Swing Client . 97

16.3. Branding the SWT Client . 97

16.4. Branding the Webclient . 98

17. Advanced Topics . 99

17.1. Modifying the UI at Runtime . 99

17.2. Focus Handling . 99

17.3. Keyboard Control . 99

17.4. Master Detail Pages . 99

17.5. Client Only Applications . 99

17.6. Headless Client . 100

17.7. Client Startup . 100

17.8. Client Shutdown. 100

17.9. Threading and Jobs . 100

17.10. Caching. 100

Appendix A: Licence and Copyright . 101

A.1. Licence Summary . 101

A.2. Contributing Individuals . 101

A.3. Full Licence Text . 102

Appendix B: Scout Installation . 103

B.1. Overview . 103

B.2. Download and Install a JDK . 103

B.3. Download and Install Scout . 104

B.4. Add Scout to your Eclipse Installation . 109

B.5. Verifying the Installation . 111

Appendix C: Apache Tomcat Installation . 112

C.1. Platform Specific Instructions . 112

C.2. Directories and Files . 113

C.3. The Tomcat Manager Application . 114

Appendix D: Scout Utilities . 115

D.1. StringUtility . 115

D.2. DateUtility . 115

D.3. FileUtility . 115

Appendix E: Java Basics . 116

E.1. Java SE Basics . 116

E.2. Java EE Basics . 116

Appendix F: Eclipse Basics. 118

F.1. Eclipse as an IDE . 118

F.2. OSGi and Equinox . 119

F.3. Eclipse. 119

F.4. Eclipse Plugins . 119



This document is referring to a past Scout release. Please click
here for the recent version.
Looking for something else? Visit https://eclipsescout.github.io for
all Scout related documentation.

1

https://eclipsescout.github.io/stable/technical-guide.html
https://eclipsescout.github.io

Preface
Today, the Java platform is widely seen as the primary choice for implementing enterprise
applications. While many successful frameworks support the development of persistence layers
and business services, implementing front-ends in a simple and clean way remains a challenge.
This is exactly where Eclipse Scout fits in. The primary goal of Scout is to make your life as a
developer easier and to help organisations to save money and time. For this, the Scout framework
covers most of the recurring front-end aspects such as user authentication, client-server
communication and the user interface. This comprehensive scope reduces the amount of necessary
boiler plate code, and let developers concentrate on understanding and implementing business
functionality.

The purpose of this book is to get the reader familiar with the Scout framework. In this book Scout’s
core features are introduced and explained using many practical examples. And as both the Scout
framework and Scout applications are written in Java, we make the assumption that you are
familiar with the language too. Ideally, you have worked with Java for some time now and feel
comfortable with the basic language features.

In the first part of the book a general introduction into the runtime part of the framework and the
tooling - the Scout SDK - is provided. After the mandatory ''Hello World!'' application, the book
walks you though a complete client server application including database access. The focus of the
book’s second part is on the front-end side of Scout applications. First, an overview of the Scout
client model is introduced before Scout’s most important UI components are described based on the
Scout widget demo application. To cover the the server-side of Scout applications, an additional
part of the book is planned to be released jointly with version 5.0 of the Scout framework. And
finally, we intend to amend the book regarding building, testing and continuous integration for
Scout applications.

Last but not least, we thank you for your interest in Scout, for being part of our community and for
your friendly support of new community members. To allow for contributions to this book, the
technical setup and the book’s licence have been selected to minimize restrictions. According to the
terms of the Creative Commons (CC-BY) license, you are allowed to freely use, share and adapt this
book. All source files of the book including the Scout projects described in the book are available on
github. For the first edition of this book, we did already receive a number of bug reports and
comments that were pointing out mistakes, inconsistencies and suggestions for changes. This
feedback is very valuable to us as it helps to improve both the book’s content and the quality for all
future readers. We hope that this book helps you to get started quickly and would love to get your
feedback.

2

Chapter 1. Introduction

1.1. What is Scout?
Scout is an open source framework for building business applications. The Scout framework covers
most recurring aspects of a classical client server architecture with a strong focus on the
application’s front-end. With its multi-device capability, a Scout client applications may run
simultaneously as a rich client, in the browser and on mobile and tablet devices.

To different groups of people, Scout means different things. End users are interested in a good
usability, the management cares about the benefits a new framework can offers to the organisation
and developers want to know if a framework is simple to use and helps them to solve practical
issues. This is why the text below describes Scout from the perspective of these three roles.

1.1.1. End User Perspective

End users of enterprise applications care about friendly user interfaces (UI) and well designed
functionality that support them in their everyday work. Depending on the current context/location
of an end user, either desktop, web or mobile clients work best. If working in the office, a good
integration of the enterprise software with Lotus Notes or Microsoft Office often help to boost the
users productivity. As office software is typically installed locally on the users PC, integrating this
software also requires a desktop client for the enterprise application. When a user is working on a
computer outside of his company where the enterprise client is not installed (or the user lacks the
permissions to install any software), the natural choice is to work with a web application. And
when the user is on the move or sitting in a meeting, the only meaningful option is to work with a
mobile device.

3

Figure 1. The desktop client of a Scout enterprise application.

To provide a concrete example, we briefly describe a real world enterprise application based on
Scout. A first screenshot of a Scout desktop client is provided in Figure 000. The screenshot provides
an overview of the layout of a customer relationship management (CRM) solution. On the left hand
side, an entity class such as companies can be selected. Once an entity such is selected, a form is
presented on the right hand side to enter the search criteria. After entering “eclipse” into the
company search field, the list of matching companies is presented. Using the context menu on a
specific company, the corresponding company dialog can be opened for editing.

Figure 2. A Scout enterprise application running in a web browser.

4

In Figure 000 a screenshot of the web client of the CRM Scout application is shown. When
comparing the screenshots of the desktop client with the web application it is interesting to note
how Scout applications offer a consistent look and feel for the two clients. This is important as it
makes the end user feel “at home” on the web client.

Figure 3. The same Scout enterprise application running on a mobile device.

Finally, Figure 000 provides a screenshot of the now familiar CRM application. In contrast to
desktop and web applications, most tablets and mobile phones are controlled using touch features
instead of mouse clicks. In addition, less elements may be presented on a single screen compared to
desktop devices. These two aspects makes it impractical to directly reuse the desktop user interface
on mobile devices. The look and feel still relates to the desktop and web clients but is optimized to
the different form factor of the mobile device. And the end user benefits from the identical

5

behaviour and the the known functionality of the application.

Comparing the company table shown in the background of Figure 000 with Figure 000 it can be
observed that the multi-column table of the desktop client has been transformed into a list on the
mobile device. In addition, the context menu “New company” is now provided as a touch button. As
the navigation in the application and the offered choices remain the same for Scout desktop and
mobile applications, the end user feels immediately comfortable working with Scout mobile
applications.

1.1.2. Management Perspective

For the management, Scout is best explained in terms of benefits it brings to the organisation in
question. This is why we are going to concentrate on a (typical) application migration scenario here.
Let us assume that to support the company’s business, a fairly large landscape of multi-tier
applications has to be maintained and developed. Including host systems, client server applications
with desktop clients, as well as applications with a web based front-end.

Figure 4. A typical application landscape including a service bus and a Scout application.

Usually, these applications interact with each other through a service bus as shown in Figure 000.
Often, some of the applications that are vital to the organisation’s core business have grown
historically and are based on legacy technologies. And for technologies that are no longer under
active development it can get difficult to find staff having the necessary expertise or motivation.
Sometimes, the organisation is no longer willing to accept the costs and technology risks of such
mission critical applications.

6

Figure 5. The integration of a Scout application in a typical enterprise setup.

In this situation, the company needs to evaluate if it should buy a new standard product or if the
old application has to be migrated to a new technology stack. Now let us assume, that available
products do not fit the company’s requirements well enough and we have to settle for the migration
scenario. In the target architecture, a clean layering similar to the one shown in Figure 000 is often
desirable.

While a number of modern and established technologies exist that address the backend side (data
bases, data access and business services), the situation is different for the UI layer and the
application layer. The number of frameworks to develop web applications with Java is excessively
large. [1: Web application framework comparison:
http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java.], but the choice
between desktop application technologies in the Java domain is restricted to three options only.
Swing, SWT and JavaFX. Both Eclipse SWT and Java Swing are mature and well established but
Swing is moving into 'maintenance only' mode and will be replaced by JavaFX. However, the
maturity of the new JavaFX technology in large complex enterprise applications is not yet
established. Obviously, deciding for the right UI technology is a challenge and needs to be made
very carefully. Reverting this decision late in a project or after going into production can get very
expensive and time consuming.

Once the organisation has decided for a specific UI technology, additional components and
frameworks need to be evaluated to cover client server communication, requirements for the
application layer, and integration into the existing application landscape. To avoid drowning in the
integration effort for all the elements necessary to cover the UI and the application layer a
‘lightweight’ framework is frequently developed. When available, this framework initially leads to
desirable gains in productivity. Unfortunately, such frameworks often become legacy by
themselves. Setting up a dedicated team to actively maintain the framework and adapt to new

7

http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java

technologies can reduce this risk. But then again, such a strategy is expensive and developing
business application frameworks is usually not the core business of a company.

Can we do better? To implement a business application that covers the UI and the application layer
as shown in Figure 000, Eclipse Scout substantially reduces both risk and costs compared to the
inhouse development presented above. First or all, Scout is completely based on Java and Eclipse.
Chances are, that developers are already familiar with some of these technologies. This helps in
getting developers up to speed and keeping training costs low.

On the UI side, Scout’s multi-device support almost allows to skip the decision for a specific UI
technology. Should a particular web framework become the de-facto standard in the next years, it
will be the responsibility of the Scout framework to provide the necessary support. Existing Scout
applications can then switch to this new technology with only minimal effort. This is possible
because the Scout developers are designing and building the UI of an application using Scout’s
client model. And this client model is not linked to any specific UI technology. Rather, specific UI
renderers provided by the Scout framework are responsible to draw the UI at runtime.

As Scout is an open source project, no licence fees are collected. Taking advantage of the growing
popularity of Scout, free community support is available via a dedicated forum. At the same time,
professional support is available if the organisation decides for it.

As the migration of aging applications to current technology is always a challenge, it surely helps to
have Scout in the technology portfolio. Not only is it a low risk choice, but also boosts developer
productivity and helps to motivate the development team. Additional reasons on why Scout helps to
drive down cost and risks are discussed in Section Why Scout?.

1.1.3. Developer Perspective

From the perspective of application developers, Scout offers a Java based framework that covers
the complete client server architecture. This implies that — once familiar with the Scout
framework — the developer can concentrate on a single framework language (Java) and a single set
of development tools.

As Scout is completely based on Java and Eclipse, Scout developers can take full advantage of
existing knowledge and experience in these domains. And to make learning Scout as simple as
possible, Scout includes a comprehensive software development kit (SDK), the Scout SDK. The Scout
SDK helps to create a robust initial project setup for client server applications and includes a large
set of wizards for repetitive and error prone tasks.

On the client-side Scout’s flexible client model allows the developer to create a good user
experience without having to care about specific UI technologies. The reason for this can be found
in Scout’s client architecture that cleanly separates the UI model from the UI technology. In Scout
(almost) every UI component is implemented four times. First the implementation of the UI model
component and then, three rendering components for each UI technology supported by Scout. For
desktop clients these are the Swing and the SWT technologies, and for the web and mobile support
this is Eclipse RAP which in turn takes care of the necessary JavaScript parts.

Not having to worry about Swing, SWT or JavaScript can significantly boost the productivity. With
one exception. If a specific UI widget is missing for the user story to be implemented, the Scout

8

developer first needs to implement such a widget. Initially, this task is slightly more complex than
not working with Scout. For custom widgets the Scout developer needs to implement both a model
component and a rendering component for a specific UI technology. But as soon as the client
application needs to be available on more than a single frontend, the investment already pays off.
The developer already did implement the model component and only needs to provide an
additional rendering component for the new UI technology. In most situations the large set of
Scouts UI components provided out-of-the box are sufficient and user friendly applications are
straight forward to implement. Even if the application needs to run on different target devices
simultaneously.

Client-server communication is an additional aspect where the developers is supported by Scout.
Calling remote services in the client application that are provided by the Scout server looks
identical to the invocation of local services. The complete communication including the transfer of
parameter objects is handled fully transparent by the Scout framework. In addition, the Scout SDK
can completely manage the necessary transfer objects to fetch data from the Scout server that is to
be shown in dialog forms on the Scout client. The binding of the transferred data to the form fields
is done by the framework.

Although the Scout SDK wizards can generate a significant amount of code, there is no one-way
code generation and no meta data in a Scout application. Just the Java code. [2: With the exception
of the plugin.xml and MANIFEST.MF files required for Eclipse plugins.]. Developers preferring to
write the necessary code manually, may do so. The Scout SDK parses the application’s Java code in
the background to present the updated Scout application model to the developers preferring to
work with the Scout SDK.

Finally, Scout is an open source framework hosted at the Eclipse foundation. This provides a
number of interesting options to developers that are not available for closed source frameworks.
First of all, it is simple to get all the source code of Scout and the underlying Eclipse platform. This
allows for complete debugging of all problems and errors found in Scout applications. Starting from
the application code, including the Scout framework, Eclipse and down to the Java platform.

Scout developer can also profit from an increasing amount of free and publicly available
documentation, such as this book or the Scout Wiki pages. And problems with Scout or questions
that are not clearly addressed by existing documentation can be discussed in the Scout forum. The
forum is also a great place for Scout developers to help out in tricky situation and learn from
others. Ideally, answered questions lead to improved or additional documentation in the Scout
Wiki.

At times, framework bugs can be identified from questions asked in the forum. As all other
enhancement requests and issues, such bugs can be reported in Bugzilla by the Scout developer.
Using Bugzilla, Scout developers can also contribute bug analysis and patch proposals to solve the
reported issue. With this process, Scout developers can actively contribute to the code base of
Eclipse Scout. This has the advantage, that workarounds in existing Scout applications can be
removed when an upgrade of the Scout framework is made.

Having provided a significant number of high quality patches and a meaningful involvement in the
Scout community, the Scout project can nominate a Scout developer as a new Scout committer.
Fundamentally, such a nomination is based on the trust of Scout committers in the candidate. To
quote the official guidelines. [3: Nominating and electing a new Eclipse Scout committer:

9

http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committ
er#Guidelines_for_Nominating_and_Electing_a_New_Committer.] for nominating and electing a
new committer:

A Committer gains voting rights allowing them to affect the future of the
Project. Becoming a Committer is a privilege that is earned by contributing
and showing discipline and good judgment. It is a responsibility that should
be neither given nor taken lightly, nor is it a right based on employment by
an Eclipse Member company or any company employing existing
committers.

After a successful election process (existing committers voting for and not against the candidate)
the Scout developer effectively becomes a Scout committer. With this new status, the Scout
developer then gets write access to the Eclipse Scout repositories and gains voting rights and the
possibility to shape the future of Scout.

1.2. Why Scout?
Most large organizations develop and maintain enterprise applications that have a direct impact on
the success of the ongoing business. And at the same time, those responsible for the development
and maintenance of these applications struggle with this task. It is a big challenge to adapt to
changing business demands and complying with the latest legal requirements in time. And the
increasing pressure to lower recurring maintenance costs does not make the situation any easier.

It often seems that too many resources are required to keep a heterogeneous set of legacy
technologies alive. In this situation, modernizing mission critical applications can help to improve
over the current situation. For the target platform stack, Java is a natural choice as it is mature,
widely adopted by in the industries and unlikely to become legacy in the foreseeable future. While
for the back-end side of enterprise applications well-known and proven frameworks do exist, the
situation on the client side is less clear. Unfortunately, user interface (UI) technologies often have
lifetimes that are substantially shorter than the lifetimes of larger mission critical applications. This
is particularly true for the web, where many of today’s frameworks will no longer be relevant in
five or more years.

Enter Eclipse Scout. This open source framework covers most of the recurring needs that are
relevant to the front-end development of business applications. And Scout forces a clean separation
between the user interface and the specific UI technology used for rendering. This has two major
benefits. First, Scout developers implement the user interface against an abstraction layer, which
helps to focus on the business functionality and saves development time. And second, long term
maintenance costs are lower, as the Scout code remains valid even when the rendering technology
needs to be exchanged. Therefore, Scout helps to improve the productivity of the development
teams and reduces the risk of major application rewrites.

To provide a first impression on the scope and goals of the Scout framework, a number of scenarios
where Scout typically contributes to your projects success are listed below .

• You are looking for a reasonable client side framework for your business application.

10

http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committer#Guidelines_for_Nominating_and_Electing_a_New_Committer
http://wiki.eclipse.org/Development_Resources/HOWTO/Nominating_and_Electing_a_New_Committer#Guidelines_for_Nominating_and_Electing_a_New_Committer

• You need an application that works on the desktop, in browsers and on mobiles devices.

• You don’t have the time to evaluate and learn a new UI technology.

• You need a working prototype application by the end of the week.

• Your application’s expected lifespan is 10 years or more.

That Scout should help in the last two situations mentioned above seems to be contradictory at first
but is just based on a simple principle. Where possible, the Scout framework provides abstractions
for areas/topics. [4: Example areas/topics that are abstracted by the Scout framework are user
interface (UI) technologies, databases, client-server communication or logging.] that need to be
implemented for business applications again and again. And for each of these abstractions Scout
provides a default implementation out of the box. Typically, the default implementation of such an
abstraction integrates a framework or technology that is commonly used.

When needing a working prototype application by the end of the week, the developer just needs to
care about the desired functionality. The necessary default implementations are then automatically
included by the Scout tooling into the Scout project setup. The provided Scout SDK tooling also
helps to get started quickly with Scout. It also allows to efficiently implement application
components such as user interface components, server services or connections to databases.

In the case of applications with long lifespans, the abstractions provided by Scout help the
developer to stay productive and concentrate on the actual business functionality. At the same time,
this keeps the code base as independent of specific technologies and frameworks as possible. This is
a big advantage when individual technologies incorporated in the application reach their end of
life. As all the implemented business functionality is written against abstractions only, no big
rewrite of the application is necessary. Instead, it is sufficient to exchange the implementation for
the legacy technology with a new one. And often, an implementation for a new
technology/framework is already provided by a more recent version of Scout.

1.3. What should I read?
The text below provides guidelines on what to read (or what to skip) depending on your existing
background. We first address the needs of junior Java developers that like to learn more about
developing enterprise applications. Then, we suggest a list of sections relevant for software wizards
that already have a solid understanding of the Eclipse platform, Java enterprise technologies, and
real world applications. Finally, the information needs of IT managers are considered.

1.3.1. I know Java

The good news first. This book is written for you! For the purpose of this book we do not assume
any significant understanding of the Java Enterprise Edition (Java EE). [5: Java Enterprise Edition:
http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition] and the Eclipse Platform. [6: Eclipse
Platform: http://wiki.eclipse.org/Platform].

Of course, having prior experience in client server programming with Java is helpful. And having
used the Eclipse IDE for Java development before --- please do not mistake the IDE with the Eclipse
platform. [7: By reading through the book you will learn that there is much more to the Eclipse
platform than just the IDE] is certainly of benefit.

11

http://en.wikipedia.org/wiki/Java_Platform,_Enterprise_Edition
http://wiki.eclipse.org/Platform

The “bad” news is, that writing Scout applications requires a solid understanding of Java. To
properly benefit from this book, we assume that you have been developing software for a year or
more. And you should have mastered the Java Standard Edition (Java SE). [8: Java Standard Edition:
http://en.wikipedia.org/wiki/Java_SE] to a significant extent. To be more explicit, you are expected to
be comfortable with all material required for the Java Programmer Level I Exam. [9: Level I Exam:
docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer1.html] and most of the
material required for Level II. [10: Level II Exam:
docs.oracle.com/javase/tutorial/extra/certification/javase-7-programmer2.html].

We now propose to start downloading and installing Scout as described in Appendix Scout
Installation and do some actual coding. To do so, please continue with the “Hello World” example
provided in Chapter “Hello World” Tutorial. You can expect to complete this example in less than
one hour including the necessary download and installation steps. Afterwards, you might want to
continue with the remaining material in “Getting Started”. Working through the complete book
should take no more than two days.

Once you work with the Scout framework on a regular basis, you might want to ask questions in the
Scout forum. [11: Eclipse Scout forum: http://www.eclipse.org/forums/eclipse.scout]. When your
question gets answered, please ask yourself if your initial problem could have been solved by better
documentation. In that case, you might want to help the Scout community by fixing or amending
the Scout wiki pages. [12: Eclipse Scout wiki: http://wiki.eclipse.org/Scout]. Or this book. If you find a
bug in Eclipse Scout that makes your life miserable you can report it or even propose a patch. And
when your bug is fixed, you can test the fix. All of these actions will add to the healthy grow of the
Scout community.

1.3.2. I know tons of both Java and Eclipse

This means that you are one of these software wizards that get easily bored. You prefer to get a
quick impression before deciding to dig deeper and hate going through lengthy descriptions. In that
case let us assume that you are prepared to spend two hours to grasp the scope of Eclipse Scout and
get an impression of its strengths and limitations. The list below suggests a sequence of sections to
digest including a brief motivation for each one.

• Chapter “Hello World” Tutorial "Hello World" Tutorial. Download and installation of the Scout
package should take less than 30 minutes, going through the "Hello World" takes another 15
minutes.

• Section Walking through the Initial Application “Walking through the Initial Application” Read
about some key elements used in every Scout client application including integration of server
services and data binding.

• Chapter [cha-tooling] “Scout Tooling”. Browse through the tooling chapter to get an impression
on the tooling provided with Scout. Make sure you understand that the Scout SDK is supporting
the developer without restricting the developer.

• Chapter [cha-large_example] “The My Contacts Application”. Check out the slightly larger
demo application. In case you are not yet running out of time, download the demo app as
described in the Scout wiki. [13: Download and installation of the “My Contacts” application:
http://wiki.eclipse.org/Scout/Book/#Download_and_Run_the_Scout_Sample_Applications.].

12

http://en.wikipedia.org/wiki/Java_SE
http://www.eclipse.org/forums/eclipse.scout
http://wiki.eclipse.org/Scout
http://wiki.eclipse.org/Scout/Book/#Download_and_Run_the_Scout_Sample_Applications

1.3.3. I am a manager

Being a manager and actually reading this book may indicate one of the following situations:

• Your developer tried to convince you that Eclipse Scout can help you with implementing
business applications in a shorter time and for less money. And you did not understand why
(again) a new technology should work better than the ones you already use.

• Your are a product manager of a valuable product that is based on legacy technology. And you
are now evaluating options to modernize your product.

• Think about your current situation. There must be a reason why you are checking out this book.

To learn about Scout and about its benefits first go through Section What is Scout? and Section Why
Scout?. Then, flip through Section [sec-my_contacts_guide] to get an impression of the “My
Contacts” application. In case you like the idea that your developers should be able to build such an
application in a single day, you might want to talk to us. [14: To contact the Scout team, use the
feedback provided on the Scout homepage: https://eclipse.org/scout.].

13

https://eclipse.org/scout

Chapter 2. “Hello World” Tutorial
The “Hello World” chapter walks you through the creation of an Eclipse Scout client server
application. When the user starts the client part of this application, the client connects to the server.
[15: The Scout server part of the “Hello World” application will be running on a web server.] and
asks for some text content that is to be displayed to the user. Next, the server retrieves the desired
information and sends it back to the client. The client then copies the content obtained from the
server into a text field widget. Finally, the client displays the message obtained from the server in a
text field widget.

The goal of this chapter is to provide a first impression of working with the Scout framework using
the Scout SDK. We will start by building the application from scratch and then we’ll deploy the
complete application to a Tomcat web server. Except for a single line of code in the server part of
the “Hello World” application, we will only be using the tooling provided by the Scout SDK.

Based on this simple “Hello World” applications a large number of Scout concepts can be
illustrated. Rather than including such background material in this tutorial, this information is
provided separately in Chapter “Hello World” Background. This tutorial is also available in the
Scout wiki. [16: “Hello World” wiki tutorial: http://wiki.eclipse.org/Scout/Tutorial/4.0/HelloWorld].

2.1. Installation and Setup
Before you can start with the “Hello World” example you need to have a complete and working
Scout installation. For this, see the step-by-step installation guide provided in Appendix Scout
Installation. Once you have everything installed, you are ready to create your first Scout project.

2.2. Create a new Project

Start your Eclipse IDE and select an empty directory for your workspace as shown in Figure Start
the Eclipse IDE with a new project folder. This workspace directory will then hold all the project
code for the Hello World application. Once the Eclipse IDE is running it will show the Java
perspective.

14

http://wiki.eclipse.org/Scout/Tutorial/4.0/HelloWorld

Figure 6. Select a new empty folder to hold your project workspace

To create a new Scout project select the menu File | New | Project… and type “Scout Project” in the
wizard search field. Select the Scout Project wizard and press [ Next ]. The New Scout Project
wizard is then started as shown in Figure New Scout Project Wizard.

Figure 7. The new Scout project wizard.

In the New Scout Project wizard you have to enter a group id, artifact id and a display name for
your Scout project. As the created project will make use of Apache Maven please refer to the Maven
naming conventions to choose group id and artifact id for your project. The artifact id will then
also be the project name in the Eclipse workspace. The display name is used as the application name
presented to the user (e.g. in the Browser title bar).

For the Hello World application just use the already prefilled values as sown in Figure New Scout

15

https://maven.apache.org/
https://maven.apache.org/guides/mini/guide-naming-conventions.html
https://maven.apache.org/guides/mini/guide-naming-conventions.html

Project Wizard. Then, click the [ Finish ] button to let the Scout SDK create the initial project code
for you.

Depending on your Eclipse installation some Maven plugin connectors may be missing initially. In
that case a dialog as shown in Figure Maven plugin connector installation dialog may be shown. To
continue click on [ Finish ] to resolve the selected connectors. Afterwards confirm the installation,
accept the license and the message that some content has not been signed. Finally, the installation
of the maven plugin connectors requires a restart of the Eclipse IDE.

Figure 8. The Maven plugin connector installation dialog.

After the New Scout Project wizard has created the initial Maven modules for the Hello World
application these modules are compiled and built by the Eclipse IDE. In case of a successful Eclipse
Scout installation your Eclipse IDE should display all created Maven modules in the Package
Explorer and have an empty Problems view as shown in Figure The Hello World Maven Modules.

16

Figure 9. The inital set of Maven modules created for the Hello World application.

2.3. Run the Initial Application
After the initial project creation step we can start the Scout application for the first time. For this,
the following three steps are necessary

1. Start the Scout backend server

2. Start the Scout frontend server

3. Open the application in the browser

To start the Scout backend server we first select the [webapp] dev server.launch file in the Package
Explorer view of the Eclipse IDE and then use the Run As menu as shown in Figure Starting the
Hello World application.

17

Figure 10. Starting the Hello World application.

Starting the Scout frontend server works exactely the same. But first select the [webapp] dev

ui.launch file in the Eclipse IDE. This launch file is located under module
helloworld.ui.html.app.dev in the Package Explorer.

During startup of the Scout applications you should see console output providing information about
the startup. After having successfully started the Scout backend and frontend servers the Hello
World application can then be accessed by navigating to http://localhost:8082/ in your favorite web
browser.

The running Hello World application should then be started in your browser as shown in Figure
The Hello World application.

18

http://localhost:8082/

Figure 11. The Hello World application in the browser.

2.4. Exporting the Application
We are now ready to move the finished “Hello World” application from our development
environment to a productive setup. The simplest option to move our application into the ‘wild’ is to
use the Export Scout Project wizard provided by the Scout SDK. Using the default settings, the
export wizard produces two WAR files. [17: Web application ARchive (WAR):
http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29] that contain the complete Scout server
and the desktop and mobile client applications.

To deploy the application to a web server the WAR files generated by the wizard are the only
artefacts needed. The first WAR file contains the Scout server including a zipped desktop client for
downloading. In the second WAR file, the RAP server application that provides both the web client
and the client for mobile devices.

Figure 12. Starting the Export Scout Project wizard in the Scout SDK with the context menu. In the
first wizard step, the target directory for the WAR files and the artefacts to export are specified.

19

http://en.wikipedia.org/wiki/WAR_file_format_%28Sun%29

Figure 13. The first dialog of the Export Scout Project wizard. Here, the target directory for the WAR
files that will be generated by the wizard is specified.

To start the export wizard, we start the Scout SDK with the “Hello World” Scout project. In the Scout
Explorer we then select the corresponding Export Scout Project… context menu on the “Hello
World” top level application node as shown in Figure 000. In the first wizard dialog shown in Figure
000, the target directory for the WAR files needs to be specified. You may choose any directory as
the target directory. [18: Make sure to remember the location of this directory. We will need the
directory location again when we deploy these WAR files to the Tomcat web server.]. After clicking
[ Next ] button the second wizard step proposes the server product file that specifies the artefacts
to be exported including the file name for the WAR file for the “Hello World” server application.
Typically, the proposed default values are fine. Move to the third dialog with [ Next ] button.

Figure 14. The third dialog of the Export Scout Project wizard defines the client application to be
included in the helloworld_server.war file. In the last step of the export wizard the RAP sever is

20

exported to the specified file name (right).

In the third dialog of the Export Scout Project wizard the desktop client to be included in the WAR
file needs to be specified. The default selection is set to the SWT client application. For the “Hello
World” example, we want to include the Swing client application with the Rayo Look and Feel. For
this, we need to change the selected product to helloworld-swing-client.product (production)
according to Figure 000. With [ Next ] button we move to the last wizard step.

Figure 15. The last dialog of the Export Scout Project wizard defines the export of the RAP server.
Normally, the proposed field values do not need any adjustments.

In the last wizard dialog shown in Figure 000, the RAP server product and the corresponding WAR
file name are specified. Normally, the proposed field values are fine and we can close the wizard
with [ Finish ] button. After this last step, the Scout SDK is assembling the necessary artefacts and
building the two “Hello World” WAR files. These two WAR files are the only items needed for
deploying the “Hello World” application to a web server

2.5. Deploying to Tomcat
As the final step of this tutorial, we deploy the two WAR files representing our “Hello World”
application to a Tomcat web server. For this, we first need a working Tomcat installation. If you do
not yet have such an installation you may want to read and follow the instructions provided in
Appendix Apache Tomcat Installation. To verify a running Tomcat instance, type
http://localhost:8080/ into the address bar of the web browser of your choice. You should then see
the page shown in Figure 000.

21

http://localhost:8080/

Figure 16. The Tomcat shown after a successful installation. After clicking on the “Manager App”
button (highlighted in red) the login box is shown in front. A successful login shows the “Tomcat Web
Application Manager”.

22

Figure 17. The “Tomcat Web Application Manager”. The WAR files to be deployed can then be selected
using button “Choose File” highlighted in red.

Once the web browser displays the successful running of your Tomcat instance, switch to its
“Manager App” by clicking on the button highlighted in Figure 000. After entering user name and
password the browser will display the “Tomcat Web Application Manager” as shown in Figure 000.
If you don’t know the correct username or password you may look it up in the file tomcat-users.xml
as described in Appendix Directories and Files.

After logging successfully into Tomcat’s manager application, you can select the WAR file(s) to be
deployed using button “Choose File” according to the right hand side of Figure 000. After picking
your helloworld_server.war and helloworld.war file and closing the file chooser, click on button
“Deploy” (located below button “Choose File”) to deploy the application to the Tomcat web server.
This will copy the selected WAR file into Tomcats webapps directory and unpack its content into a
subdirectory with the same name. Deploying the file helloworld.war will extract its contents into a
subdirectory named helloworld. And the file helloworld_server.war will be extracted into
subdirectory helloworld_server. You can now connect to the deployed application using the

23

browser of your choice and enter the following address.

 http://localhost:8080/helloworld_server/

Figure 18. The “Hello World” home page, providing a link to download the desktop client.

You will then see the home page of the server of your “Hello World” application shown in Figure
000. From here you can download the zipped client application that can be saved in a directory of
your choice. After unpacking the zip file, you may start the executable file named helloworld. This
will start the “Hello World” client application as shown on the left hand side of Figure 000. To start
the “Hello World” web application, open a browser and enter the following address.

 http://localhost:8080/helloworld/

24

Figure 19. The “Hello World” client application running on the desktop, in the browser and on a
mobile device.

Depending on the device your browser is running on you will be redirected to helloworld/web on a
desktop or laptop computer, to helloworld/mobile on a mobile device or to helloworld/mobile if you
are connecting from a tablet device. Figure 000 shows screenshots for a desktop client, the web
application and the same application in a mobile browser. As demonstrated in these screenshots
helloworld/web and helloworld/mobile lead to a different presentation of the same UI optimized to
the target form factors of desktop browsers, tablets, and mobile phones.

25

Chapter 3. “Hello World” Background
The previous “Hello World” tutorial has been designed to cover the creation of a complete client
server application in a minimal amount of time. In this chapter, we will take a deeper look at the
“Hello World” and provide background information along the way. The goal is to explain many of
the used concepts in the context of a concrete Scout application to allow for a well rounded first
impression of the Eclipse Scout framework and the tooling provided by the Scout SDK.

The structure of this chapter is closely related to the “Hello World” tutorial. As you will notice, the
order of the material presented here exactly follows the previous tutorial and identical section
titles are used where applicable. In addition to Chapter “Hello World” Tutorial, we include Section
Walking through the Initial Application to discuss the initial application generated by the Scout
SDK.

3.1. Create a new Project
The first thing you need for the creation of a new Scout project is to select a new workspace. For
Eclipse, a workspace is a directory where Eclipse can store a set of projects in a single place. As
Scout projects typically consist of several Eclipse plugin projects the default (and recommended)
setting is to use a single workspace for a single Scout project.

26

Figure 20. The Eclipse plugin projects of the “Hello World” application shown by the Package Explorer
in the Scout SDK on the left hand side. The corresponding view in the Scout Explorer is provided on the
right hand side.

In the case of the “Hello World” application, the workspace contains seven plugin projects as shown
on the left side of Figure 000. In the expanded source folder of the client plugin
org.eclipse.scout.helloworld.client the organisation of the Java packages is revealed. The Scout
Explorer provided on the right side of Figure 000 shows three colored top level nodes below the
main project org.eclipse.scout.helloworld.

In the Scout Explorer, the main project node expands to the orange client node
org.eclipse.scout.helloworld.client, the green shared node org.eclipse.scout.helloworld.client and the
blue server node org.eclipse.scout.helloworld.server. The client node first presents the white user
interface (UI) nodes org.eclipse.scout.helloworld.client.ui.* indicating the supported UI technologies.
Next, the client mobile node org.eclipse.scout.helloworld.client.mobile is shown. It is responsible for
adapting the layout of the user interface suitably for mobile and tablet devices. Finally, after the
ClientSession node and the Desktop node, component specific folders allow for a simple navigation
to the various client parts.

Comparing the Package Explorer with the Scout Explorer a couple of aspects are notable. First, the
number and names of the Eclipse plugin projects is identical in both the Package Explorer and the
Scout Explorer view. However, the Scout Explorer recognizes the Scout project structure and
explicitly renders the relation between the different Eclipse plugins. In addition, individual node
colors are used to indicate the role of each plugin project. Second, the focus of the Scout Explorer
lies on the business functionality of the complete client server application. Artefacts only necessary
to the underlying Eclipse platform are not even accessible. Third, on the individual elements
rendered in the Scout Explorer, the Scout SDK provides menus to start wizards useful to the
selected context. In the case of the “Hello World” tutorial we could create the complete application

27

(except for a single line of Java code) using these wizards .

When we revisit the New Scout Project wizard in Figure New Scout Project Wizard, it now becomes
trivial to explain how the Project Name field org.eclipse.scout.helloworld was used as the common
prefix for plugin project names and Java package names. Based on the project name, the last part
helloworld was used for the Project Alias field. As we have seen in Section Exporting the
Application, this project alias is used by the Scout SDK to build the base names of the WAR files in
the export step. In turn, after deploying the WAR files as described in Section Deploying to Tomcat,
the RAP server application becomes available under the URL http://localhost:8080/helloworld.
Should you have a catchy naming for you application in mind, com.mycompany.mycatchyname is
therefore a good choice for the Project Name field.

3.2. Walking through the Initial Application
In this section, we will walk you through the central Scout application model components of the
“Hello World” example. As each of these components is represented by a Java class in the Scout
framework, we can explain the basic concept using the available “Hello World” source code. Below,
we will introduce the following Scout components.

• Desktop

• Form

• Form handler

• Service

• MainBox

• Form data

• Form field

Please note that most of the Java code was initially generated by Scout SDK. In many cases this code
can be used “as is” and does not need to be changed. Depending on your requirements, it might
very well be that you want to adapt the provided code to fit your specific needs. However, a basic
understanding of the most important Scout components should help you to better understand the
structure and working of Scout applications.

3.2.1. Desktop

The desktop is the central container of all visible elements of the Scout client application. It inherits
from Scout class AbstractDesktop and represents the empty application frame with attached
elements, such as the applications menu tree. In the “Hello World” application, it is the Desktop that
is first opened when the user starts the client application.

To find the desktop class in the Scout Explorer, we first navigate to the orange client node and
double click the Desktop node just below. This will open the associated Java file Desktop.java in the
editor view of the Scout SDK. Of interest is the overwritten callback method execOpened shown in
Listing Desktop.

28

Listing 1. The configuration of the server’s resource servlet in the plugin.xml configuration file. The
remaining content of the file has been omitted.

TODO include was {codedir}/helloworld/org.eclipse.scout.helloworld.client/src/org
/eclipse/scout/helloworld/client/ui/desktop/Desktop.java[lines=32..41]

Method execOpened is called by the Scout framework after the desktop frame becomes visible. The
only thing that happens here is the creation of a desktopForm object, that gets assigned an icon
before it is started via method startView. This desktop form object holds the Message field text
widget that is displayed to the user. [19: In the Scout application model we can only add UI fields to
Scout form elements, not directly to the desktop.]. More information regarding form elements are
provided in the next section.

3.2.2. Form

Scout forms are UI containers that hold form field widgets. A Scout form always inherits from Scout
class AbstractForm and can either be displayed as a dialog in its own window or shown as a view
inside of another UI container. In the “Hello World” application a DesktopForm object is created
and displayed as a view inside of the desktop element.

To find the desktop form class in the Scout Explorer, expand the orange client node. [20: To expand
elements (nodes, folders, etc.) in the Scout Explorer, use a double click on the element or a single
click on the plus icon in front of the element.]. Below this node, you will find the Forms folder.
Expand this folder to show the DesktopForm as shown in Figure 000. In the Scout Object Property
window in the screenshot, we can also see the Display Hint property. Its value is set to ‘View’ to
display the desktop form as a view and not as a dialog in its own frame.

Figure 21. Scout SDK showing the DesktopForm’s ViewHandler in the Scout Explorer and the
properties of the DesktopForm in the Scout Object Properties.

Expand the DesktopForm to show its children: Variables, MainBox and Handlers. The Variables sub
folder contains variables. They are invisible to the application user. The “Hello World” application
is so simple, it does not need variables. The sub folder MainBox contains form fields. These are the

29

visible user interface elements. The main box of our DesktopForm holds the DesktopBox containing
the MessageField added with the New Form Field wizard. Finally, the Handlers sub folder contains
all available form handlers. The view handler shown in Figure 000 has been added in the initial
project creation step.

3.2.3. Form Handler

Form handlers are used to manage the form’s life cycle. Scout form handlers inherit from
AbstractFormHandler and allow the implementation of desired behaviour before a form is opened,
or after it is closed. This is achieved by overwriting callback methods defined in
AbstractFormHandler. The necessary wiring is provided by the Scout framework, either by the
initial project creation step or when using one of the provided Scout SDK wizards.

Listing 2. Class DesktopForm with its view handler and startView method. Other inner classes and
methods are omitted here.

TODO include was {codedir}/helloworld/org.eclipse.scout.helloworld.client/src/org
/eclipse/scout/helloworld/client/ui/forms/DesktopForm.java[lines=19..20;86..103]

In the “Hello World” application, it is the overwritten execLoad method in the ViewHandler that
defines what will happen before the desktop form is shown to the user. The corresponding source
code is provided in Listing ViewHandler in DesktopForm. It is this execLoad method where most of
the behaviour relevant to the “Hello World” application is implemented. Roughly, this
implementation is performing the following steps.

1. Get a reference to the forms server service running on the server.

2. Create a data transfer object (DTO). [21: Data Transfer Object (DTO):
http://en.wikipedia.org/wiki/Data_transfer_object.]

3. Pass the empty DTO to the load service method (ask the server for some data).

4. Update the DTO with the content provided by the service load method.

5. Copy the updated information from the DTO into the desired form field.

To open the ViewHandler class in the Java editor of the Scout SDK, double click on the ViewHandler
in the Scout Explorer. Your Scout SDK should then be in a state similar to Figure 000. In the lower
part of Listing ViewHandler in DesktopForm we can see the wiring between the desktop form and
the view handler in method startView. Further up, we find method execLoad of the view handler
class.

Before we discuss this method’s implementation, let us examine when and how execLoad is
actually called. As we have seen in the Desktop class (see Listing Desktop), the form’s method
startView is executed after the desktop form is created. Inside method startView (see Listing
ViewHandler in DesktopForm), the desktop form is started/opened using startInternal. In method
startInternal a view handler is then created and passed as a parameter. This eventually leads to the
call of our execLoad custom implementation.

We are now ready to dive into the implementation of method execLoad of the desktop form’s view

30

http://en.wikipedia.org/wiki/Data_transfer_object

handler. First, a reference to a form service identified by IDesktopService is obtained using
SERVICES.getService. Then, a form data object (the DTO) is created and all current form field values
are exported into the form data via method exportFormData. Strictly speaking, the exportFormData
is not necessary for the use case of the “Hello World” application. But, as this is generated code,
there is no benefit when we manually delete the exportFormData command. Next, using the load
service method highlighted in Listing ViewHandler in DesktopForm, new form field values are
obtained from the server and assigned to the form data object. Finally, these new values are
imported from the form data into the form via the importFormData method. Once the desktop form
is ready, showing it to the user is handled by the framework.

To add some background to the implementation of the execLoad above, the next section introduces
services and form data objects.

3.2.4. Form Services and Form Data Objects

Form services and form data objects are used in the Scout framework to exchange information
between the Scout client and server applications. When needed, a service implemented on the
server side can register a corresponding proxy service on the client. This proxy service is invoked
by the client as if it were implemented locally. In fact, when we get a service reference using
SERVICES.getService, we do not need to know if this service runs locally on the client or remotely
on the server.

In the “Hello World” example application, the client’s desktop form has an associated desktop
service running on the server. This correspondence between forms and form services is also
reflected in the Links section of the Scout Object Properties of the desktop form. As shown in Figure
000, links are provided not only for the desktop form, but for its desktop form data, the
corresponding desktop form service as well as for the service interface IDesktopService. On the
client, this interface is used to identify and register the proxy service for the desktop service.

To transfer data between the client and the server, the “Hello World” application uses a
DesktopFormData object as a DTO. This form data object holds all form variables and values for all
the form fields contained in the form. Taking advantage of this correspondence, the Scout
framework provides the convenience methods exportFormData and importFormData. As a result,
the developer does not need to deal with any mapping code between the form data object and the
form fields.

The actual implementation of the desktop form service in class DesktopService is implemented on
the server side. As the class DesktopService represents an ordinary Scout service it inherits from
AbstractService. It also implements its corresponding IDesktopService interface used for registering
both the actual service as well as the proxy service.

3.3. Run the Initial Application

3.3.1. The Launcher Boxes

To run a Scout application the Scout SDK provides launcher boxes in the Scout Object Properties as
described in Section Run the Initial Application. These object properties are associated to the top
level project node in the Scout Explorer. Using the Edit icon provided in the product launcher

31

section of the Scout Object Properties, the list of launcher boxes can be specified as shown in Figure
000.

Figure 22. Using the Edit Content… icon shown on the left hand side, the product selection dialog
shown on the right side is opened. Using this product selection dialog, the list of launcher boxes can be

32

specified.

3.3.2. Eclipse Product Files

The available products shown on the right side of Figure 000 represent the Eclipse product files
created in the initial project creation step. Product files. [22: Read the following article for an
introduction to Eclipse product files:
http://www.vogella.com/articles/EclipseProductDeployment/article.html.] are used in Eclipse to
specify the configuration and content of an executable application. In the case of the “Hello World”
project, four executable applications --- with two Eclipse product files for each application --- have
been defined by the Scout SDK. The four applications, one for the server application and one for
each client technology, have already been discussed in Section Run the Initial Application.

33

http://www.vogella.com/articles/EclipseProductDeployment/article.html

Figure 23. The production and development launcher boxes associated with the “Hello World” server
application are shown on the left side. In the Package Explorer shown on the right side, the
production and development products are located under the products folder in the server plugin
project.

We assume that Scout applications will be run in at least two different environments. Once from
within the Eclipse IDE in the development environment, and once by the actual end users outside
the Eclipse IDE. This second environment is named production environment. Depending on the
complexity of deployment processes there might be some more environments to consider, such as
testing and integration environments. This is the reason that the Scout SDK initially creates two
product files that are associated with the development and the production environment.

Even in the case of the simple “Hello World” example, the Scout application is started in two target
environments. The development environment defines the product in the context of the Scout SDK.
To export and run the Scout application outside of the Scout SDK, the production product files are
used to define the application when it is to be started on a Tomcat web server. Figure 000 illustrates
this situation for the “Hello World” server application. On the left side, the blue server node is
selected in the Scout Explorer. This opens the two server launcher boxes for the production and the
development environment. On the right side of Figure 000, the corresponding plugin project
org.eclipse.scout.helloworld.server is expanded to show the file based organisation of the two
product definitions.

34

Figure 24. The Eclipse product file editor showing file helloworld-server-dev.product of the “Hello
World” application. In the Dependencies tab shown above, the list of Eclipse plugins that are required
for the server application are shown.

For the case of the “Hello World” example we did not need to edit or change the product files
generated by the Scout SDK. However, if your requirements are not met by the provided product
files, you may use the Eclipse product file editor. A screenshot of this editor is shown in Figure 000
with the tab Dependencies opened. In the tab Dependencies, the complete list of necessary plugins is
provided. Example plugins visible in Figure 000 include the “Hello World” server and shared
plugins, Scout framework plugins, and Jetty plugins. The Jetty. [23: Jetty is web server with a small
footprint: http://www.eclipse.org/jetty/.] plugins are only needed to run the “Hello World” server
application inside the Scout SDK. Consequently, Jetty plugins are not listed as a dependency in the
Scout server’s production product file.

3.3.3. Eclipse Configuration Files

35

http://www.eclipse.org/jetty/

Figure 25. Above, the definition of the products config.ini in tab Configuration of the product file
editor. Below, the content of the configuration file of the “Hello World” server application is provided
in a normal text editor.

Switching to tab Configuration in the product file editor, shows the selected radio button Use an
existing config.ini file and the link to the configuration file provided in the File field as shown in the
upper part of Figure 000. Below, a part of the server’s config.ini file is shown. Both the entry in the
product file pointing to the configuration file, and the content of the config.ini file has been
generated by the Scout SDK during the initial project creation step. As shown in the lower part of
Figure 000, Eclipse configuration files have the format of a standard property file. The provided key
value pairs are read at startup time if the config.ini file can be found in folder configuration by the
Eclipse runtime.

3.3.4. Scout Desktop Client Applications

Having introduced Eclipse product files and configuration files based on the “Hello World” server
application, we will now look at the different client applications in turn. With Swing applications.
[24: Swing is the primary Java UI technology: http://en.wikipedia.org/wiki/Swing_%28Java%29.] and
SWT applications. [25: Standard Widget Toolkit (SWT):
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit.], two alternative UI technologies are

36

http://en.wikipedia.org/wiki/Swing_%28Java%29
http://en.wikipedia.org/wiki/Standard_Widget_Toolkit

currently available to build Scout desktop client applications. More recently, JavaFX. [26: JavaFX is
the most recent Java UI technology: http://en.wikipedia.org/wiki/JavaFX.] is promoted as a successor
to Swing and it is therefore likely, that Scout will provide JavaFX client applications in the future.

When we compare the product files for the Swing and the SWT client applications, it is apparent
that both client applications share a large number of plugins. Most importantly, the complete UI
model and the business logic is identical for both client applications. In other words, the value
created by the Scout developer is contained in the two plugins org.eclipse.scout.helloworld.client
and org.eclipse.scout.helloworld.shared. To create an executable client application, we only need to
combine these two plugins with a set of plugins specific to the desired UI technology.

After starting the “Hello World” Swing client or the corresponding SWT client application, the client
application first reads the startup parameters from its config.ini file. Among other things, this client
configuration file contains the parameter server.url to specify the URL to the “Hello World” server.
After the startup of the “Hello World” client application, it can then connect to the “Hello World”
server application using this address.

3.3.5. Scout Web, Tablet and Mobile Clients

For Scout web, tablet and mobile clients, the Eclipse RAP framework. [27: Remote Application
Platform (RAP): http://www.eclipse.org/rap/.] is used. The RAP framework provides an API that is
almost identical to the one provided by SWT and allows to use Java for server-side Ajax. [28:
Asynchronous JavaScript and XML (AJAX):
http://en.wikipedia.org/wiki/Ajax_%28programming%29.]. This setup implies that Scout tablet and
mobile clients are not native clients but browser based. [29: To provide native clients with Scout,
the simplest (commercial) option is most likely Tabris: http://developer.eclipsesource.com/tabris/].

Comparing the product file of the SWT client applications with the RAP application, we observe that
the RAP development product does not include any SWT plugins, but a set of RAP and Jetty plugins.
In addition, the RAP product also contains the Scout mobile client plugins
org.eclipse.scout.rt.client.mobile and org.eclipse.scout.helloworld.client.mobile. These two plugins are
responsible for transforming the UI model defined in the “Hello World” client plugin to the
different form factors of tablet computers and mobile phones.

If you start the “Hello World” RAP application in your Scout SDK, you are launching a second server
application in a Jetty instance on a different port than the “Hello World” server application. As in
the case of the desktop client applications, the RAP or Ajax server application knows how to
connect to the “Hello World” server application after reading the parameter server.url from its
config.ini file.

3.4. The User Interface Part
Using the UI of the “Hello World” application we explain in this section how the Scout UI form
model is represented in Java. We also describe how this representation is exploited by the Scout
SDK to automatically manage the form data objects used for data transfer between Scout client and
Scout server applications. Finally, will have a brief look at internationalization. [30:
Internationalization and localization, also called NLS support:
http://en.wikipedia.org/wiki/Internationalization_and_localization.] support of Scout for texts.

37

http://en.wikipedia.org/wiki/JavaFX
http://www.eclipse.org/rap/
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://developer.eclipsesource.com/tabris/
http://en.wikipedia.org/wiki/Internationalization_and_localization

Listing 3. The DesktopForm with its inner class MainBox containing the desktop box and message field

TODO include was {codedir}/helloworld/org.eclipse.scout.helloworld.client/src/org
/eclipse/scout/helloworld/client/ui/forms/DesktopForm.java[lines=18..20;69..84;102..10
3]

As discussed in Section Form Scout forms consist of variables, the main box and a number of form
handlers. The main box represents the visible part of Scout’s form model. It may holds any number
of form fields. Using container fields such as group boxes, it is possible to define complex structures
such as hierarchical UI models containing multiple levels. In the Scout framework the forms
structure is represented in the form of inner classes that are located inside of the MainBox class.
And the New Form Field wizard of the Scout SDK fully supports this pattern. Listing MainBox
provides the concrete example using the the desktop form of the “Hello World” tutorial.

Using inner Java classes to model a form’s content is a central aspect of the UI part of the Scout
application model. It allows the Scout SDK to easily parse the form’s Java code on the fly and
directly reflect changes to the form model in the Scout Explorer and the Scout Property View.
However, this is not the only benefit for the Scout SDK. As form data objects hold all form variables
and the values of all form fields contained in the form, the Scout SDK can keep the form data
classes in sync with the forms of the application. It is important to note that this mechanism only
depends on the Java code of the form field class. In consequence, the Scout SDK can update form
field classes in the background even when form fields are manually coded into the form’s Java
class. This includes adding all the necessary getter and setter methods to access the values of all the
fields defined on a form. As a result, Scout developers don’t need to manually update form data
objects when the UI model of a form is changed. The Scout SDK takes care of this time consuming
and error prone task.

Listing 4. The HelloworldTextProviderService class. Its getter method provides the path and the base
name for the text property files

TODO include was {codedir}/helloworld/org.eclipse.scout.helloworld.shared/src/org
/eclipse/scout/helloworld/shared/services/common/text/HelloworldTextProviderService.ja
va[lines=5..10]

38

Figure 26. The NLS editor provided by the Scout SDK. This editor is opened via the Open NLS Editor …
link in the Scout Object Properties of the HelloworldTextProviderService node.

When we did add the Message field to the desktop form of the “Hello World” application we had to
enter a new translation entry for the label of the message field as shown in [img-
helloworld_stringfield]. The individual translation entries are then stored in language specific text
property files. To modify translated texts we can use the NLS editor. [31: See Section [sec-nls_editor]
for a detailed description of the NLS editor.] provided by the Scout SDK as shown in Figure 000.

To access the translated label field entry in the application, the Scout SDK generated the
implementation of getConfiguredLabel using TEXTS.get("Message") as shown in Listing MainBox. In
the default Scout project setup, calling TEXTS.get uses the DefaultTextProviderService in the
background. This text provider service then defines the access path for the text property files to use
for the translation. To resolve the provided key, the user’s locale settings are used to access the
correct text property file.

3.5. The Server Part
In this background section we take a closer look at Scout services and calling service methods
remotely. We will first discuss the setup of an ordinary Scout service. Then, the additional
components to call service methods remotely are considered. To explain the concepts in a concrete
context, we use the setup of the DesktopService of our “Hello World” example.

3.5.1. Scout Services

Scout services are OSGi services. [32: A good introduction to OSGi services is provided by Lars
Vogel’s tutorial: http://www.vogella.com/articles/OSGiServices/article.html.] which in turn are
defined by standard Java classes or interfaces. Scout is just adding a convenience layer to cover

39

http://www.vogella.com/articles/OSGiServices/article.html

typical requirements in the context of client server applications. To support Scout developers as
much as possible, the Scout SDK offers wizards that generate the necessary classes and interfaces
and also take care of service registration.

Listing 5. The server service class DesktopService.

TODO include was {codedir}/helloworld/org.eclipse.scout.helloworld.server/src/org
/eclipse/scout/helloworld/server/services/DesktopService.java[lines=8..15]

All Scout services need to extend Scout’s AbstractService class and implement their own
corresponding interface. This also applies to the “Hello World” desktop service according to Listing
DesktopService. As shown in [img-helloworld_load_servicemethod], this service can be located in
the Scout Explorer under the blue server node in the Services folder.

Before Scout services can be accessed and used, they need to be explicitly registered as a service in
the correct place. For this registration mechanism, Scout is using Eclipse extension points and
extensions. [33: A good introduction to Eclipse extensions and extension points is provided in the
Eclipse wiki: http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F.] which
are conceptually similar to electrical outlets and plugs. And in order to work, as in the case of
outlets and plugs, the plug must fit to the outlet. In our “Hello World” example, the extension (plug)
is represented by class DesktopService and the service extension point (outlet) is named
org.eclipse.scout.service.services. What makes the desktop service fit to the service extension point
is the fact that its interface IDesktopService extends Scout’s IService interface.

Figure 27. The Eclipse plugin editor for plugin.xml files. In the tab Extensions the “Hello World”
desktop service is registered under the extension point org.eclipse.scout.service.services.

Listing 6. The registration of the DesktopService in the server’s plugin.xml configuration file. The
remaining content of the file has been omitted.

TODO include was
{codedir}/helloworld/org.eclipse.scout.helloworld.server/plugin.xml[lines=1..6;22..27;
105..106]

40

http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points%3F

The registration of the desktop service under the service extension point is then defined in the
plugin.xml file of the “Hello World” server plugin. As shown in Figure 000, the plugin.xml file is
located in the root path of plugin org.eclipse.scout.helloworld.server. To modify a plugin.xml, you
can either use the Eclipse plugin editor or your favorite text editor. In Figure 000, the registration of
the desktop service is shown in the Extensions tab of the plugin editor. For the corresponding XML
representation in the plugin.xml file, see Listing server plugin.xml.

3.5.2. Scout Proxy Services

In the “Hello World” application the load method of the desktop service is called remotely from the
client. But so far, we have only seen how the desktop service is implemented and registered in the
server application. To call server service methods remotely from Scout client applications, the Scout
framework provides client proxy services and the service tunnel. As the name implies, a client
proxy service acts as a local proxy service (running in the Scout client application) of a server
service (running remotely in the Scout server application).

Listing 7. The registration of the IDesktopService proxy service in the client plugin of the “Hello
World” application. This is the complete content of the client’s plugin.xml file.

TODO include was {codedir}/helloworld/org.eclipse.scout.helloworld.client/plugin.xml[]

Client proxy services are defined by a Java interface located in the shared plugin of the Scout
application. As shown in Listing DesktopService of the desktop service, this service interface is also
implemented by the desktop service class in the server plugin. Corresponding to the registration of
the desktop service in the server plugin, client proxy services need to be registered in the client’s
plugin.xml file. The content of the “Hello World” client plugin configuration file is provided in
Listing client plugin.xml. To create proxy services in Scout clients, the ClientProxyServiceFactory is
used. This is also reflected in the extension defined in Listing client plugin.xml. Internally, this
service factory then uses the service tunnel to create the local proxy services.

To call a remote service method from the Scout client application, we first need to obtain a
reference to the proxy service. Using the SERVICES.getService method with the interface
IDesktopService, we can obtain such a reference as shown in Listing ViewHandler in DesktopForm
for the view handler of the desktop form. With this reference to the client’s proxy service, calling
methods remotely works as if the service would be running locally. Connecting to the server,
serializing the method call including parameters (and de serializing the return value) is handled
transparently by Scout.

3.6. Add the Rayo Look and Feel
Rayo has been designed in 2009 by BSI for its CRM. [34: Customer Relationship Management (CRM):
https://en.wikipedia.org/wiki/Customer_relationship_management] application and contact center
solution. Since then, Rayo has been copied for Scout web applications and also adapted to work on
touch/mobile devices.

The implementation of Rayo for desktop clients is based on the Java Synth look and feel. [35: Java
Synth Look and Feel: http://en.wikipedia.org/wiki/Synth_Look_and_Feel]. However, in a few cases it

41

https://en.wikipedia.org/wiki/Customer_relationship_management
http://en.wikipedia.org/wiki/Synth_Look_and_Feel

was necessary to adjust some of the synth classes. In order to do this, the adapted classes are copied
form the OpenJDK implementation. [36: OpenJDK is an open source implementation of the Java
platform: http://openjdk.java.net/.] As OpenJDK is licenced under the GNU General Public Licence
(GPL) with a linking exception it is not possible to distribute Rayo under the Eclipse Public Licence.
That is why Rayo is not initially contained in the Eclipse Scout package but needs to be downloaded
from the Eclipse Marketplace. Fortunately, there is still no restriction to use Rayo in commercial
products. The only remaining restriction applies to modifying Rayo for commercial products. In this
case you will be obliged to redistribute your modified version of Rayo under the same licence (GPL
with classpath exception).

With Eclipse Scout 3.8 (Juno), the Scout framework also allows to build web clients based on Eclipse
RAP. Great care has been taken to ensure, that the look and feel for Scout web applications matches
the look and feel of the desktop as closely as possible. As RAP is already distributed under the EPL
licence the Rayo for web apps is directly contained in the Scout package. TODO: Describe what to
change to use RAP default look and feel

A similar approach was chosen for Rayo on tablets and mobile devices that are supported with
Eclipse Scout 3.9 (Kepler). For such devices optimized components are used to take into account the
smaller screens and the absence of a mouse (no context menus!) But as far as possible, the Rayo
look and feel also applies to touch devices. TODO: Pointer to more info regarding mobile devices.

3.7. Exporting the Application
In this background section we look at the content and organisation of the two WAR files generated
by the Scout SDK Export Scout Project wizard. The first WAR file holds the Scout server including a
landing page to download the Scout desktop client. The desktop client is provided in the form of a
standalone ZIP file. In the second WAR file, the Ajax server based on Eclipse RAP is contained. This
Ajax server provides the URLs that can be accessed by web browsers running on desktop
computers or tablet and mobile devices.

42

http://openjdk.java.net/

Figure 28. The organisation of the “Hello World” server WAR file. The right side reveals the location of
the config.ini file and the application’s plugin files

The content and its organisation of the exported WAR files was not specifically designed for Scout
applications. Rather, it is defined according to server-side Equinox. [37: See Appendix OSGi and
Equinox for more information regarding server-side Equinox.], the typical setup for running
Eclipse based server applications on a web server. Using file helloworld_server.war as a concrete
example, we will first describe the general organisation of the WAR file. Then, we introduce
individual artefacts of interest that are contained in this WAR file.

The explicit organisation of the server WAR file is shown in Figure 000. From the left hand side of
the figure we can see that on the top level only folder WEB-INF exists in the WAR file. This folder
contains all files and directories that are private to the web application. Inside, the web deployment
descriptor file web.xml as well as the directories lib and eclipse are located. While the web.xml file
and directory lib are standard for servlet based based applications. [38: See Appendix Java EE
Basics for more information regarding servlets.], directory eclipse contains all necessary artefacts
for servlet based Eclipse applications. [39: See Appendix OSGi and Equinox for more information
regarding server-side Eclipse applications (server-side Equinox).]. Such as Eclipse Scout server
applications.

On the right hand side of Figure 000 the eclipse specific content of the WAR file is shown. From top
to bottom we find the configuration file config.ini introduced in Section Eclipse Configuration Files.
In folder plugins the necessary plugins that constitute the eclipse application are located where the
plugins are available in the form of JAR files. [40: JAR files contain a set of Java classes and
associated resources. http://en.wikipedia.org/wiki/JAR_%28file_format%29.]. This includes plugins
for servlet management, the eclipse platform including the servlet bridge, the scout framework
parts and of course our “Hello World” server and shared plugin. These “Hello World” jar files
exactly match with the plugin projects discussed in Section Create a new Project.

43

http://en.wikipedia.org/wiki/JAR_%28file_format%29

Figure 29. The content of the “Hello World” server plugin contained in the helloworld_server.war file.
The necessary files for the download page including the zipped client application are in the
resources/html directory.

Listing 8. The configuration of the server’s resource servlet in the plugin.xml configuration file. The
remaining content of the file has been omitted.

TODO include was
{codedir}/helloworld/org.eclipse.scout.helloworld.server/plugin.xml[lines=1..3;28..30;
51..62;104..106]

In Figure 000 some of the content of the “Hello World” server plugin is shown. The first thing to
note is that the plugin file conforms to the JAR file format including a META-INF/MANIFEST.MF file
and the directory tree containing the Java class files, as the DesktopService.class implemented in
Section [sec-helloworld.server] of the “Hello World” tutorial. In folder resources/html the necessary
files for the download page shown in Figure 000 including the zipped desktop client are contained.
To access this download page the Scout server’s resource servlet ResourceServlet is responsible. It
is registered under the servlet registry as shown in Listing servlet registration. With setting "/" of
the alias parameter the download page becomes available under the root path of the Scout server
application. For the mapping to the contents resources/html the parameter bundle-path is used.

44

Figure 30. The “Hello World” server plugin shown in the Eclipse package explorer. The files for the
download page are located under resources/html.

Revisiting the “Hello World” server plugin project in the Eclipse package explorer as shown in
Figure 000, we can see how the plugin project elements are transformed and copied into the JAR
file. Examples files are plugin.xml and MANIFEST.MF as well as static HTML content of the
download page (files index.html and scout.gif). The zipped client is missing of course. It is
assembled, zipped and added into the Scout server JAR file by the Export Scout Project wizard of the
Scout SDK. In case you need to change/brand/amend the download page for the desktop client, you
have now learned where to add and change the corresponding HTML files.

3.8. Deploying to Tomcat
In this section we will discuss two common pitfalls when working with the Scout IDE and Tomcat.
The symptoms linked to these problems are Scout server applications that are not starting or Scout
applications that fail to properly update.

In usual culprit behind Scout server applications that fail to start is a blocked port 8080. This setting
can be created when we try to run both the Jetty web server inside the Scout SDK and the local
Tomcat instance. In consequence, either Jetty or Tomcat is not able to bind to port 8080 at startup
which makes it impossible for a client to connect to the right server. To avoid such conflicts, make
sure that you always stop the Scout server application in the Scout SDK (effectively killing Jetty)
before you restart your Tomcat server. Alternatively, you can assign two different ports to your
Jetty webserver and your Tomcat webserver.

To modify Jetty’s port number in the Scout SDK you have to update the corresponding properties in
the config.ini files of the development products of your Scout server application and all client
applications. In the Scout server’s config.ini file the property is named
org.eclipse.equinox.http.jetty.http.port, in the client config.ini files the relevant property is called
server.url. To change the port number to 8081 for the “Hello World” example in the Scout SDK you
could use the following lines in the individual config.ini files.

Scout Server org.eclipse.equinox.http.jetty.http.port=8081

45

Scout Desktop Client server.url=http://localhost:8081/helloworld_serv
er/process

Scout Ajax Server server.url=http://localhost:8081/helloworld_serv
er/ajax

The second pitfall is connected to a web application that seems to refuse to update to the content of
a freshly generated WAR file. At times it seems that your changes to a deployed WAR file do not find
their way to the application actually running. In many cases this is caused by a cached instance of
the previous version of your application located in Tomcat’s working directory. To save yourself
much frustration, it often helps just to clear Tomcat’s working directory and restart Tomcat. For
this, you may follow the following procedure.

1. Stop the Tomcat web server

2. Go to folder work/Catalina/localhost

3. Verify that you are not in Tomcat’s webapps folder

4. Delete all files and directories in folder work/Catalina/localhost

5. Start the Tomcat web server

How you start and stop Tomcat depends on the platform you are running it. If you have installed
Tomcat on a Windows box according to Appendix Apache Tomcat Installation it will be running as
a service. This means that to stop the Tomcat web server you need to stop the corresponding
Windows service. For starting and stopping Tomcat on Mac/Linux/Unix systems, you can use the
command line script files startup.sh and shutdown.sh located in Tomcat’s subdirectory bin.

For those interested in more advanced aspects of Apache Tomcat we recommend the article “More
about the Cat” by Chua Hock-Chuan. [41: More about the Cat:
http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_More.html.].

46

http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_More.html

Chapter 4. Shared Components
In this chapter deals with the content of the shared plugin of any Scout application. As the name
shared already indicates, this plugin contains code and resources that need to be available to both
the Scout client and the server application.

The chapter starts with the internationalization of texts in Scout and icon resources. Then, the less
visible components are introduced. These include permissions, code types, lookup calls and form
data objects.

4.1. Texts / i18n / NLS Support
needs text

Existing Documentation

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/Texts

• forum: http://www.eclipse.org/forums/index.php/t/319136/

• forum: http://www.eclipse.org/forums/index.php/t/326343/

• forum: overwriting texts provided by scout http://www.eclipse.org/forums/index.php/t/308273/

• forum: additional text provider service http://www.eclipse.org/forums/index.php/t/317565/

• forum: changing default language for scout apps
http://www.eclipse.org/forums/index.php/t/367177/

• forum: export/import not possible: http://www.eclipse.org/forums/index.php/t/326320/

• forum: usage counts for text entries: http://www.eclipse.org/forums/index.php/t/261235/

4.2. Icons
needs text

Existing Documentation

• how-to wiki http://wiki.eclipse.org/Scout/HowTo/3.8/Add_an_icon

• how-to wiki http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images

4.3. Code Types and Codes
Code types and codes are widely used in business applications. In general, any fixed set of named
entities can be seen as a code type. Code types can be used to model the organisational structure of
companies, to represent business units or to categorise or segment entities. Frequently,
enumerations or enumerated types. [42: Enumerated type:
http://en.wikipedia.org/wiki/Enumerated_type] are used as synonyms for code types. The individual
named entities in a code type are called codes in Scout.

47

http://wiki.eclipse.org/Scout/Concepts/Texts
http://www.eclipse.org/forums/index.php/t/319136/
http://www.eclipse.org/forums/index.php/t/326343/
http://www.eclipse.org/forums/index.php/t/308273/
http://www.eclipse.org/forums/index.php/t/317565/
http://www.eclipse.org/forums/index.php/t/367177/
http://www.eclipse.org/forums/index.php/t/326320/
http://www.eclipse.org/forums/index.php/t/261235/
http://wiki.eclipse.org/Scout/HowTo/3.8/Add_an_icon
http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images
http://en.wikipedia.org/wiki/Enumerated_type

Both code types and codes have associated names (translated texts) and IDs. As in the case of
standard Java enumerations, Scout codes can also have associated values. A set of additional
features enhances Scout code types over simple Java enumerations:

• Code types can be organized hierarchically

• Code types support multitenancy for individual codes

• Code types and codes can be accessed through a code service

• Codes can by added from external sources dynamically at runtime

• Codes are cached on both client and server side

The text below first introduces the basic features of code types and codes using a simple example
with static codes. Then, hierarchical code types and the dynamic loading of codes from external
sources is explained.

4.3.1. A Simple Example

As a simple example we assume that an event managing organization works with an application to
plan events for customers. To distinguish public and private events it is natural to define a
corresponding code type. Both the code type and all its elements will have an assigned ID and
associated translated texts. See Listing Listing Code for a possible implementation of such a code
type.

Listing 9. A code type with associated codes.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.shared/src/org
/eclipsescout/demo/widgets/shared/services/code/EventTypeCodeType.java[lines=15..66;89
..90]

The code type class and its codes shown in Listing Listing Code have been created using the
creation wizards provided by the Scout SDK as described in Section [sec-wizard_code_type]. In
Scout, code type classes are derived from class AbstractCodeType<CODE_TYPE_ID, CODE_ID>. In the
provided example, both the code type ID and the code ID are typed with Long. The value of the
event code type ID is assigned by Long ID = 10000L. The contained codes for public and private
events are realized by the inner classes PublicCode and PrivateCode that are derived from Scout’s
AbstractCode<CODE_ID> class. Their individual IDs then have assigned the numbers 10010 and
10020 respectively. This pattern follows the convention to leave an ample number space between
any two code type IDs. This space can then be used for the individual codes of a code type that need
ID values as well.

In the above example the types for the ID values are defined by the generic parameter <Long>. And
other classes from the package java.lang work well too. In fact, any Java class may be used as a key
type for code types and codes as long as it satisfies the following requirements:

• Key types implement Serializable

• Key types correctly implement the equals and hashCode methods

• Key types are available in the Scout server and the client application.

48

Listing 10. A codes that is set to inactive.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.shared/src/org
/eclipsescout/demo/widgets/shared/services/code/EventTypeCodeType.java[lines=68..88]

To allow for language specific translations, the configuration method getConfiguredText is used for
both the names of code types and codes. A frequently used code property is the active flag to mark
obsolete codes. Setting individual codes to inactive is useful for codes that are still linked with
existing data but should not longer be used when entering new data into the application. As shown
in Listing Listing Code, codes can be marked inactive by returning false in method
getConfiguredActive.

A set of additional code properties is available to control the appearance of individual codes.
Clicking on an individual code in the Scout Explorer provides the list in the Scout Object Property
view.

4.3.2. Hierarchical Code Types

To explain the definition and use of hierarchical codes we use the Industry Classification
Benchmark as a concrete example. The Industry Classification Benchmark or ICB. [43: Industry
Classification Benchmark (ICB): http://www.icbenchmark.com/] allows to hierarchically classify
companies and organisations into industries, super sectors, sectors and sub sectors. Each
organizational level has a unique number assigned and a name. This setup can easily be
transferred to a hierarchical Scout code type.

Listing 11. A hierarchical code type for the Industry Classification Benchmark.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.shared/src/org
/eclipsescout/demo/widgets/shared/services/code/IndustryICBCodeType.java[lines=12..34;
2942..2942]

49

http://www.icbenchmark.com/

Figure 31. A hierarchical code type class shown in the Scout SDK.

The corresponding code for the ICB code type is provided in Listing Listing Code execLoadCodes
where its hierarchical nature is reflected by method getConfiguredIsHierarchy. The actual
hierarchical codes are then implemented as nested inner code classes that are derived from Scout
class AbstractCode. See Figure 000 for a screenshot of the partially expanded ICB code type class in
the Scout SDK.

4.3.3. Loading Codes Dynamically

Although codes types remain mostly static in their nature, they do evolve over time in any real
world application. Requiring that all codes are statically defined in the application’s code base
would result in the necessity to update the code base for every change of a code required by the
business. Clearly, such a setup is not sustainable and this is why Scout allows to dynamically update
the set of codes contained in a code type.

Listing 12. Adding codes dynamically in method execLoadCodes.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.shared/src/org
/eclipsescout/demo/widgets/shared/services/code/EventTypeCodeType.java[lines=21..51;19
5..211]

At startup of a Scout application the codes of all defined code types are loaded into memory. For
this, Scout internally calls method loadCodes for each code type class derived from class
AbstractCodeType. In this method Scout first creates objects representing the statically defined
codes and then dynamically adds additional codes in method execLoadCodes. By overriding this
method, a code type class can dynamically add codes from any external sources. An example for
the dynamic loading of codes is provided in Listing Listing Load Codes Dynamically. Please note
that this code snipped only illustrates the principle and does therefore not access any external web
services or databases.

As codes have IDs and can be defined both statically in code and dynamically from external data,

50

conflicting definitions of codes are inevitable. In the Scout framework these conflicts are resolved
in method execOverrideCode. In the default implementation provided by class AbstractCodeType,
priority is given to the dynamically defined code. Only attributes that are undefined for the
dynamic code are copied from the static code definition. This logic can be changed for any code
type by simply overriding method execOverrideCode with the desired behaviour. In the example
provided in Listing Listing Load Codes Dynamically the code with ID Color.YELLOW is defined both
statically and dynamically. As a result, the translated text for key "YellowDynamic" is shown in the
user interface as it has priority over the statically defined text key "Yellow".

To have access to all codes at runtime, Scout provides the convenience accessor CODES. This
accessor encapsulates the access to the ICodeService and provides a number of useful methods. At
startup, all codes are loaded and cached in the applications client session using method
getAllCodeTypes. And for a class MyCodeType, all its codes can be retrieved by
CODES.getCodeType(MyCodeType.class).getCodes().

4.4. Lookup Calls and Services
Lookup calls are are used to look up lists of lookup rows in the form of key-text pairs. The list of
lookup rows returned is usually defined by some search criteria. When the look up is triggered by a
key, only a single element is returned. And when a string is provided as a search criteria, the
returned list typically contains the lookup rows that contain the given search text as a substring.

For lookup calls two main use cases exist. In the first case, the lookup data is locally available, not
too large and can be kept in memory. In this situation, the lookup data can be directly created in the
call itself. As an example, you may consider a lookup call where the lookup data is based on a code
type. In the other case, the lookup data is dynamic in nature, the amount of data is large and needs
to be read from some external source, such as a database or a web service. To access large amounts
of external data, a lookup call typically invokes a so called lookup service that is providing the
necessary data. This is exactly the scenario that was used in the “My Contacts” application of the
book’s first part in Section [sec-adding_the_smartfield]. In the contact form of that application, a
company smart field is used to let the user select a specific entry from a list of companies. And in
turn, this smart field uses a company lookup call that is backed by a company lookup service. This
lookup service then accesses a database to create the list of companies required for the company
smart field.

in the text below

1. general aspects:

• getDataBy{Key|Text|Rec?|All}

• additional properties as constraints to the result set: master field

• for a specific implementation additional properties can be added with getters/setters ? → yes
as they are passed to services as bind variables

2. local lookup calls in the client plugin

3. lookup calls in the shared plugin

4. lookup services are only mentioned here for completeness. full discussion in book part 3 for
scout server? or not? probably needs to be here …

51

Listing 13. A simple local lookup call defining it’s entries in method execCreateLookupRows.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/services/lookup/FontStyleLookupCall.java[lines=17..3
0]

Listing 14. A local code lookup call. This lookup removes inactive codes in the lookup data.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/services/lookup/EventTypeLookupCall.java[lines=14..3
6]

TODO: fix Figure 000: MyLookupService extends AbstractLookupService and implements
IMyLookupService that extends ILookupService which

Figure 32. Implementing a lookup call with a corresponding lookup service. Scout framework
components are shown in orange, user code in blue.

Existing Documentation

• presentation: http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-
DiscoverThePotential.pdf

• tutorial: https://wiki.eclipse.org/Scout/Tutorial/Lookup_Calls

52

http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-DiscoverThePotential.pdf
http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-DiscoverThePotential.pdf
https://wiki.eclipse.org/Scout/Tutorial/Lookup_Calls

• tutorial minicrm:
https://wiki.eclipse.org/Scout/Tutorial/4.0/Minicrm/Lookup_Calls_and_Lookup_Services

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/LookupCall

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/Lookup_Service

• forum: http://www.eclipse.org/forums/index.php/t/279108/

• javadoc lookupcall:
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.share
d/src/org/eclipse/scout/rt/shared/services/lookup/LookupCall.java

• javadoc lookuprow:
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.share
d/src/org/eclipse/scout/rt/shared/services/lookup/LookupRow.java

• javadoc codelookupcall
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.share
d/src/org/eclipse/scout/rt/shared/services/lookup/CodeLookupCall.java

• javadoc locallookupcall
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.share
d/src/org/eclipse/scout/rt/shared/services/lookup/LocalLookupCall.java

• javadoc ilookupservice
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.share
d/src/org/eclipse/scout/rt/shared/services/lookup/ILookupService.java

• javadoc lookupservices
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.server
/src/org/eclipse/scout/rt/server/services/lookup/

• lookup service

• sqllookup service

4.5. Permissions
needs text, topic is relevant for client, server, and security. what to present where to be decided

Existing Documentation

• how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Create_Permissions

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/Permission

• forum: http://www.eclipse.org/forums/index.php/t/243966/

4.6. Form Data Objects
needs text, explain that form data objects are data transfer objects

Existing Documentation

53

https://wiki.eclipse.org/Scout/Tutorial/4.0/Minicrm/Lookup_Calls_and_Lookup_Services
http://wiki.eclipse.org/Scout/Concepts/LookupCall
http://wiki.eclipse.org/Scout/Concepts/Lookup_Service
http://www.eclipse.org/forums/index.php/t/279108/
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LookupCall.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LookupCall.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LookupRow.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LookupRow.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/CodeLookupCall.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/CodeLookupCall.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LocalLookupCall.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/LocalLookupCall.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/ILookupService.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.shared/src/org/eclipse/scout/rt/shared/services/lookup/ILookupService.java
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.server/src/org/eclipse/scout/rt/server/services/lookup/
https://eclipse.googlesource.com/scout/org.eclipse.scout.rt/+/Luna_RC3/org.eclipse.scout.rt.server/src/org/eclipse/scout/rt/server/services/lookup/
http://wiki.eclipse.org/Scout/HowTo/3.8/Create_Permissions
http://wiki.eclipse.org/Scout/Concepts/Permission
http://www.eclipse.org/forums/index.php/t/243966/

• form data/dto http://www.eclipse.org/forums/index.php/t/169334/

4.6.1. Data Binding

needs text, this is about Form Data Export and Import

4.6.2. Automatic Updates by the Scout SDK

needs text

4.6.3. Manual Form Data Updates

needs text

54

http://www.eclipse.org/forums/index.php/t/169334/

Chapter 5. Client components
needs text

5.1. Client Model
needs text

Figure 33. A class diagram for the Scout’s client model

5.2. Splash Screen
needs text

5.3. Login Box
needs text

5.4. Client Session
needs text

55

5.5. Desktop
needs text

Existing Documentation

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Desktop

5.5.1. Info Dialog

needs text

5.5.2. Toolbar

needs text

Existing Documentation

• forum: feature request http://www.eclipse.org/forums/index.php/t/366440/

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Tool

5.5.3. Status Line

needs text

5.6. Menus
needs text

Existing Documentation

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Menu

• forum: hard coded swt menues http://www.eclipse.org/forums/index.php/t/236071/. is this still
an issue with scout kepler?

5.7. Outlines
needs text

Existing Documentation

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Outline

5.8. Tools
needs text

56

http://wiki.eclipse.org/Scout/Concepts/Desktop
http://www.eclipse.org/forums/index.php/t/366440/
http://wiki.eclipse.org/Scout/Concepts/Tool
http://wiki.eclipse.org/Scout/Concepts/Menu
http://www.eclipse.org/forums/index.php/t/236071/
http://wiki.eclipse.org/Scout/Concepts/Outline

5.9. Forms
needs text

Existing Documentation

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Form

• concept wiki form handlerhttp://wiki.eclipse.org/Scout/Concepts/Form_Handler

• how-to wiki http://wiki.eclipse.org/Scout/HowTo/3.8/Open_a_Form_in_a_View

• forum: layout manager http://www.eclipse.org/forums/index.php/t/404048/

• forum: life cycle http://www.eclipse.org/forums/index.php/t/369890/

• form validation

5.10. Form Fields
needs text

Every Scout form contains one or several form fields. Form fields therefor represent the basic
building blocks of a forms content. Depending on their nature, form fields can display information,
accept user input or act as container holding inner form fields. As such container fields can hold
inner container fields it is possible to create forms that meet compolex requirements.

Existing Documentation

• concept wiki (links) http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Form_fields

• concept wiki screenshots http://wiki.eclipse.org/Scout/Concepts/Field

5.10.1. Common Aspects

needs text

Existing Documentation

• forum: label position http://www.eclipse.org/forums/index.php/t/369109/

• model component

• ui component

• extension point registration

• model

• label

• value

• exec methods

• field validation

57

http://wiki.eclipse.org/Scout/Concepts/Form
http://wiki.eclipse.org/Scout/HowTo/3.8/Open_a_Form_in_a_View
http://www.eclipse.org/forums/index.php/t/404048/
http://www.eclipse.org/forums/index.php/t/369890/
http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Form_fields
http://wiki.eclipse.org/Scout/Concepts/Field
http://www.eclipse.org/forums/index.php/t/369109/

5.11. Trees
needs text

• tree nodes

• tree form

• tree field

5.12. Pages
needs text

Existing Documentation

• how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Display_images_in_a_table_page

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/Page

• forum: pages linking to forms http://www.eclipse.org/forums/index.php/t/367595/

• forum: changing page icons http://www.eclipse.org/forums/index.php/t/262151/

• page with table

• page with nodes

5.13. Search Forms
needs text

Existing Documentation

• forum: position of search form http://www.eclipse.org/forums/index.php/t/353895/

• forum: statement builder stuff http://www.eclipse.org/forums/index.php/t/165805/

5.14. Tables
needs text

Existing Documentation

• forum: editable column http://www.eclipse.org/forums/index.php/t/220019/

• forum: default visibility of columns http://www.eclipse.org/forums/index.php/t/166052/

• forum: row deletion http://www.eclipse.org/forums/index.php/t/210744/

• context menues

• editable tables

• column types

58

http://wiki.eclipse.org/Scout/HowTo/3.8/Display_images_in_a_table_page
http://wiki.eclipse.org/Scout/Concepts/Page
http://www.eclipse.org/forums/index.php/t/367595/
http://www.eclipse.org/forums/index.php/t/262151/
http://www.eclipse.org/forums/index.php/t/353895/
http://www.eclipse.org/forums/index.php/t/165805/
http://www.eclipse.org/forums/index.php/t/220019/
http://www.eclipse.org/forums/index.php/t/166052/
http://www.eclipse.org/forums/index.php/t/210744/

5.14.1. Image Columns

needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/369626/

5.14.2. HTML inside Table Cells

needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/370714/

• forum: summary row http://www.eclipse.org/forums/index.php/t/235749/

5.14.3. Table Status Bar

nees text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/367326/

5.14.4. Injecting Columns at Runtime

needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/364715/

• forum : dynamic columns http://www.eclipse.org/forums/index.php/t/216731/

5.15. Workflows and Wizards
Needs text

Existing Documentation

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Wizard

• forum: http://www.eclipse.org/forums/index.php/t/391607/

• forum: http://www.eclipse.org/forums/index.php/t/382579/

• forum: http://www.eclipse.org/forums/index.php/t/366971/

59

http://www.eclipse.org/forums/index.php/t/369626/
http://www.eclipse.org/forums/index.php/t/370714/
http://www.eclipse.org/forums/index.php/t/235749/
http://www.eclipse.org/forums/index.php/t/367326/
http://www.eclipse.org/forums/index.php/t/364715/
http://www.eclipse.org/forums/index.php/t/216731/
http://wiki.eclipse.org/Scout/Concepts/Wizard
http://www.eclipse.org/forums/index.php/t/391607/
http://www.eclipse.org/forums/index.php/t/382579/
http://www.eclipse.org/forums/index.php/t/366971/

Chapter 6. The Widgets Demo Application
This chapter introduces the "Scout Widgets Demo App". The purpose of this demo application is to
present Scout’s most commonly used UI widgets. Therefore, the application does not contain any
business logic but only serves as a hands-on reference on how to use and configure Scout UI
widgets.

It is interesting to note that the widget demo application works out-of-the-box with any of the
currently supported UI technologies. This means that with the same code base the widget demo
application is capable to run as a native desktop application, as a web application in browsers, as
well as on touch-enabled mobile devices. Comparing individual aspects of the the desktop
application with its mobile/tablet version reveals the default strategies used to map desktop widgets
to the substantially different usage/form factor found on mobile devices. Please observe that for the
complete widget application only a handful of lines of code actually depend on a specific UI
technology. The interested reader can easily verify this by searching the application’s code for the
occurrences of class UserAgentUtility.

In the text below the organisation of the widget demo application is first described in Section The
User Interface. And in Section Client Only Architecture, the setup in the form of a Scout client only
application is explained.

6.1. The User Interface
The application is organized into separate outlines for thematic groups of widgets. Each of the
application’s outline then presents a list of widgets in a navigation tree. This is shown in Figure 000
for the Simple Widgets outline that contains examples for simple UI widgets such as label fields or
string fields.

60

Figure 34. The "Scout Widgets Demo App". The widgets demo application features examples of the
most commonly used Scout widgets. For each widget shown, example use cases are presented in a
individual form. As shown in the screenshot, the corresponding Scout source code is made available
via the View Source on GitHub context menu.

For each UI widget a corresponding example form presents a number of typical use cases and
configuration options. The example forms are designed to be independent from each other. It
should therefore be possible to read and understand the source code of each example form with
minimal effort. Via the Open in Dialog … context menu the content of the view is displayed in a
modal scout form. As shown in Figure 000, the complete source code for the selected form can be
accessd via the View Source on GitHub context menu.

61

Figure 35. The "Scout Widgets Demo App" running as an SWT desktop application.

Figure 36. The "Scout Widgets Demo App" running in the browser.

The widget demo application can also be run as a native SWT desktop application. This is shown in
Figure 000. And the exact same application also runs in a browser as a web application shown in
Figure 000.

62

63

64

Figure 37. The "Scout Widgets Demo App" running on a mobile device. On the left, all outlines of the
application are displayed on the home screen. The screens shown in the middle allows to navigate
through “Simple Widgets” outline while the selected “StringField” form is shown on the right.

In Figure 000, the content of the widget demo application is shown on a mobile device. On the home
screen of the mobile application, the available outlines are presented. When the user selects a
specific outline, the associated navigation tree is then shown as a scrollable list. Finally, when the
user selects a specific widget, the associated example form is shown.

6.2. Client Only Architecture
As the sole purpose of the widget demo application is to demonstrate the usage of the UI elements
provided by the Scout framework, no server side data access and/or business logic is required.
Therefore, the widget demo application has been designed as a client only application. As a side
effect, the architecture of this widget application may also be used as a template to build similar
client only applications with the Scout framework. It is important to note that this architecture can
only be recommended for very simple applications. For more complex software packages, for
example personal digital archives or private accounting software, it is not recommended to
implement the business logic and the access to the database in the application’s client plugin. A
much cleaner approach is to take advantage of the offline support provided by the Scout
framework. As in typical Scout client server projects, the presentation logic can be implemented in
the client plugin and business logic and access to a (local) database are located in the server plugin.
A detailed description of this setup including step-by-step instructions is available on the Scout

65

Wiki. [44: Standalone Client with DB Access:
http://wiki.eclipse.org/Scout/HowTo/Create_a_Standalone_Client_with_DB_Access]. In the text below
the client only setup of the widget demo application is explained by looking at the main differences
to the setup of the “Hello World” application introduced in Chapter “Hello World” Tutorial.

Listing 15. The setup of the client session in the Scout widget demo application.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ClientSession.java[lines=25..33]

The most obvious difference of the widget demo application to the “Hello World” client server
example is the missing server (plugin). Consequently, the widget demo application also does not
need a service tunnel to handle client server communication. As the setup of this service tunnel is
typically initiated in method execLoadSession of the client’s ClientSession class, the setup of the
service tunnel has been commented out in the widget demo application according to Listing Listing
ClientSession.

The next difference between typical Scout applications and the widget demo lies in the handling of
code types and codes. Accessing code types and codes is the responsibility of the server’s
CodeService class in Scout applications. As the widget demo does not have a server but we still want
to work with codes and code types, a LocalCodeService class has been added to the client’s plugin.

The last difference of note between the “Hello World” example and the widget demo application
lies in the implementation of the form handler classes. In the desktop form’s view handler of the
“Hello World” application the data to be displayed is retrieved via the server’s DesktopService as
shown in Listing Listing ViewHandler in DesktopForm. As the forms of the widget demo application
do not load/persist any data from/to a server, no such logic is required in the form handlers and the
corresponding classes remain empty.

66

http://wiki.eclipse.org/Scout/HowTo/Create_a_Standalone_Client_with_DB_Access

Chapter 7. Simple Widgets
This chapter presents the most commonly used Scout widgets based on the widget demo
application introduced above. For each widget the most frequently observed use cases are
presented and illustrated with the widget specific example forms. And exemplary code snippets
taken from the widget application help to close the loop to the actual implementation of these
widgets in the applications source code.

7.1. Label Fields
Label fields are used to place a read only text anywhere in a Scout form. As shown in the
configuration section of Figure 000 such texts can occupy the typical area assigned to a label field
on the left, the area typically assigned to data entry on the right or on both sides. The form shown
in Figure 000 is implemented in class LabelFieldForm of the Scout widget application.

Scout fields and example use cases.

 In the examples section of the form the standard usage of label fields is shown.
 To display text over the whole width of a column or in the area right to the label
use method [java]+setValue+ as shown in the configuration section of the form.
image::{imgsdir}/labelfield.png[]

To set the label text in the default area method getConfiguredLabel is used. If the label text is too
long for the reserved area the label gets truncated with trailing …. The complete label text is then
shown in a tooltip.

As for any form field derived from AbstractFormField, a number of getConfigured* styling
properties exist for label fields. Most of these styling properties can directly be set in the Scout
Object Properties view. A subset of these properties are shown in the list below.

• Label Position

• Label Horizontal Alignment

• Label Foreground Color

• Label Background Color

• Label Font

Listing 16. A simple LabelField.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/LabelFieldForm.java[lines=66..73]

To display text in the right hand area an empty string can be used as label text and the text for the
value area of the label field can be set with method setValue in method execInitField according to
Listing [lst-field.label.value].

67

Listing 17. A label field displaying multi-line text that covers the whole width of a column.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/LabelFieldForm.java[lines=168..195]

To display multiline text across both the label and the value area a combination of label field
properties has to be used. See Listing Listing LabelField Multiline for the configuration used in the
last label field shown in Figure 000.

7.2. String Fields
String fields are used to enter simple text strings. In addition, string fields are also useful to enter
multiline text or capture masked input. The form shown in Figure 000 is implemented in class
StringFieldForm of the Scout widget application.

String fields and example use cases.

 Text content shown in disabled fields can be read and copied to the clipboard, but
not edited.
 In multi line string fields the text can be displayed as entered or the text may be
wrapped to fit into the available column with.
image::{imgsdir}/stringfield.png[]

Some of the most typical use cases for string fields are represented in the examples section of
Figure 000. In the configuration section of the form a multiline text field is shown. As in the case of
the label text, font and color styling possibilities are available for the text shown in a string field.
Clicking on the [ Sample Format ] button and on the [ Sample Content ] button prefills some of the
fields to create the effect shown in Figure 000.

In the case of multi line string fields, the field can be configured to either display text lines as they
have been entered or wrapped to fit into the available width of the field. This property can be set
with the string field’s method getConfiguredWrapText or dynamically with method setWrapText.
Please note that changing this property dynamically at runtime currently only works with the SWT
and the Swing rendering components.

(AbstractStringField,String Field

Listing 18. A masked string field.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/StringFieldForm.java[lines=595..607]

Additional use cases for the string field are shown in the right column of the configuration section
of the string field demo form. Specific string fields are located for the default case, a string field
only accepting upper case letters, and a masked field. To code to represent the masked string field is
provided in Listing Listing masked string field. Independent of what the user is typing the masked
field keeps the entered content visually hidden. In contrast to all other forms of string fields, the
content cannot be copied to the system clipboard. It can only be accessed programmatically with

68

the getValue method of the string field.

String fields also allow for the configuration of the maximum length of the text that can be entered
into the field. In its default configuration, a maximum number of 4'000 characters can be entered
into a string field. Using method setMaxLength this limit can be updated dynamically at runtime.
Alternatively, this limit can also be set in method getConfiguredMaxLength.

7.3. Number Fields
For entering numbers, Scout provides three different fields. Depending on the valid range of
numbers that may be entered, an integer field, a long field or a big integer field best matches the
given use case. These fields are represented by the classes AbstractIntegerField, AbstractLongField
and AbstractBigIntegerField, each one of them extinding class AbstractNumberField.

Number fields and example use cases.

 Distinct number fields are available for [java]+Integer+, a [java]+Long+ or a
[java]+BigInteger+ value classes.
image::{imgsdir}/numberfield.png[]

The form NumberFieldsForm of the Scout widget application shown in Figure 000 contains
examples for all three number field types. Separate buttons are available to demonstrate the use of
the minimum and the maximum value a number field can hold. In the case of the BigInteger field,
arbitrarily large or small values may be entered. See Listing Listing Integer field for the code
corresponding to the input integer field in the configuration section of the example form.

(AbstractIntegerField,Integer Field

Listing 19. A simple Integer field.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/NumberFieldsForm.java[lines=510..517]

As already indicated by the class names of the three number fields, the fields serve to enter values
that fit into the ranges defined by the Java classes Integer, Long and BigInteger. To further restrict
the bounds of valid numbers you may use the methods getConfiguredMinValue and
getConfiguredMaxValue. The effect of setting such bounds can be tested by entering values into the
Minimum Value field and the Maximum Value field of the example form. If, for example, a minimum
value of 0 is entered in the Minimum Value field and the user tries to enter the value -1 into one of
the input fields, an error marker becomes visible on the input field. A tooltip with the text `"The
value is too small; must be between 0 …`" further explains the issue to the user. In such a case the
value entered into the user interface is not propagated to the number field’s value. This is why the
read only getValue() field is not updated in such a case.

To textually format the entered numbers the grouping number field property can be used. In the
example form the Grouping checkbox can be used to control this property. Ticking/unticking this
checkbox will affect the three number input fields in the configuration section of the example form.

69

More extensive options to specify the formatting of the numbers is provided by the method
setFormat of class AbstractNumberField. Method setFormat is accepting an argument of the Java
class DecimalFormat. To demonstrate an example for such a format click on [ Sample Format ]
button in the example form. For more information please consult the Javadoc for class
DecimalFormat.

7.4. Decimal Fields
Scout provides two different form fields for entering decimal values. Depending on the required
precision and range of values to be entered a double field or a big decimal field can be used. The
two field types are represented by Scout’s classes AbstractDoubleField and AbstractBigDecimalField
and can hold values of the Java types Double and BigDecimal respectively. Both the double and the
big decimal field extend class AbstractDecimalField which in turn extends class
AbstractNumberField.

Decimal fields and example use cases.

 Distinct number fields are available for the [java]+Double+ and [java]+BigDecimal+
value classes.
image::{imgsdir}/decimalfield.png[]

The example form shown in Figure 000 demonstrates the usage and some of the available options
to configure Scout’s decimal fields. This example form is defined in class DecimalFieldsForm of the
Scout widget application.

(AbstractDoubleField,Double Field

Listing 20. A styled decimal field holding Java Double values. Negative values are shown in red

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/DecimalFieldsForm.java[lines=313..337]

The styled double field in the example section of the form displays negative values in red and
postive values in the default black color. This behaviour is implemented in method
execChangedValue according to Listing Listing Integer field. The sample value shown initially is
provided in the execInitField method. Setting the red foreground color explicitely is needed in
method execInitField as the execChangedValue is only triggered after the initial form is displayed
on the screen.

For displaying and storing the fraction digits of decimal values three different properties exist. Two
of them, the getConfiguredMinFractionDigits and the getConfiguredMinFractionDigits affect the
optical representation of the decimal value. To configure the amount of fraction digits that is
effectively represented the property getConfiguredFractionDigits is used. The need for three
different properties might not be immediately clear. To illustrate the concept, let us look at an
example use case where a decimal field always has to display exactely 3 fraction digits. Should the
user provide more fraction digits we would like to capture this additional information up to 5
fraction digits.

70

To configure this behaviour the following settings for this decimal field may be used.

• Min Fraction Digits: 3

• Max Fraction Digits: 3

• Fraction Digits: 5

If the user enters the text “3.141592653589793” into this field and tabs to the next field, the field will
then display the text “4.142” but actually hold the value 3.14159. And if the user just enters a “3”,
the field will display “3.000” and hold the value 3.0.

Decimal fields can also be configured to enter percentages in a convenient way. For this use case
the Multiplier property can be set to 100 and the Multiplier property to true. If the user now enters
“5” into such a decimal field, it will show the text “5%” and hold the value 0.05.

As in the case of number fields more extensive options to specify the formatting of the numbers is
provided by setFormat method of the decimal field. Method setFormat is accepting an argument of
the Java class DecimalFormat. To demonstrate an example for such a format click on [ Sample
Format ] button in the example form. For more information please consult the Javadoc for class
DecimalFormat.

7.5. Date and Time Fields
To work with date and time values Scout offers three dinstinct form fields. The AbstractDateField
allows the user to enter a date and the AbstractTimeField is used to enter a time. The third field
AbstractDateTimeField combines date and time entry into a single form field. Both classes
AbstractTimeField and AbstractDateTimeField are extending the AbstractDateField field.

Figure 38. Example use cases for a date, a time and a combined date/time field.

The form DateTimeFieldsForm of the Scout widget application shown in Figure 000 contains
examples for the date and time fields of Scout. Separate buttons are available to provide samle
values and to demonstrate the formatting options for displaying date and time values. Displaying
dates and times is highly depending on the used locale. That is why the currently used locale is

71

shown in the example section of the form.

To enter date and time values the user can either click on the date and time icons/buttons provided
by the fields or directly enter text into the fields. For entering dates the key arrows provide a
number of shortcuts. Entering the currnt date can be done by pressing the Up. Once a day is entered
in a date or a combined day time field, the Up and the Down can be used to step to the next/previous
day. Simultaneously pressing the Shift or the Ctrl allows to step to the next/previous month or
year.

Listing 21. A disabled combined date time field initialized with the current time

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/DateTimeFieldsForm.java[lines=448..465]

The code of the DateTimeDisabledField field shown in Listing Listing date time field represents the
disabled combined date time in the example form. Before the form is opened Scout executes its
execInitField method and sets the fields value to the current date and time.

In the configuration section the local can be used at runtime to test the effect of the locale to
displaying date and time fields. As changing the locale at runtime only works reliably in rich clients
the field is only editable in the Swing or the SWT client. To specify the exact formatting of the
displayed date and time values a specific format can be set in the getConfiguredFormat method of
the date and time fields. Internally, Scout is using the provided string to create a Java
SimpleDateFormat for formatting. Valid examples for the formatting are entered into the format
fields of the example dialog by pressing the [ Sample Formats ] button. The string “EEEE” shown in
date field format field represents the day of the week as shown in configuration section of Figure
000. As expected, the textual representation of the day of the week is depending on the used locale.

7.6. Checkbox Fields
Check boxes can be used to enter/represent simple boolean values. In Scout, check boxes are
derived from class AbstractCheckBox.

72

Figure 39. Check box field and example use cases.

In the Scout widget application the use of check boxes is demonstrated in the form
CheckboxFieldForm that is shown in Figure 000. To access the current value, Scout provides the
method isChecked for check box fields. This naming reflects the boolean state of a check boxes and
differs from the other Scout value fields that provide a getValue method.

Listing 22. A disabled check box field initialized with a checked state

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/CheckboxFieldForm.java[lines=144..163]

A coding example is provided in Listing Listing check box field for the disabled check box. The
initial value is set in method execInitField using the method setChecked.

7.7. Radio Button Fields
With radio buttons the user can select a single element out of a number of distinct choices. For this,
a number of radio buttons may be placed into a radio button group field where a radio button
group extends class AbstractRadioButtonGroup. The contained individual buttons are extending
class AbstractRadioButton.

Radio buttons in a radio button group field and example use cases.

 Assigning distinct values to the individual radio buttons allows to query the
selected radio button.
image::{imgsdir}/radiobuttonfield.png[]

Figure 000 demonstrates the use of radio button groups in Scout. It is implemented in class
RadioButtonGroupFieldForm of the Scout widget application. As shown in the example section of
the form, radio buttons may have labes and/or icons assigned.

73

Listing 23. A radio button group defined by a code type

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/RadioButtonGroupFieldForm.java[lines=186..2
02]

The simplest way to define the content of a radio button group is by using its configuration
properties getConfiguredCodeType or getConfiguredLookupCall. Listing Listing radio button group
provides the implementation of “Default” radio button group DefaultGroup. This radio button
group is typed by the generic parameter Long and the individual radio buttons are obtained from
the code type EventTypeCodeType specified in method getConfiguredCodeType. Please note that the
Long type matches the key type of the codes in the EventTypeCodeType. The generic parameter
used in the definition of a radio button group also determines the type that will be returned by the
group’s getValue method.

Listing 24. A complete radio button group with two radio buttons with individual radio values
assigned

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/RadioButtonGroupFieldForm.java[lines=257..2
96]

Alternatively, the individual buttons in a radio button group can also be defined as inner classes.
This approach has been used for the “Styled” radio button group in the example section of the
RadioButtonGroupFieldForm. The corresponding code is provided in Listing Listing complete radio
button group. The type of the value that is returned by the getValue method is defined on the radio
button group. In the provided listing, the StyledGroupBox is configured to return a value of the type
Long. Consequently, the individual radio buttons are returning radio values of the type Long as well
in the getConfiguredRadioValue methods. The field PlaceholderField in the radio button group only
serves layouting purposes. Without this place holder field, the two radio buttons of the styled radio
button group would be evenly distributed in the available space.

7.8. Buttons and Links
Buttons and links are used to trigger actions in Scout. Buttons come in two variations, normal push
buttons and toggle buttons. While buttons have an associated label and/or icon, links can only have
a label. Buttons extend class AbstractButton and links extend AbstractLinkButton.

Buttons and links may be placed on a Scout form to initiate actions.

 Buttons may have an associated icon and/or a label.
 Links only have a label.
image::{imgsdir}/buttonlink.png[]

Example uses of buttons and links are shown in the form ButtonLinkFieldsForm of the Scout widget
application shown in Figure 000.

74

Listing 25. A button with a label and an icon that horizontally stretches over the whole column

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/ButtonLinkFieldsForm.java[lines=207..229]

In it’s simplest form a button just extends class AbstractButton and overrides getConfiguredLabel to
set the label. The example in Listing Listing button with a label also has an icon assigned and
stretches over the whole column width. In addition, the example button overrides method
getConfiguredProcessButton to return false. This has the effect that buttons (and links) appear at
the exact location where they are defined in a field container. Otherwise, buttons (and links) are
placed at the bottom of the container they are defined in.

Listing 26. A toggle button implementation that changes the label text depending on its toggled state

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/ButtonLinkFieldsForm.java[lines=244..271]

The code of the default toggle button in the example form of the widget application is provided in
Listing Listing Toggle Button field. To query the state of a toggle button method isSelected can be
used.

In the configuration section of the example form the use of mnemonics using the character & is
demonstrated. Please note, that this feature is not identically available across the different
supported UI technologies. In the Swing UI shown in Figure 000 the label “&Toggle” has the effect,
that pressing the ALT+T key combination changes the toggle state of this button. In the case of the
SWT UI the alt key is not necessary. Pressing the T changes the toggle state. In contrast to the Swing
UI the letter ‘T’ is not underlined. To optically indicate shortcut letters in the SWT UI it is
recommended to adapt the label from “&Toggle” to “[&T]oggle”. The RAP UI does not currently
support mnemonics on buttons.

7.9. Message Boxes
Message boxes are used to provide information to a user or ask the user simple yes/no questions. In
Scout, class MessageBox provides a number of static convenience methods for this purpose.
Additionally, message boxes are shown to the user in the case of a processing exception or a veto
exception. [45: The processing exceptions type ProcessingException represents Scout’s core
exception class. The veto exception type VetoException is a direct subclass of the processing
exception and is typically used in service calls for subjects with insuffiecient authorization.].

Message boxes are available for different use cases.

 The message box shown in front is defined by the properties entered in the
configuration section.
image::{imgsdir}/messagebox.png[]

In the examples section of the MessageBoxForm form shown in Figure 000 a number of links is

75

provided. Clicking on any of these links opens a corresponding message box via the static
convenience methods available with class MessageBox. For example, calling
MessageBox.showOkMessage(title, header, info) opens a message box with a title, a header text and
some additional information.

Listing 27. Configuring and starting of a message box.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/MessageBoxForm.java[lines=434..453]

In addition to the static convenience methods, message boxes can be configured to meet specific
requirements by a number of parameters. These parameters are shown in Figure 000 in the
configuration section of the sample form MessageBoxForm of the Scout widget application. Clicking
on the [ Sample Content ] button will fill in example values for the message box parameters. The
configured message box can them be started by clicking on the Open the configured MessageBox
link. This behaviour is implemented in the link’s execClickAction method according to Listing
Listing MessageBox. The text below details the purpose of less evident message box properties.

Message box buttons only appear if an non-emtpy label text is assigned to the Yes Button Text
property, the No Button Text property and Cancel Button Text property. If the hidden text property
has a non-empty text assigned, an additional [ Copy ] button will be added to the message box. An
example use case is the case of elaborate error messages (or complete stack traces in cases where
this does not negatively impact the application’s security). Here the copy button allows to transport
this text into the system clipboard. From the clipboard the user may decides to paste this text into
an email to the companys help desk. The default return value property specifies the return value of
the message box if the box closes autmatically after the time provided in the auto close millisecond
property has passed. If the auto close millisecond property is set to -1, the message box will not
clause automatically.

Once a message box is started with method startMessageBox the user interface is blocked until the
user chooses any of the options or clicks the dialog away. The selected option is the provided by the
method’s return value. If the user closes the message box by hitting the esc or clicking on the icon
to close a dialog, the start method of the message box will always return the value CANCEL_OPTION
of the IMessageBox interface.

76

Chapter 8. Advanced Widgets
This chapter presents some of the more complex widgets of the Scout framework. This set of
widgets includes fields to handle and display list, tree and table data. Also included in this chapter
are widgets to display images in both raster and vector formats. As in the previous chapter, for each
described widget, screenshots of example use cases and corresponding code snippets are provided.

8.1. List Box
List boxes allow a user to select a subset of a predefined list of elements. The individual elements
are displayed in the form of checkable options. To check or uncheck a specific element, the user
may click on a element or press the Space when an element has the focus. To define the list of
elements that are presented in a list box, code types or a lookup calls can be used. Example use
cases using both code types and lookup calls for the definition of the presented elements are
implemented in class ListBoxForm of the Scout widget application. See Figure 000 for a screenshot
of the example form.

Figure 40. List boxes to select elements represented by code types and lookup calls.

77

Listing 28. A simple ListBox field backed by a code type that returns elements of type Color.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/ListBoxForm.java[lines=172..189]

In the example section of Figure 000 the list boxes in the left column retrieve the elements to be
displayed from code types. And in the right column, the displayed elements are retrieved from
lookup calls. The implementation of the top left Default field is provided in Listing Listing button
field. List boxes are derived from class AbstractListBox and parameterized by the type of keys of
the elements. Please note that the specified key type of a list box must match the key type of the
elements provided by code types or lookup calls. In our example, the list box type Color matches the
key type of the code type ColorsCodeType configured in method getConfiguredCodeType.

In the List Content field located on the right hand side of the configuration section of Figure 000 it is
also possible to enter user defined content. After entering some example data and pressing the Tab,
the user content is parsed and used to update the elements displayed in the ListBox field. To get the
initial example data shown in Figure 000, use the [ Sample Content ] button of the list box example
form. Basically, the content of each text row is parsed into a lookup row according to the format
provided in the first row of the sample content: # key;text;iconId;…. The resulting lookup rows
are then used to dynamically update the content of the lookup call associated with the ListBox field.
List boxes can be configured to only display the checked elements. For this, the configuration
method getConfiguredFilterCheckedNodes may be used.

Listing 29. Updating the getCheckedKeys field whenever the use changes the selection of elements

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/ListBoxForm.java[lines=356..379]

To access the currently selected elements of a list box method getCheckedKeys may be used. This is
demonstrated in Listing Listing ListBox.getCheckedKey using the getCheckedKeys field in the
example form. In order to get notified for every change of the list box field, the list box field is
registered as the master in method getConfiguredMasterField. The implementation of method
execChangedMasterValue is then called whenever the state of the master field is changed. In the
case of Listing Listing ListBox.getCheckedKey, the list of selected keys can be retrieved from the list
box and shown in the getCheckedKeys field.

To read or write the content of a list box field from or to a form data on the server side, methods
getValue and[java]setValue have to be used. Both methods work with typed sets, requiring the type
defined for the list box field.

8.2. Tree Box
Tree box fields allow a user to select a subset of a predefined list of elements. The difference to list
boxes lies in the organisation of the presented elements. Instead of presenting the elements as a list,
a tree structure is used with tree box fields.

To check and uncheck a specific element, the user may click on a element or press the Space when

78

an element has the focus. In addition, tree boxes can also be configured to check or uncheck the
complete sub tree when clicking on an element. To define the trees presented in tree boxes,
hierarchical code types and lookup calls can be used. Example use cases for tree box fields are
implemented in class TreeBoxForm of the Scout widget application. A screenshot of the tree box
example form is shown in Figure 000.

Figure 41. Tree box fields displaying elements defined by hierarchical code types and lookup calls.

Listing 30. A simple TreeBox field backed by a lookup call that returns element keys of type String.

TODO include was {codedir}/widgets/org.eclipsescout.demo.widgets.client/src/org
/eclipsescout/demo/widgets/client/ui/forms/TreeBoxForm.java[lines=252..269]

In the example section of Figure 000 the tree boxes in the left column retrieve the elements to be
displayed from hierarchical code types. And in the right column, the displayed elements are
retrieved from hierarchical lookup calls. The implementation of the top right Default field is
provided in Listing xxx. Tree boxes are derived from class AbstractTreeBox and parameterized by
the type of keys of the tree elements. As in the case of list box fields, the the specified type of a tree
box must match the key type of the code type or the lookup call. In our example, the tree box type
String matches the type of the lookup call YearsMonthsLookupCall configured in method
getConfiguredLookupCall.

79

In the configuration section of the form shown in Figure 000 the user may enter any tree data into
the Tree Content field. To get the initial tree data shown in Figure 000, use the [ Sample Content ]
button. Tree boxes can be configured in several ways. Using method getConfiguredAutoExpandAll,
the element tree will be initially expanded. Configuration method
getConfiguredFilterCheckedNodes hides all elements that are not checked. And with method
getConfiguredAutoCheckChildNodes, checking or unchecking a tree element automatically updates
the elements in the subtree accordingly.

To access the currently selected elements, the tree box method getCheckedKeys returns a typed set
of keys. The type of the key set is determined by the type of the tree box. To read or write the
content of a tree box field on the server side, methods getValue and[java]setValue have to be used.
Both methods work with typed sets, requiring the type defined for the tree box field.

8.3. Smart Field
Smart fields are used to select a single value from a set of named elements. As smart fields offer
“search-as-you-type” functionality, the field works well for very large sets of elements. The content
of smart fields can either be provided by code types or lookup calls. Consequently, smart fields
work with both lists and hierarchical structures and the content may come from a static set of
values or is dynamically provided at runtime.

To select an elements in a smart field the user can either use the mouse or the keyboard. Pressing
the Up Arrow or the Down Arrow in the field shows the list of entries when the smart field has the
focus. Alternatively, the use can click with the mouse on the smart field icon. By typing a part of the
name of the desired entry into the field, the “search-as-you-type” support kicks in and a filtered list
of elements is displayed. The selected entry can be confirmed by using the Enter or the Tab.

80

Figure 42. Smart field examples. Smart fields support “search-as-you-type” and are used to select a
value from of a list of elements or a tree.

Example use cases for smart fields are provided in class SmartFieldForm of the Scout widget
application and a screenshot of this example form is shown in Figure 000. The left hand side of the
demo form contains smart fields based on list content and on the right hand side smart fields
backed with hierarchical content are shown. In the example section of the demo form, some smart
fields are backed by code types and others by lookup calls. And in the configuration section the
content shown in the smart fields can be entered manually at runtime. To obtain the content shown
in Figure 000, use the [ Sample Content ] button.

Existing Documentation

• presentation: http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-
DiscoverThePotential.pdf

• forum: http://www.eclipse.org/forums/index.php/t/369542/

8.3.1. Menus

Each smart field can have menus attached. The menus will be shown when the user clicks on the
arrow symbol next to the smart field. Figure [fig-smartfield_menu] shows an example of a smart
field along with a set of menus.

81

http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-DiscoverThePotential.pdf
http://wiki.eclipse.org/images/c/c9/20111102_EclipseConEurope2011-EclipseScout-DiscoverThePotential.pdf
http://www.eclipse.org/forums/index.php/t/369542/

Figure 43. Menus attached to a smart field.

By default, the menus will only be shown if a value of the smart field has been selected. To show the
menus even if the smart field is empty, one has to override the menu’s
getConfiguredEmptySpaceAction method:

8.4. Tree Field
needs text

Figure 44. Tree fields and example use cases. More text.

8.5. Table Field
needs text

82

Figure 45. Table fields and example use cases. More text.

Figure 46. An editable table field. More text.

Existing Documentation

83

• wiki tutorial http://wiki.eclipse.org/Scout/Tutorial/3.8/Minicrm/Table_Field

• forum: http://www.eclipse.org/forums/index.php/t/392053/

• forum: load/save data http://www.eclipse.org/forums/index.php/t/253311/

8.6. Image Field
needs text

Figure 47. Image fields are used to display images and icons.

Existing Documentation

• forum: scrollbars http://www.eclipse.org/forums/index.php/t/291205/

8.7. SVG Field
needs text

84

http://wiki.eclipse.org/Scout/Tutorial/3.8/Minicrm/Table_Field
http://www.eclipse.org/forums/index.php/t/392053/
http://www.eclipse.org/forums/index.php/t/253311/
http://www.eclipse.org/forums/index.php/t/291205/

Figure 48. SVG fields and example use cases. More text.

Existing Documentation
* wiki tutorial http://wiki.eclipse.org/Scout/Tutorial/3.8/SVG_Field

8.8. HTML Field
needs text

8.9. Browser Field
needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/414483/,

• forum: http://www.eclipse.org/forums/index.php/t/369963/,

• forum: mozilla as default: http://www.eclipse.org/forums/index.php/t/342433/

8.10. Calendar Field
needs text

Existing Documentation

85

http://www.eclipse.org/forums/index.php/t/414483/
http://www.eclipse.org/forums/index.php/t/369963/
http://www.eclipse.org/forums/index.php/t/342433/

• forum: calendar field http://www.eclipse.org/forums/index.php/t/370052/

• forum: execloaditems http://www.eclipse.org/forums/index.php/t/277447/

• forum: filtering items http://www.eclipse.org/forums/index.php/t/285644/

• forum: usage example http://www.eclipse.org/forums/index.php/t/265028/

86

http://www.eclipse.org/forums/index.php/t/370052/
http://www.eclipse.org/forums/index.php/t/277447/
http://www.eclipse.org/forums/index.php/t/285644/
http://www.eclipse.org/forums/index.php/t/265028/

Chapter 9. Layout Widgets

9.1. Group Box
needs text

Figure 49. Group boxes and example use cases. More text.

9.2. Tab Box
needs text

87

Figure 50. Tab boxes and example use cases. More text.

9.3. Sequence Box
needs text

Figure 51. Sequence boxes and example use cases. More text.

88

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/414629/

• exec methods

• field validation

9.4. Split Box
needs text

Figure 52. Split boxes and example use cases. More text.

9.5. Page Field
needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/395360/

9.6. File Chooser Field
needs text

Existing Documentation

• forum: file chooser field http://www.eclipse.org/forums/index.php/t/377581/

• forum: open with default file name: http://www.eclipse.org/forums/index.php/t/351352/

89

http://www.eclipse.org/forums/index.php/t/414629/
http://www.eclipse.org/forums/index.php/t/395360/
http://www.eclipse.org/forums/index.php/t/377581/
http://www.eclipse.org/forums/index.php/t/351352/

• how-to wiki: rap file chooser
http://wiki.eclipse.org/Scout/HowTo/3.8/Add_FileChooser_support_for_RAP_UI

9.7. Master Slave Fields
needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/366931/

90

http://wiki.eclipse.org/Scout/HowTo/3.8/Add_FileChooser_support_for_RAP_UI
http://www.eclipse.org/forums/index.php/t/366931/

Chapter 10. Custom Fields
As we have seen in the previous chapter, Scout already comes with a large amount of ready to use
form fields. However, real life projects often need to meet special business requirements that can
not be covered by the existing Scout form fields. For such situations the flexibility of the Scout
framework allows the project to extend the exiting set of form fields with custom form fields.

Custom form fields concists of a couple of components. Modeling and UI and registration and
extension point?

Existing Documentation

• how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Add_a_custom_GUI_component

• forum: wrap existing javaview.de swing component
http://www.eclipse.org/forums/index.php/t/262755/

• concept

• showcase: drawing application

91

http://wiki.eclipse.org/Scout/HowTo/3.8/Add_a_custom_GUI_component
http://www.eclipse.org/forums/index.php/t/262755/

Chapter 11. Template Fields
needs text

Existing Documentation

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/Template

• forum: form data for template fields http://www.eclipse.org/forums/index.php/t/261235/

• forum: form “modularisation” http://www.eclipse.org/forums/index.php/t/245857/

92

http://wiki.eclipse.org/Scout/Concepts/Template
http://www.eclipse.org/forums/index.php/t/261235/
http://www.eclipse.org/forums/index.php/t/245857/

Chapter 12. Layouting
needs text

Existing Documentation

• concept wiki http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Layouting

12.1. The Desktop
needs text

12.2. Form Layout
needs text

93

http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Layouting

Chapter 13. Bookmarks
needs text

94

Chapter 14. Client Notification
needs text

Existing Documentation

• presentation: http://wiki.eclipse.org/images/e/ea/20121022_BahBah_Slides.pdf

• concept wiki: http://wiki.eclipse.org/Scout/Concepts/Client_Notification

• forum: http://www.eclipse.org/forums/index.php/t/241053/

95

http://wiki.eclipse.org/images/e/ea/20121022_BahBah_Slides.pdf
http://wiki.eclipse.org/Scout/Concepts/Client_Notification
http://www.eclipse.org/forums/index.php/t/241053/

Chapter 15. File Upload and Download
needs text

Existing Documentation

• how-to wiki:
http://wiki.eclipse.org/Scout/HowTo/3.8/Transfer_a_file_from_the_client_to_the_server

• how-to wiki: http://wiki.eclipse.org/Scout/HowTo/3.8/Use_RemoteFileService

• forum with error message box exampl http://www.eclipse.org/forums/index.php/t/441101/

• forum: http://www.eclipse.org/forums/index.php/t/368166/

• forum: http://www.eclipse.org/forums/index.php/t/366585/

• forum: remotefileservice http://www.eclipse.org/forums/index.php/t/266862/

• forum: file download http://www.eclipse.org/forums/index.php/t/263896/

• forum: load & display file http://www.eclipse.org/forums/index.php/t/440934/

96

http://wiki.eclipse.org/Scout/HowTo/3.8/Transfer_a_file_from_the_client_to_the_server
http://wiki.eclipse.org/Scout/HowTo/3.8/Use_RemoteFileService
http://www.eclipse.org/forums/index.php/t/441101/
http://www.eclipse.org/forums/index.php/t/368166/
http://www.eclipse.org/forums/index.php/t/366585/
http://www.eclipse.org/forums/index.php/t/266862/
http://www.eclipse.org/forums/index.php/t/263896/
http://www.eclipse.org/forums/index.php/t/440934/

Chapter 16. Application Branding
needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/373921/

• forum: Splash http://www.eclipse.org/forums/index.php/t/263003/,

• forum: Splash http://www.eclipse.org/forums/index.php/t/164495/

• forum: Login Box http://www.eclipse.org/forums/index.php/t/417248/

• forum: App Icon http://www.eclipse.org/forums/index.php/t/263221/

• forum: App Name http://www.eclipse.org/forums/index.php/t/262121/

• forum: Desktop http://www.eclipse.org/forums/index.php/t/373921/

• forum: Scout info form http://www.eclipse.org/forums/index.php/t/236630/

• Icons

• Fonts / Colors

• Look and Feel (Swing)

16.1. Rayo Look and Feel
needs text

Existing Documentation

• forum http://www.eclipse.org/forums/index.php/t/369809/

• wiki tutorial http://wiki.eclipse.org/Scout/Tutorial/3.8/Rayo_Look_and_Feel

16.2. Branding the Swing Client
needs text

Existing Documentation

• how-to wiki: for logo http://wiki.eclipse.org/Scout/HowTo/3.8/Branding_the_Swing_Client

• how-to wiki: app logo http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images

16.3. Branding the SWT Client
needs text

Existing Documentation

• how-to wiki: for logo http://wiki.eclipse.org/Scout/HowTo/3.8/Branding_the_Swing_Client

97

http://www.eclipse.org/forums/index.php/t/373921/
http://www.eclipse.org/forums/index.php/t/263003/
http://www.eclipse.org/forums/index.php/t/164495/
http://www.eclipse.org/forums/index.php/t/417248/
http://www.eclipse.org/forums/index.php/t/263221/
http://www.eclipse.org/forums/index.php/t/262121/
http://www.eclipse.org/forums/index.php/t/373921/
http://www.eclipse.org/forums/index.php/t/236630/
http://www.eclipse.org/forums/index.php/t/369809/
http://wiki.eclipse.org/Scout/Tutorial/3.8/Rayo_Look_and_Feel
http://wiki.eclipse.org/Scout/HowTo/3.8/Branding_the_Swing_Client
http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images
http://wiki.eclipse.org/Scout/HowTo/3.8/Branding_the_Swing_Client

• how-to wiki: app logo http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images

16.4. Branding the Webclient
needs text

Existing Documentation

• forum http://www.eclipse.org/forums/index.php/t/367983/

98

http://wiki.eclipse.org/Scout/HowTo/3.8/Exchange_Default_Images
http://www.eclipse.org/forums/index.php/t/367983/

Chapter 17. Advanced Topics
needs text

17.1. Modifying the UI at Runtime
needs text

Existing Documentation

• forum: inject fields in form http://www.eclipse.org/forums/index.php/t/367124/

17.2. Focus Handling
needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/369585/

17.3. Keyboard Control
needs text

Existing Documentation

• forum: http://www.eclipse.org/forums/index.php/t/351417/

17.4. Master Detail Pages
needs text

Existing Documentation

• http://www.eclipse.org/forums/index.php/t/405999/

17.5. Client Only Applications
needs text

Existing Documentation

• how-to wiki:
http://wiki.eclipse.org/Scout/HowTo/3.8/Create_a_Standalone_Client_with_DB_Access

• forum: client only http://www.eclipse.org/forums/index.php/t/210183/

• forum: offline capable client http://www.eclipse.org/forums/index.php/t/210183/

99

http://www.eclipse.org/forums/index.php/t/367124/
http://www.eclipse.org/forums/index.php/t/369585/
http://www.eclipse.org/forums/index.php/t/351417/
http://www.eclipse.org/forums/index.php/t/405999/
http://wiki.eclipse.org/Scout/HowTo/3.8/Create_a_Standalone_Client_with_DB_Access
http://www.eclipse.org/forums/index.php/t/210183/
http://www.eclipse.org/forums/index.php/t/210183/

17.6. Headless Client
needs text

Existing Documentation

• headless client forum http://www.eclipse.org/forums/index.php/t/262563/

17.7. Client Startup
needs text

Existing Documentation

• reading command line parameters forum http://www.eclipse.org/forums/index.php/t/281816/

• do something right after login forum http://www.eclipse.org/forums/index.php/t/261999/

17.7.1. Config.ini File

needs text

Existing Documentation

• config ini file forum http://www.eclipse.org/forums/index.php/t/365140/

• os independent *product/confg.ini forum http://www.eclipse.org/forums/index.php/t/261674/

17.8. Client Shutdown
needs text

17.9. Threading and Jobs
needs text

Existing Documentation

• threading and jobs concept wiki http://wiki.eclipse.org/Scout/Concepts/Client_Plug-
In#Threading_and_Jobs

17.10. Caching
needs text

100

http://www.eclipse.org/forums/index.php/t/262563/
http://www.eclipse.org/forums/index.php/t/281816/
http://www.eclipse.org/forums/index.php/t/261999/
http://www.eclipse.org/forums/index.php/t/365140/
http://www.eclipse.org/forums/index.php/t/261674/
http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Threading_and_Jobs
http://wiki.eclipse.org/Scout/Concepts/Client_Plug-In#Threading_and_Jobs

Appendix A: Licence and Copyright
This appendix first provides a summary of the Creative Commons (CC-BY) licence used for this
book. The licence is followed by the complete list of the contributing individuals, and the full
licence text.

A.1. Licence Summary
This work is licensed under the Creative Commons Attribution License. To view a copy of this
license, visit https://creativecommons.org/licenses/by/3.0/ or send a letter to Creative Commons, 559
Nathan Abbott Way, Stanford, California 94305, USA.

A summary of the license is given below, followed by the full legal text.

You are free:

• to Share ---to copy, distribute and transmit the work

• to Remix---to adapt the work

• to make commercial use of the work

Under the following conditions:

Attribution ---You must attribute the work in the manner specified by the author or licensor (but
not in any way that suggests that they endorse you or your use of the work).

With the understanding that:

Waiver ---Any of the above conditions can be waived if you get permission from the copyright
holder.

Public Domain ---Where the work or any of its elements is in the public domain under applicable
law, that status is in no way affected by the license.

Other Rights ---In no way are any of the following rights affected by the license:

• Your fair dealing or fair use rights, or other applicable copyright exceptions and limitations;

• The author’s moral rights;

• Rights other persons may have either in the work itself or in how the work is used, such as
publicity or privacy rights.

Notice ---For any reuse or distribution, you must make clear to others the license terms of this
work. The best way to do this is with a link to https://creativecommons.org/licenses/by/3.0/.

A.2. Contributing Individuals
Copyright (c) 2012-2014.

In the text below, all contributing individuals are listed in alphabetical order by name. For

101

https://creativecommons.org/licenses/by/3.0/
https://creativecommons.org/licenses/by/3.0/

contributions in the form of GitHub pull requests, the name should match the one provided in the
corresponding public profile.

Bresson Jeremie, Fihlon Marcus, Nick Matthias, Schroeder Alex, Zimmermann Matthias

A.3. Full Licence Text
The full licence text is available online at http://creativecommons.org/licenses/by/3.0/legalcode

102

http://creativecommons.org/licenses/by/3.0/legalcode

Appendix B: Scout Installation

B.1. Overview
This chapter walks you through the installation of Eclipse Scout. The installation description (as
well as the rest of this book) is written and tested for Eclipse Scout 6.0 which is delivered as integral
part of the Eclipse Neon release train, 2016. Detailed information regarding the scheduling of this
release train is provided in the Eclipse wiki. [46: Luna release plan:
http://wiki.eclipse.org/Neon/Simultaneous_Release_Plan].

We assume that you have not installed any software relevant for the content of this book. This is
why the Scout installation chapter starts with the installation of the Java Development Kit (JDK).
Consequently, you will have to skip some of the sections depending on your existing setup.

In the text below, installation routines are described separately for Windows, Mac, and Linux.

B.2. Download and Install a JDK
The first step to install Scout is to have an existing and working installation of a JDK version 8.

Currently, we recommend to install the Oracle JDK 8 together with Scout. Although, using OpenJDK
with Scout should work too. To successfully install the JDK you need to have at least local admin
rights. You also need to know your hardware architecture in order to download the correct JDK
installer.

For Windows, the steps necessary to determine your hardware architecture are described on
Microsoft’s support site. [47: Windows 32/64-bit installation:
http://support.microsoft.com/kb/827218]. For Linux several ways to determine if your os is running
with 32 or with 64 bits can be found on the web. [48: Linux 32/64-bit installation example page:
http://mylinuxbook.com/5-ways-to-check-if-linux-is-32-bit-or-64-bit/] For Mac this step is simple, as
only a 64 bit package is provided on JDK the download page.

Once you know your hardware architecture, go to Oracle’s official download site. [49: Official JDK 8
download: http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-
2133151.html] and accept the licence agreement by clicking on the appropriate radio button. Then,
select the Windows x64 package if you are running 64-bit Windows as shown in Figure 000. If you
are running 32-bit Windows, go for the Windows x86 package. It is also recommended to download
the Java SE 7 Documentation. The Java API documentation package is available from the official
download site. [50: Java API documentation download:
http://www.oracle.com/technetwork/java/javase/downloads/index.html], located further down
under section Additional Resources.

103

http://wiki.eclipse.org/Neon/Simultaneous_Release_Plan
http://support.microsoft.com/kb/827218
http://mylinuxbook.com/5-ways-to-check-if-linux-is-32-bit-or-64-bit/
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/jdk8-downloads-2133151.html
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Figure 53. Installer download for Oracle JDK 8.

Once you have successfully downloaded the JDK installer, follow the Windows installation guide.
[51: Install the JDK on Windows: http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-
installation-windows.html#Run]. To verify the installation you might want to go through this Java
“Hello World!” tutorial. [52: Windows Java “Hello World!”:
http://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html].

Installation instructions for Linux. [53: Install the JDK on Linux:
http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html] and Mac. [54: Install the
JDK on Mac: http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html.] are also
available from Oracle.

B.3. Download and Install Scout
Before you can install Scout make sure that you have a working Java Development Kit (JDK)
installation version 8. To download the Eclipse Scout package visit the official Eclipse download
page as shown in Figure 000.

104

http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html#Run
http://docs.oracle.com/javase/7/docs/webnotes/install/windows/jdk-installation-windows.html#Run
http://docs.oracle.com/javase/tutorial/getStarted/cupojava/win32.html
http://docs.oracle.com/javase/7/docs/webnotes/install/linux/linux-jdk.html
http://docs.oracle.com/javase/7/docs/webnotes/install/mac/mac-jdk.html

Figure 54. The Eclipse download page. The platform filter is set to Windows and the available
Packages are filtered for Scout.

If the download page shows the wrong platform, manually select the correct platform in the
dropdown list. As shown in Figure 000, the Scout package is available as a 32 bit and a 46 bit
package. Make sure to pick the package that matches your JDK installation. You can check your
installation on the command line as follows.

console-prompt>java -version
java version "1.8.0_77"
Java(TM) SE Runtime Environment (build 1.8.0_77-b28)
Java HotSpot(TM) 64-Bit Server VM (build 25.77-b28, mixed mode)

If the output explicitly mentions the 64 bit installation as shown above, you have a 64 bit
installation. Otherwise, you have a 32 bit JDK installed. Now you can select the correct Scout
package from the Eclipse download site. After the package selection, confirm the suggested
download mirror as shown in Figure 000.

105

Figure 55. Downloading the Scout package from a mirror.

As the Scout package is a simple ZIP (or tar.gz) file, you may unpack its content to a folder of your
choice. Inside the eclipse sub-folder, you will then find the Eclipse executable file, such as the
eclipse.exe file on a Windows plattform. Starting the Eclipse executable brings up the workspace
launcher as shown in Figure 000.

Figure 56. Starting the Eclipse Scout package and selecting an empty workspace.

Into the Workspace field you enter an empty target directory for your first Scout project. After
clicking the [ Ok ] button, the Eclipse IDE creates any directories that do not yet exist and opens the
specified workspace. When opening a new workspace for the first time, Eclipse then displays the
welcome screen shown in Figure 000.

106

Figure 57. Eclipse Scout welcome screen.

To close the welcome page and open the Scout perspective in the Eclipse IDE click on the
Workbench icon. As a result the empty Java perspective is displayed according to Figure 000.

107

Figure 58. Eclipse Scout started in the Scout SDK perspective.

Congratulations, you just have successfully completed the Eclipse Scout installation!

If you have only installed a single JDK you will not need to change the default eclipse.ini file of
your Eclipse installation. In case you have installed multiple JDKs coming with their individual Java
Runtime Environments (JREs), you might want to explicitly specifiy which JRE to use. Open the file
eclipse.ini in a editor of your choice and insert the following two lines at the top of the file:

-vm
C:\java\jdk1.8.0_77_x64\jre\bin\server\jvm.dll

where the second line specifies the exact path to the JRE to be used to start your Eclipse Scout
installation.

If you have explicitly specified the JRE to be used you verify this in the running Eclipse installation.
Fist, select the Help | About Eclipse menu to open the about dialog. Then, click on the
[ Installation Details ] button and switch to the Configuration tab. In the long list of system
properties you will find lines similar to the ones shown below.

108

*** Date: Donnerstag, 19. Juni 2014 10:37:17 Normalzeit

*** Platform Details:

*** System properties:
...
-vm
C:\java\jdk1.8.0_77_x64\jre\bin\server\jvm.dll
...
sun.java.command=... vm C:\java\jdk1.8.0_77_x64\jre\bin\server\jvm.dll -vmargs ...

You have now successfully completed the Eclipse Scout installation on your Windows environment.
With this running Scout installation you may skip the following section on how to add Scout to an
existing Eclipse installation.

B.4. Add Scout to your Eclipse Installation
This section describes the installation of Scout into an existing Eclipse installation. As the audience
of this section is assumed to be familiar with Eclipse, we do not describe how you got your Eclipse
installation in the first place. For the provided screenshots we start from the popular package
Eclipse IDE for Java EE Developers.

Figure 59. Eclipse menu to install additional software

To add Scout to your existing Eclipse installation, you need to start Eclipse. Then select the Help |
Install New Software… menu as shown in Figure 000 to open the install dialog.

109

Figure 60. Add the current Scout repository

In the install dialog, click on the [ Add… ] button to enter the link to the Scout repository. This opens
the popup dialog Add Repository As shown in Figure 000, you may use “Scout Luna” for the Name
field. For the Location field enter the Scout release repository as specified below.
http://download.eclipse.org/scout/releases/4.0.

110

http://download.eclipse.org/scout/releases/4.0

Figure 61. Select the Scout features to add to the Eclipse installation

After the Eclipse IDE has connected to the Scout repository, select the Scout feature Scout
Application Development as shown in Figure 000. Then, move through the installation with the
[ Next ] button. On the last installation step, accept the presented EPL terms by clicking on the
appropriate radio button. To complete the installation, click the [ Finish ] button and accept the
request for a restart of Eclipse. After the restart of the Eclipse IDE, you may add the Scout
perspective using the Window | Open Perspective | Other … menu and selecting the Scout
perspective from the presented list. Clicking on the Scout perspective button should then result in a
state very similar to Figure 000.

B.5. Verifying the Installation
After you can start your Eclipse Scout package you need to verify that Scout is working as intended.
The simplest way to verify your Scout installation is to create a “Hello World” Scout project and run
the corresponding Scout application as described in Chapter “Hello World” Tutorial.

111

Appendix C: Apache Tomcat Installation
Apache Tomcat is an open source web server that is a widely used implementation of the Java
Servlet Specification. Specifically, Tomcat works very well to run Scout applications. In case you are
interested in getting some general context around Tomcat you could start with the Wikipedia
article. [55: Apache Tomcat Wikipedia: http://en.wikipedia.org/wiki/Apache_Tomcat.]. Then get
introduced to its core component “Tomcat Catalina”. [56: Mulesoft’s introduction to Tomcat
Catalina: http://www.mulesoft.com/tomcat-catalina.] before you switch to the official Tomcat
homepage. [57: Apache Tomcat Homepage: http://tomcat.apache.org/].

This section is not really a step by step download and installation guide. Rather, it points you to the
proper places for downloading and installing Tomcat. We recommend to work with Tomcat version
8.0. Start your download from the official download site. [58: Tomcat 8 Downloads:
http://tomcat.apache.org/download-80.cgi].

Figure 62. A successful Tomcat 7 installation.

Once you have downloaded and installed Tomcat 8 (see the sections below for plattform specific
guidelines) you can start the corresponding service or deamon. To verify that Tomcat is actually
running open a web browser of your choice and type http://localhost:8080 into the address bar. You
should then see a confirmation of the successful installation according to Figure 000.

C.1. Platform Specific Instructions
According to the Tomcat setup installation for Windows. [59: Tomcat Windows setup:
http://tomcat.apache.org/tomcat-8.0-doc/setup.html#Windows] download the package “32-bit/64-bit
Windows Service Installer” from the Tomcat 8 download site. Then, start the installer and accept
the proposed default settings.

For installing Tomcat on OS X systems download the “tar.gz” package from the Tomcat 8 download
site. Then, follow the installation guide. [60: Installing Tomcat on OS X:
http://wolfpaulus.com/journal/mac/tomcat8] provided by Wolf Paulus.

For Linux systems download the “tar.gz” package from the Tomcat 8 download site. Then, follow
the description of the Unix setup. [61: Tomcat Linux setup: http://tomcat.apache.org/tomcat-8.0-
doc/setup.html#Unix_daemon] to run Tomcat as a deamon. If you use Ubuntu, you may want to

112

http://en.wikipedia.org/wiki/Apache_Tomcat
http://www.mulesoft.com/tomcat-catalina
http://tomcat.apache.org/
http://tomcat.apache.org/download-80.cgi
http://localhost:8080
http://tomcat.apache.org/tomcat-8.0-doc/setup.html#Windows
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/download-80.cgi
http://wolfpaulus.com/journal/mac/tomcat8
http://tomcat.apache.org/download-80.cgi
http://tomcat.apache.org/tomcat-8.0-doc/setup.html#Unix_daemon
http://tomcat.apache.org/tomcat-8.0-doc/setup.html#Unix_daemon

follow the tutorial. [62: Apache Tomcat Tutorial:
http://www.vogella.com/articles/ApacheTomcat/article.html] for downloading and installing Tomcat
provided by Lars Vogel.

C.2. Directories and Files
Tomcat’s installation directory follows the same organisation on all platforms. Here, we will only
introduce the most important aspects of the Tomcat installation for the purpose of this book.

Figure 63. The organisation of a Tomcat installation including specific files of interest. As an example,
the “Hello World” server application is contained in subdirectory webapps.

Note that some folders and many files of a Tomcat installation are not represented in Figure 000.
We just want to provide a basic understanding of the most important parts to operate the web
server in the context of this book. In the bin folder, the executable programs are contained,
including scripts to start and stop the Tomcat instance.

The conf folder contains a set of XML and property configuration file. The file server.xml
represents Tomcat’s main configuration file. It is used to configure general web server aspects such
as the port number of its connectors for the client server communication. For the default setup,
port number 8080 is used for the communication between clients applications and the web server.
The file tomcat-users.xml contains a database of users, passwords and associated roles.

Folder logs contains various logfiles of Tomcat itself as well as host and web application log files.
XXX need to provide more on what is where (especially application logs and exact setup to generate
log entries from scout apps).

The folder needed for deploying web applications into a Tomcat instance is called webapps. It can
be used as the target for copying WAR files into the web server. The installation of the WAR file
then extracts its content into the corresponding directory structure as shown in Figure 000 in the

113

http://www.vogella.com/articles/ApacheTomcat/article.html

case of the file helloworld_server.war.

Finally, folder work contains Tomcat’s runtime “cache” for the deployed web applications. It is
organized according to the hierarchy of the engine (Catalina), the host (localhost), and the web
application (helloworld_server).

C.3. The Tomcat Manager Application
Tomcat comes with the pre installed “Manager App”. This application is useful to manage web
applications and perform tasks such as deploying a web application from a WAR file, or starting
and stopping installed web applications. A comprehensive documentation for the “Manager App”
can be found under the Tomcat homepage. [63: The Tomcat Manager Application:
http://tomcat.apache.org/tomcat-8.0-doc/manager-howto.html.]. Here we only show how to start this
application from the hompage of a running Tomcat installation.

To access this application you can switch to the “Manager App” with a click on the corresponding
button on the right hand side. The button can be found on the right hand side of Figure 000. Before
you are allowed to start this application, you need to provide username and password credentials
of a user associated with Tomcats’s manager-gui role.

 <tomcat-users>
 <!--
 NOTE: By default, no user is included in the "manager-gui" role required
 to operate the "/manager/html" web application. If you wish to use it
 you must define such a user - the username and password are arbitrary.
 -->
 <user name="admin" password="s3cret" roles="manager-gui"/>
 </tomcat-users>

To get at user names and passwords you can open file tomcat-users.xml located in Tomcat’s conf
directory. In this file the active users with their passwords and associated roles are stored. See
Listing [lst-tomcat.users] for an example. From the content of this file, we see that user admin has
password s3cret and also posesses the necessary role manager-gui to access the “Manager App”. If
file tomcat-users.xml does not contain any user with this role, you can simply add new user with
this role to the existing users. Alternatively, you also can add the necessary role to an existing user.
Just append a comma to the existing right(s) followed by the string manager-gui. Note that you will
need to restart your Tomcat application after adapting the content of file tomcat-users.xml.

With working credentials you can now start the “Manager App” as described the “Hello World”
tutorial in Section Deploying to Tomcat.

114

http://tomcat.apache.org/tomcat-8.0-doc/manager-howto.html

Appendix D: Scout Utilities
text needed.

1. <ctrl-shift-t>fileutility

2. click into package org.eclipse.scout.rt.platform.util;

3. <alt-shift-w> (or context menu) show-in package explorer

D.1. StringUtility
text needed

also mention apache StringUtils http://commons.apache.org/lang/api-
2.3/org/apache/commons/lang/StringUtils.html

D.2. DateUtility
text needed

D.3. FileUtility
text needed

Existing Documentation

• bug https://bugs.eclipse.org/bugs/show_bug.cgi?id=394784

115

http://commons.apache.org/lang/api-2.3/org/apache/commons/lang/StringUtils.html
http://commons.apache.org/lang/api-2.3/org/apache/commons/lang/StringUtils.html
https://bugs.eclipse.org/bugs/show_bug.cgi?id=394784

Appendix E: Java Basics

E.1. Java SE Basics



The goal of this section is to provide the reader with a solid overview of the non-
trivial Java concepts relevant for scout applications and central aspects of the
framework itself. The focus of this section is on the Java Standard Edition (Java
SE). Where appropriate, provide links to high quality online material, that is
likely to exist for at least the next year or two.

E.1.1. Learning Java

To progam Scout applications you need to have a solid understanding of the Java language. Scout
will only work for you if you have achieved a certain proficiency level in Java.

Luckily, free online tutorials to learn Java are offered in many places. A good starting point is the
official Java documentation site. [64: Official online Java tutorial:
http://docs.oracle.com/javase/tutorial/]. If you prefer to work with video tutorials we recommend
“Eclipse and Java for Total Beginners”. [65: Eclipse and Java for Total Beginners:
http://eclipsetutorial.sourceforge.net/totalbeginner.html], although the installation used is
somewhat out of date. As for printed books, we suggest to start with either “Head First
Java”\cite{batessierra05} or “Thinking in Java”\cite{eckel06}. Highly recommended but slightly
more advanced is “Effective Java”\cite{bloch08}.

To solve really tricky Java problems there is often no way around the Java specification. [66: The
Java Language Specification http://docs.oracle.com/javase/specs/] itself. Just make sure to pick the
right Java version for your context.

E.1.2. Advanced Java SE Concepts

• say which non-trivial things are vital to good understanding

• threading

• generics

• annotations

E.1.3. JAR Files

• purpose

• directory structure

• example

E.2. Java EE Basics

116

http://docs.oracle.com/javase/tutorial/
http://eclipsetutorial.sourceforge.net/totalbeginner.html
http://docs.oracle.com/javase/specs/



The goal of this section is to provide the reader with a solid overview of the non-
trivial Java enterprise concepts relevant for scout applications and central
aspects of the framework itself. The focus of this section is on the Java
Enterprise Edition (Java EE) Where appropriate, provide links to high quality
online material, that is likely to exist for at least the next year or two.

needs text

• maybe the same as for java foundation, maybe not

• jaas

• http comm

• servlet

• servlet filters

E.2.1. Servlets

A very comprehensive and detailed step to step description has been written by Chua Hock-Chuan.
[67: Get Start with Java Servlet Programming:
http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html.].

may be found online do servlet stuff with annotations (JEE6) not JEE5?

Listing 31. The index.html start page for the tiny servlet application.

TODO include was {codedir}/tinyservlet/index.html[]

Listing 32. The web.xml file of the tiny servlet application.

TODO include was {codedir}/tinyservlet/WEB-INF/web.xml[]

Listing 33. The complete TinyServlet source code.

TODO include was {codedir}/tinyservlet/WEB-INF/sources/TinyServlet.java[]

DONT include servlet jar inside of war file (tomcat doesn’t like it)

E.2.2. Servlet Filters

hello world example (JEE6)

E.2.3. WAR Files

war file organisation:
http://documentation.progress.com/output/Iona/orbix/6.1/tutorials/fnb/dev_intro/j2ee_overview8.ht
ml

117

http://www.ntu.edu.sg/home/ehchua/programming/howto/Tomcat_HowTo.html
http://documentation.progress.com/output/Iona/orbix/6.1/tutorials/fnb/dev_intro/j2ee_overview8.html
http://documentation.progress.com/output/Iona/orbix/6.1/tutorials/fnb/dev_intro/j2ee_overview8.html

Appendix F: Eclipse Basics

F.1. Eclipse as an IDE
Excellent Eclipse IDE tutorial by L. Vogel http://www.vogella.com/articles/Eclipse/article.html.

F.1.1. Project Workspace

F.1.2. Perspectives

A perspective contains the visual elements and the arrangement of those elements to support a
specific development task within the Eclipse IDE. Perspectives relevant to the development of Scout
applications are the Scout perspective, the Java perspective, the Debug perspective, and many
others. To open a perspective available in the Eclipse IDE, the [ Open Perspective ] button or the
Window | Open Perspective | Other… menu can be used.

Figure 64. The Eclipse IDE with the Scout perspective. The colors indicate the different elements. View
parts (blue), editor parts (green) and perspective buttons (purple).

Figure 000 provides a screenshot of the Eclipse Scout perspective indicating the corresponding
perspective button and the main view parts and editor parts involved. Using drag and drop, views
and editors can be freely moved around in the Eclipse IDE to suit the developer’s needs.
Perspectives can be further individualized using the Window | Customize Perspective… menu.
Here, the visibility of the toolbar items and menu entries can be defined. Once a suitable layout of

118

http://www.vogella.com/articles/Eclipse/article.html

all desired elements has been defined, this organisation may be saved as a personal perspective
using the Eclipse IDE Window | Save Perspective As… menu.

In case a customizing step does not turn out as intended, with the Window | Reset Perspective…
menu is always possible to go back to the last saved state of the current perspective.

F.2. OSGi and Equinox


The goal of this section is to provide the reader with a solid overview of OSGi
concepts and its Equinox implementation. Where appropriate, provide links to
high quality online material, that is likely to exist for at least the next year or two.

What is OSGi: http://www.osgi.org/Technology/WhatIsOSGi What is Equinox:
http://www.eclipse.org/equinox/

Server-side Equinox: http://www.eclipse.org/equinox/server/http_in_container.php

The web.xml, the lib/servletbridge.jar and eclipse/plugins/servlet, equinox and bla stuff

bundle example

needs text

• bundles

• services

• classloading

F.3. Eclipse


The goal of section is to provide the reader with a solid overview of standard
Eclipse concepts relevant for scout projects and central parts of the Scout
framework and Scout SDK tooling. where appropriate, provide links to high
quality online material that is likely to exist for at least the next year or two

needs text

F.4. Eclipse Plugins
release engineering artefacts vs runtime artefacts. start with runtime artefacts

• plugins

• fragments

• features

• products

• targets

119

http://www.osgi.org/Technology/WhatIsOSGi
http://www.eclipse.org/equinox/
http://www.eclipse.org/equinox/server/http_in_container.php

• servlet bridge

• client exe files

 Do you want to improve this document? Have a look at the sources on GitHub.

120

https://github.com/bsi-software/org.eclipse.scout.docs/blob/releases/5.2.x/docs/build/book_scout_frontend/src/docs/scout_frontend.adoc

	Eclipse Scout: Frontend
	Table of Contents
	Preface
	Chapter 1. Introduction
	1.1. What is Scout?
	1.2. Why Scout?
	1.3. What should I read?

	Chapter 2. “Hello World” Tutorial
	2.1. Installation and Setup
	2.2. Create a new Project
	2.3. Run the Initial Application
	2.4. Exporting the Application
	2.5. Deploying to Tomcat

	Chapter 3. “Hello World” Background
	3.1. Create a new Project
	3.2. Walking through the Initial Application
	3.3. Run the Initial Application
	3.4. The User Interface Part
	3.5. The Server Part
	3.6. Add the Rayo Look and Feel
	3.7. Exporting the Application
	3.8. Deploying to Tomcat

	Chapter 4. Shared Components
	4.1. Texts / i18n / NLS Support
	4.2. Icons
	4.3. Code Types and Codes
	4.4. Lookup Calls and Services
	4.5. Permissions
	4.6. Form Data Objects

	Chapter 5. Client components
	5.1. Client Model
	5.2. Splash Screen
	5.3. Login Box
	5.4. Client Session
	5.5. Desktop
	5.6. Menus
	5.7. Outlines
	5.8. Tools
	5.9. Forms
	5.10. Form Fields
	5.11. Trees
	5.12. Pages
	5.13. Search Forms
	5.14. Tables
	5.15. Workflows and Wizards

	Chapter 6. The Widgets Demo Application
	6.1. The User Interface
	6.2. Client Only Architecture

	Chapter 7. Simple Widgets
	7.1. Label Fields
	7.2. String Fields
	7.3. Number Fields
	7.4. Decimal Fields
	7.5. Date and Time Fields
	7.6. Checkbox Fields
	7.7. Radio Button Fields
	7.8. Buttons and Links
	7.9. Message Boxes

	Chapter 8. Advanced Widgets
	8.1. List Box
	8.2. Tree Box
	8.3. Smart Field
	8.4. Tree Field
	8.5. Table Field
	8.6. Image Field
	8.7. SVG Field
	8.8. HTML Field
	8.9. Browser Field
	8.10. Calendar Field

	Chapter 9. Layout Widgets
	9.1. Group Box
	9.2. Tab Box
	9.3. Sequence Box
	9.4. Split Box
	9.5. Page Field
	9.6. File Chooser Field
	9.7. Master Slave Fields

	Chapter 10. Custom Fields
	Chapter 11. Template Fields
	Chapter 12. Layouting
	12.1. The Desktop
	12.2. Form Layout

	Chapter 13. Bookmarks
	Chapter 14. Client Notification
	Chapter 15. File Upload and Download
	Chapter 16. Application Branding
	16.1. Rayo Look and Feel
	16.2. Branding the Swing Client
	16.3. Branding the SWT Client
	16.4. Branding the Webclient

	Chapter 17. Advanced Topics
	17.1. Modifying the UI at Runtime
	17.2. Focus Handling
	17.3. Keyboard Control
	17.4. Master Detail Pages
	17.5. Client Only Applications
	17.6. Headless Client
	17.7. Client Startup
	17.8. Client Shutdown
	17.9. Threading and Jobs
	17.10. Caching

	Appendix A: Licence and Copyright
	A.1. Licence Summary
	A.2. Contributing Individuals
	A.3. Full Licence Text

	Appendix B: Scout Installation
	B.1. Overview
	B.2. Download and Install a JDK
	B.3. Download and Install Scout
	B.4. Add Scout to your Eclipse Installation
	B.5. Verifying the Installation

	Appendix C: Apache Tomcat Installation
	C.1. Platform Specific Instructions
	C.2. Directories and Files
	C.3. The Tomcat Manager Application

	Appendix D: Scout Utilities
	D.1. StringUtility
	D.2. DateUtility
	D.3. FileUtility

	Appendix E: Java Basics
	E.1. Java SE Basics
	E.2. Java EE Basics

	Appendix F: Eclipse Basics
	F.1. Eclipse as an IDE
	F.2. OSGi and Equinox
	F.3. Eclipse
	F.4. Eclipse Plugins

