
Eclipse Scout: Migration Guide

Table of Contents
About This Document . 2

API Changes (Java) . 2

Text Provider Service . 2

Mnemonics . 2

getFocusOwner . 3

FinalValue . 3

@PostConstruct. 3

Desktop . 3

Tree . 3

Table . 3

CookieUtility . 4

Pair. 4

Customizing CSP directives . 4

StringUtility.contains() deprecated . 5

BrowserInfo. 5

Virtual Tree Node. 5

Enabled Property of Form Fields . 6

Icons in Tree . 6

NumberUtility.nvl(), DateUtility.nvl(), StringUtility.nvl() . 7

StringUtility.substituteWhenEmpty() . 7

CompareUtility . 7

ThreadInterrupted-, TimedOut- and FutureCancelledExceptions ("extends

java.lang.RuntimeException") are now PlatformErrors ("extends java.lang.Error") 7

Type of "labelPosition" property changed to "byte" (IFormField) . 7

IDeviceTransformer . 7

API Changes (JS) . 8

scout.graphics.prefSize() . 8

scout.ModelAdapter. 8

scout.ModelAdapter._send() . 9

scout.Widget . 10

Changes in "objectType" syntax and scout.create() . 10

Changed behavior of scout.HtmlComponent() constructor function . 11

Popup: Renamed option "installFocusContext" to "withFocusContext" . 11

Other Changes . 11

CSP report URL . 12

Reorganized *.html files due to strict CSP rules . 12

1



This document is referring to a past Scout release. Please click here for the recent
version.
Looking for something else? Visit https://eclipsescout.github.io for all Scout related
documentation.

About This Document
This document describes all relevant changes from Eclipse Scout 6.0 to Eclipse Scout 6.1. If
existing code has to be migrated, instructions are provided here.

API Changes (Java)

Text Provider Service
The method AbstractDynamicNlsTextProviderService#getDynamicNlsBaseName has been made public.
Adjust the method in your text provider service accordingly.

Mnemonics
Mnemonics are not supported anymore. All affected texts were either edited or removed because
they are not used anymore.

Migration: Remove all mnemonics (&) from your text files as they will not be considered anymore.
Replace && with &. (&& was used to escape the mnemonic behaviour and display a single & in a text.)

The following methods were or will be removed:

• StringUtility.removeMnemonic

• StringUtility.getMnemonic

• IAction.PROP_TEXT_WITH_MNEMONIC

• IAction.PROP_MNEMONIC

• IAction.getTextWithMnemonic

• IAction.getMnemonic

• strings.removeMnemonic

• strings.removeAmpersand

Renamed *.css files to *.less . 14

UiHttpSessionListener replaced by HttpSessionMutex. 14

Version check on startup . 14

Run Contexts & HttpServiceTunnel . 15

JMS connection failover . 15

2

https://eclipsescout.github.io/stable/migration-guide.html
https://eclipsescout.github.io

getFocusOwner
Method getFocusOwner() was removed from IDesktop, IForm and DesktopEvent. Since replacing
the old rich client ui technologies (swing, swt) with the modern html ui, this method didn’t work
correctly anymore.

There are no plans to implement correctly because of multiple reasons. It would increase network
traffic between browser and ui server and also would be quite unreliable. The old behaviour was a
synchronious result from the ui (swing, swt), which was feasible in rich client environments. But
with a distant browser, a realtime result is hard to achieve and might already by outdated by its
arrival at the ui server.

If such functionality is needed, it has to be programmed with java script within the browser.

FinalValue
setIfAbsent has been renamed to setIfAbsentAndGet. setIfAbsent now returns a boolean denoting, if
a value was set or not.

@PostConstruct
A method annotated with @PostConstruct in a Bean is now guaranteed to run exactly once. The
constructor may still run more than once.

Desktop
Removed setOutline(IOutline outline), use activateOutline(IOutline outline) instead.

Tree

Adjusted execAutoCheckChildNodes

The method AbstractTree#execAutoCheckChildNodes got two new parameters and the default
implementation now considers enabledNodesOnly and does not always ignore disabled nodes.

Deprecated getConfiguredMultiSelect()

The method AbstractTree.getConfiguredMultiSelect() was marked as deprecated. Multiselection on
trees was never supported by the UI even though the model suggested so. The method will be
declared final in the next Scout release, with its default implementation returning false, in case
multiselection support is added in a future release.

Table

3

Adjusted behavior of Cell.setText()

Cell.setText(null) has no effect anymore. The JavaScript table has been improved so that every
column is now able to compute the text based on the value of a cell. This does only happen if no
explicit text is provided which means cell.setText(null) would trigger that behavior. If you really
want to set a value but no text, you can use cell.textText("") instead.

Removed AbstractTableFieldData

• With Scout 3.10.0 "Bean based TableData" had been introduced.

• With Scout 4.3.0 (Mars-M5) "Bean based TableData" became default.

• With Scout 6.0 (Neon), the SDK did not generate the FormData for "Array based TableData"
anymore.

Now it is time to remove the support for the "Array based TableData" completeley, see also
https://bugs.eclipse.org/bugs/show_bug.cgi?id=496292. A description of the differences between
these two approaches can be found here: https://wiki.eclipse.org/Scout/Concepts/TableData

ITableHolder

The class ITableHolder was part of the old array based table loaders which has been replaced with a
bean based approach in the last release. Therefore the class ITableHolder has been removed. The
constants that were present on that interface can be accessed using the interface
org.eclipse.scout.rt.client.ui.basic.table.ITableRow from the client or
org.eclipse.scout.rt.platform.holders.ITableBeanRowHolder from outside the client.

CookieUtility
CookieUtility was moved from org.eclipse.scout.rt.ui.html to org.eclipse.scout.rt.server.commons.
Migrate by updating your imports. The Method addCookie() is now called addPersistentCookie().
Additional methods are available (to add a session cookie, or delete an existing cookie).

Pair
The Pair class was made abstract and two default implementations for a mutable pair (class
MutablePair) and immutable pair (ImmutablePair) were added. Since the former Pair class was
immutable, all occurences were changed to use the new ImmutablePair class. Migrate by update all
occurences to use the new ImmutablePair.

Customizing CSP directives
The method org.eclipse.scout.rt.server.commons.servlet.HttpServletControl.getCspDirectives() is
no longer available. CSP directives are now configured by the the bean
org.eclipse.scout.rt.server.commons.servlet.ContentSecurityPolicy. To customize the rules,
replace this bean with your own implementation and override the method initDirectives(). The
bean provides fluent-style withFooBar() methods.

4

https://bugs.eclipse.org/bugs/show_bug.cgi?id=496292
https://wiki.eclipse.org/Scout/Concepts/TableData

StringUtility.contains() deprecated
The method StringUtility.contains() was marked as deprecated and will be removed in the P-
release. The method was often used incorrectly due to poor documentation and unconventional
implementation. The utility provides multiple new methods that can be used as a replacement:

containsString()

null-safe variant of String.contains()

containsStringIgnoreCase()

like containsString(), but ignores capitaliziation. Make sure to read the JavaDoc!

containsRegEx()

checks if the given regular expression matches part of the given string (essentially, this method
automatically adds .* on both sides of the regular expression)

matches()

null-safe variant of String.matches(), also allows to set the pattern flags

BrowserInfo
The class BrowserInfo was renamed to a more generic HttpClientInfo name, since the HTTP client
can either be a browser, but may also be another server using the built-in HTTP client of the VM.

Futher the HttpClientInfo instance for each request is cached on the current HTTP session, if a
session is available. Use the new HttpClientInfo get(HttpServletRequest request) method to get the
cached HTTP client info.

Virtual Tree Node
The Virtual tree node has been deleted. The main reason for this was because of table pages: If an
AbstractPageWithTable contains a lot of rows, for each of them a child page is created. To have these
child pages as lightweight as possible the virtual node was introduced. This node was created for
each row and only after activating a row (click by the user) the real child page has been created.

Now instead of creating a virtual node first an probably the real page afterwards the real page is
created directly. Therefore the instance creation of pages below table pages should be very fast and
not perform any backend calls. To assure this it is recommended to move any expensive operation
currently implemented in the execInit() method to execCreateChildPages() or execPageActivated().
Permission checks or similar operations, which use the setVisibleGranted(boolean) method, should
be moved to the newly created execCalculateVisible() method. The default behavior is that the
execCalculateVisible method is executed on instance creation. Subclasses of AbstractPageWithTable
potentially have a large number of child pages. To avoid performance issues due to expensive
permission checks, the execCalculateVisible for these children is only executed before loading the
page data.

Furthermore to save memory it is recommended to create the tables below pages lazily. The table is
created upon the first access to IPage.getTable(). Therefore try not to use getTable() in the page init

5

phase. Instead a new callback execInitTable is available to initialize the table at the moment it is
created. There is also an overload getTable(boolean) that can be used to access the table without
automatically creating it.

Enabled Property of Form Fields
The inheritance of the enabled property of form fields has been changed so that changing this
property on a composite field does no longer automatically propagate the value to the children.
Instead a form field is only considered to be enabled if all parent fields are enabled too.

To have the same behaviour you can use the method formField.setEnabled(yourValue, true /*
update parents */, true /* update children */) which also propagates the value to parent and
child fields. The same method also exists for the enabled-granted property:
formField.setEnabledGranted(yourValue, true, true). However often it may no longer be required
to actively propagate the new value to children. Therefore it is recommended to check the business
logic manually where possible.

Furthermore the meaning of property change listeners changed. Check all the listeners using the
org.eclipse.scout.rt.client.ui.form.fields.IFormField.PROP_ENABLED property. This property is
now only fired if the state of the form field itself has changed. If the enabled state of a parent field
is modified, this property change event will no longer be fired. The actual enabled state of the field
could have changed even though because the parents have an influence now. If the listener should
also be notified about changes of the parents use the new property
org.eclipse.scout.rt.client.ui.form.fields.IFormField.PROP_ENABLED_COMPUTED.

Icons in Tree
When the new Html UI was introduced the support for icons on tree nodes was dropped. But some
projects really missed that feature so it was introduced again with this release. This means when
your tree node provides an iconId, the UI will display the icon referenced by the ID. The tree
supports bitmap and font-icons. Since there are Scout projects migrating from an older Scout
version (before Html UI was introduced) to a Scout version with Html UI (but before 6.1) they may
still have iconIds configured, but since these icons were never displayed in their application, they
probably want to stick with that behavior without changing their getConfiguredIconId() methods.
For that purpose the Session init property showTreeIcons was introduced. By default the property is
false, which means you won’t see icons in the Tree, even if your model has an iconId configured.
Set the property to true, to enable the support for icons (this will be default starting from release
6.2.x). Example for index.js:

$(document).ready(function() {
 var app = new scout.RemoteApp();
 app.init({
 session: {
 showTreeIcons: true
 }
 });
});

6

NumberUtility.nvl(), DateUtility.nvl(),
StringUtility.nvl()
The nvl() methods on NumberUtility, DateUtility and StringUtiltiy were moved to a generic
ObjectUtility.nvl(). The existing methods were deprecated and will be removed with next Scout
release. Additionally the existing methods were restricted to use Number respectively Date only.

StringUtility.substituteWhenEmpty()
The existing methods was deprecated and will be removed with next Scout release. Use
StringUtility.hasText() and StringUtility.emptyIfNull() or StringUtility.nullIfEmpty() instead.

CompareUtility
The various null-safe compare methods on CompareUtility were moved to the new generic
ObjectUtility. The existing methods were deprecated and will be removed with next Scout release.

ThreadInterrupted-, TimedOut- and
FutureCancelledExceptions ("extends
java.lang.RuntimeException") are now PlatformErrors
("extends java.lang.Error")
There were circumstances where the cancellation of long-running actions did not work or lead to
unpleasant behaviors (for example multiple ExceptionForm, that is displayed after a cancellation by
the user). Most of time caught exceptions where the reason for such behaviors.

In order to get rid of those problems, we have decided that the former RuntimeExceptions will
become Errors and therefore should no longer be swallowed by catch (RuntimeException e). See
Eclipse Scout: Technical Guide for more information about the new Throwable hierarchy.

Type of "labelPosition" property changed to "byte"
(IFormField)
The type of the labelPosition property was changed from int to byte. This affects the setters, getters
and getConfiguredLabelWidth methods. The position constants in IFormField were adjusted.

Occurrences where such methods were overridden need to be adjusted. Otherwise no changes
should be necessary.

IDeviceTransformer
Some methods on IDeviceTransformer where changed. Projects with own contributions to the device
transformation process must apply these changes accordingly.

7

Old method New method Description

 —  transformPageTable(table,
page)

New callback that can be used to
transform the page’s table. Unlike
transformPage this method is not called
during the execInitPage phase, but during
the execInitTable phase.

transformPageDetailForm(fo
rm)

notifyPageDetailFormChange
d(form)

The existing method was renamed to
avoid confusion with transformPageTable
and to clearify that this method is called
every time, the desktop’s detail form
changes (not only when the detail form is
first initialized).

transformPageDetailTable(t
able)

notifyPageDetailTableChang
ed(table)

The existing method was renamed to
match the new method
notifyPageDetailFormChanged and to
clearify that this method is called every
time, the desktop’s detail table changes
(not only when the detail table is first
initialized).

API Changes (JS)

scout.graphics.prefSize()
The signature of JavaScript method scout.graphics.prefSize() has changed:

• Old: scout.graphics.prefSize($elem, includeMargin, options)

• New: scout.graphics.prefSize($elem, options)

The argument includeMargin was moved to the options object. See code documentation for a
description of all options.

scout.ModelAdapter
If you have not created any custom widgets, you can skip this. If you only used BeanFields for
customizing you can skip it as well.

Previously every widget with a corresponding part on the server extended scout.ModelAdapter. A
model adapter is the connector with the server, it takes the events sent from the server and calls
the corresponding methods on the widget. It also sends events to the server whenever an action
happens on the widget. To make the widgets usable without a server, they don’t extend from
scout.ModelAdapter anymore but directly from scout.Widget. That means every widget with a server
counter part have been separated into widget and model adapter, similarly to the server side where
a IJsonAdapter exists for every model object. The model adapter creates the widget and attaches
itself to it meaning it listens for events triggered by the widget and sends elected ones to the server.

8

It also takes the events from the server and calls the corresponding methods of the widget.

So if you created custom widgets you have to separate them as well. Create for each widget a
separate file called the same way as the Widget + 'Adapter'. That adapter extends either directly
from scout.ModelAdapter or from the corresponding adapter of the parent widget.

Example: You have created a XyField.js which extends from FormField.js. Now create a file called
XyFieldAdapter.js and extend it from FormFieldAdapter.js.

You now have to move the server event handling methods to the adapter, if there are any at all. If
your widget does not contain a method called onModelAction, you are fine. Beside these action
events the server may send property change events as well. For every property change event the
adapter will automatically call the corresponding setter method. If there is none it will call the
generic method Widget.setProperty which eventually calls the _sync and _render methods of the
property. So if your widget contains _sync methods they will still be called on a server property
change like before. But now you should create a JS property event to inform other widgets by using
Widget._setProperty (note the _). This was previously done automatically for every property which
is still done if there is no _sync method. If there is one you have to take care of it by yourself.

For the opposite direction meaning events from UI to server you have to more or less replace the
calls of _send() with trigger(). In the adapter you have to handle these widget events and call the
_send() method accordingly. If it is a property change event it is even simpler. Just call
_addRemoteProperties in the constructor of the model adapter for every property which should be
sent to the server.

scout.ModelAdapter._send()
The signature of JavaScript method scout.ModelAdapter._send() has changed:

• Old: scout.ModelAdapter._send(type, data, delay, coalesceFunc, noBusyIndicator)

• New: scout.ModelAdapter._send(type, data, options)

Instead of passing individual arguments, pass all but the first two arguments in an options object: *
delay * coalesce * showBusyIndicator

Old:

this._send('selected', eventData, null, function() { ... });

New:

this._send('selected', eventData, {
 coalesce: function() { ... }
});

9

scout.Widget
If you have not created any custom widgets, you can skip this.

destroy()

With the separation of widget and model adapter the destroy handling has been refactored. This
means every widget may now be destroyed. Previously only the widgets which extended from
scout.ModelAdapter could be destroyed. The big advantage is that every widget now behaves the
same and that there finally is a counter part for the _init() called _destroy() which makes it
possible to do cleanup like removing listeners.

For you it means you have to decide whether you want to destroy or only remove your widgets. A
widget knows the following states:

1. initialized

2. rendered

3. removed

4. destroyed

You can remove and render the same widget as many times you want, but if you destroy it you may
not use it again and you would have to create a new one. It eventually has to be destroyed though
for a proper cleanup. Normally this is done by the parent widget, but in some rare cases you have
to take care of it by your own.

So check all the occurrences of YourWidget.remove() and maybe replace them with destroy.

EventSupport

Every widget now installs the event support by default. Previously _addEventSupport had to be
called in the constructor of the widget. This may now be removed.

KeyStrokeContext

The method _addKeyStrokeContextSupport has been removed. If your widget needs keystroke
support override _createKeyStrokeContext and provide one. You can probably use the default
scout.KeyStrokeContext. The parameter of _initKeyStrokeContext has been removed as well. Just use
this.keyStrokeContext instead.

Changes in "objectType" syntax and scout.create()
The "objectType" is a string describing which JavaScipt "class" to use when creating an object
instance using scout.create() (roughly similar to a Java class name). To make the object factory
more robust, the separator between the type and the model variant (e.g. defined by @ModelVariant
annotation in Java) was change from . to :. The namespace separator remains .. This allows the
following forms of object types:.

10

• "StringField": name without namespace, i.e. a type in the default namespace (resolves to
scout.StringField)

• "myproject.StringField": namespace qualified name

• "StringField:MyVariant": type with variant (resolves to scout.MyVariantStringField), can also be
combined with a namespace

Migration: Check your objectFactories.js and defaultValues.json files (if you have any in your
project) for types with variant and convert the separator from . to :.

Changed behavior of scout.HtmlComponent()
constructor function
The constructor function scout.HtmlComponent() no longer links the $comp to the new instance.
Instead, the static function scout.HtmlComponent.install() should be used to create a new
HtmlComponent and link it to $comp. The constructor function should never be used anymore in
custom code. (If you do, you will get errors.)

The new static method makes it clearer that it will alter the state of $comp. For a normal
constructor, such behavior is unexpected and thus discouraged.

Migration: Check all *.js files in your project for occurences of new scout.HtmlComponent and replace
them with scout.HtmlComponent.install.

 // Old, do not use anymore!
 this.$container = $parent.appendDiv('my-widget');
 new scout.HtmlComponent(this.$container, this.session);

 // New, change your code to this (no change in first line):
 this.$container = $parent.appendDiv('my-widget');
 scout.HtmlComponent.install(this.$container, this.session);

Popup: Renamed option "installFocusContext" to
"withFocusContext"
The initialization option installFocusContext for Popup.js instances was renamed to
withFocusContext to match the corresponding property name.

Migration: Check if your project explicitly sets installFocusContext = false in popup widget
instance (created via scout.create('scout.Popup', { … })) or in subclasses of scout.Popup. If it
does, rename the option name to withFocusContext.

Other Changes

11

CSP report URL
By default, the report-uri for CSP violations is now called /csp-report (instead of /csp.cgi).

Reorganized *.html files due to strict CSP rules
The *.html files (index.html, login.html, logout.html etc.) have been changed to comply with the
default Content Security Policy (CSP) rules.

The simplest way to migrate these files is to create them anew using the Scout SDK or maven
archetype and compare them with your files. Otherwise, following this guide:

By default, inline <script> tags in HTML files are prohibited by CSP rules. Bootstrapping JavaScript
code was therefore moved to dedicated *.js files in the WebContent/res folder. Existing projects using
CSP have to manually perform the following steps:

1. Open each *.html file in your.project.ui.html/src/main/resources/WebContent folder and check if
there are any inline script parts. Only <script> tags with embedded JavaScript code are
considered "inline". Tags with a src attribute don’t need to be changed.

2. Transfer the content of each script part to a *.js file in the res subdirectory (e.g. index.html ⇒
res/index.js) and delete the now empty <script> part. Note that the content has changed as well,
to initialize the application the new app object has to be used (scout.init → new
scout.RemoteApp().init, scout.login.init → new scout.LoginApp().init, scout.logout.init → new
scout.LogoutApp().init)).

3. Add a reference to the *.js file in the <head> section using the <scout:script> tag, e.g.:
<scout:script src="res/index.js" />

4. If the extracted *.js file contains <scout:message> tags, they have to be moved back to the <body>
of the corresponding *.html file (because the NLS translation can only process HTML files). The
attribute style has to be changed from javascript to tag.

5. Check the web.xml files of your ui.html.app.* projects. If you use the scout login form and if you
have listed the files to be excluded explicitly (instead of using /res/*), then you need to add the
new *.js files to the filter-exclude section as well.

Example:

12

Listing 1. login.html before migration (Scout 6.0)

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Contacts Application</title>
 <scout:include template="head.html" />
 <scout:stylesheet src="res/scout-login-module.css" />
 <scout:script src="res/jquery-all-macro.js" />
 <scout:script src="res/scout-login-module.js" />
 <script> ①
 $(document).ready(function() {
 scout.login.init({texts: <scout:message style="javascript" key="ui.Login" key
="ui.LoginFailed" key="ui.User" key="ui.Password" /> });
 });
 </script>
 </head>
 <body>
 <scout:include template="no-script.html" />
 </body>
</html>

① Prohibited inline script.

Listing 2. login.html after migration (Scout 6.1)

<!DOCTYPE html>
<html>
 <head>
 <meta charset="UTF-8">
 <title>Contacts Application</title>
 <scout:include template="head.html" />
 <scout:stylesheet src="res/scout-login-module.less" />
 <scout:script src="res/jquery-all-macro.js" />
 <scout:script src="res/scout-login-module.js" />
 <scout:script src="res/login.js" /> ①
 </head>
 <body>
 <scout:include template="no-script.html" />
 <scout:message style="tag" key="ui.Login" key="ui.LoginFailed" key="ui.User" key=
"ui.Password" /> ②
 </body>
</html>

① External script reference allowed by CSP.

② Moved from JavaScript call to <body>, changed style to tag.

13

Listing 3. res/login.js after migration (Scout 6.1)

$(document).ready(function() {
 new scout.LoginApp().init(); ①
});

① Translated texts are extracted automatically from DOM.

Renamed *.css files to *.less
Because the former *.css files actually were LESS files, we’ve changed the wrong file extension from
.css to .less. This allows editors with LESS support/validation to properly work with the LESS
syntax and simplifies the usage of the LESS @import clause, since the (less) hint is not required
anymore.

Steps required to migrate from an older Scout version to version 6.1:

• Rename all *.css files in directory /WebContent/res to *.less

• Chane the include syntax in *-macro.less and *-module.less:

◦ Old: //@include("scout-module.css")

◦ New: @import "scout-module.less";

• In each *.html file in directory /WebContent, use *.less extension in stylesheet tag:

◦ Old: <scout:stylesheet src="res/myapp-all-macro.css" />

◦ New: <scout:stylesheet src="res/myapp-all-macro.less" />


Importing regular .css files in module files (*-module.less) is still supported, and
required in some cases. Just make sure that all stylesheets using LESS do have a
*.less file extension. Macros and modules must always be LESS files.

UiHttpSessionListener replaced by HttpSessionMutex
The HttpSessionListener class org.eclipse.scout.rt.ui.html.UiHttpSessionListener has been
replaced by the listener class org.eclipse.scout.rt.server.commons.HttpSessionMutex. Therefore if
the class UiHttpSessionListener is registered in the web.xml file replace it with
org.eclipse.scout.rt.server.commons.HttpSessionMutex.

Version check on startup
After a release upgrade, the cached resources (e.g. index.html, *.js, *.css) have most likely changed
and must be re-downloaded from the server. Usually, this happens automatically, because the
index.html's ETag has changed and the server does not respond with HTTP 304 Not Modified.
However, we have found that there are rare cases where browsers start the JS app without
checking if index.html has to be updated (e.g. in Firefox when restoring tabs from a previous
session or in Chrome when the "auto discard tab" feature has discarded the application’s tab). This
results in a mismatch between the UI and the UI server.

14

http://lesscss.org

To fix potential problems caused by old resources, a version check is performed during application
startup. To enable this version check in existing applications, include the tag <scout:version> in
index.html. New Scout projects created using the helloworld archetype already include the tag.


The current version is determined by the value of the configuration property
scout.application.version.

Example:

 ...
 <body>
 ...
 <scout:version /> ①
 </body>
 ...

① will be replaced by the application’s version

Run Contexts & HttpServiceTunnel
A service tunnel request from UI server to the backend server is always performed within a copy of
the current RunContext. Until Scout 6.0 if a service tunnel request was performed without a current
RunContext available, an empty RunContext was created. This caused problems on the backend,
since an empty RunContext does not provide any user information e.g. used for access control or
permission checks.

With Scout 6.1 the HttpServiceTunnel implementation was changed, in fact that copying the current
context requires to run in an existing RunContext. If not given and copying the current context, this
might be a programming error and should be revisited. Therefore the HttpServiceTunnel request
fails without a current RunContext available.


Migration note: Check service tunnel requests to backend, specially in
servlets/filters handling access control and add a run context, if they perform any
backend requests using the service tunnel.

See also https://www.eclipse.org/forums/index.php?t=msg&th=1085119

JMS connection failover
The scout MOM / JMS managed code supports for connection failover.

Connection failover is achieved using a connection wrapper and a session wrapper around the real
jms connection and session. Connection loss is discovered with
(jms)connection.setExceptionListener. J2EE jms providers are excluded since those do failover
themselves.

The main goal of connection failover is to maintain subscription listeners. All session wrapper

15

https://www.eclipse.org/forums/index.php?t=msg&th=1085119

methods do a one-time retry in case of failure. Default connection failover tries to reconnect 15
times every 2 seconds.

Subscription listeners are not stopped when the connection is dropped. However they try to receive
messages again and again until the connection is restored or the session is closed by custom code.

Another improvement with similar scope is the subscription process itself. When calling
MOM.subscribe the call is blocked at maximum for 30 seconds in order to wait for the subscription
event loop to effectively start waiting and receiving messages. That way it cannot happen anymore
that in the snippet MOM.subscribe(…) → schedules a event loop job MOM.publish(message) the
message is published BEFORE being received from the subscriber due to latency in starting the
background job.

Configuration: There are 3 new config.properties defined in IMom and IMomImplementor -
scout.mom.failover.connectionRetryCount default 15 -
scout.mom.failover.connectionRetryIntervalMillis default 2000 -
scout.mom.failover.sessionRetryIntervalMillis default 5000

Migration: The interfaces and api are still stable, however customized jms code must check if some
of the following old types/methods are being used or accessed: - method with
IJmsSessionProvider.getSession() now throws JMSException - check override of
JmsMomImplementor.createConnection() and postCreateConnection() so they do not call
connection.setExceptionListener(…) - check override of IJmsSessionProvider, JmsSessionProvider
since these are wrapped in the new JmsSessionProviderWrapper - do not use
JmsMomImplementor.m_connection directly since during reconnect the member gets null and
changes.

Test: JmsMomImplementorTest.testSubscribeFailover

 Do you want to improve this document? Have a look at the sources on GitHub.

16

https://github.com/bsi-software/org.eclipse.scout.docs/blob/releases/6.1.x/docs/build/scout_migration/src/docs/migration-guide.adoc

	Eclipse Scout: Migration Guide
	Table of Contents
	About This Document
	API Changes (Java)
	Text Provider Service
	Mnemonics
	getFocusOwner
	FinalValue
	@PostConstruct
	Desktop
	Tree
	Table
	CookieUtility
	Pair
	Customizing CSP directives
	StringUtility.contains() deprecated
	BrowserInfo
	Virtual Tree Node
	Enabled Property of Form Fields
	Icons in Tree
	NumberUtility.nvl(), DateUtility.nvl(), StringUtility.nvl()
	StringUtility.substituteWhenEmpty()
	CompareUtility
	ThreadInterrupted-, TimedOut- and FutureCancelledExceptions ("extends java.lang.RuntimeException") are now PlatformErrors ("extends java.lang.Error")
	Type of "labelPosition" property changed to "byte" (IFormField)
	IDeviceTransformer

	API Changes (JS)
	scout.graphics.prefSize()
	scout.ModelAdapter
	scout.ModelAdapter._send()
	scout.Widget
	Changes in "objectType" syntax and scout.create()
	Changed behavior of scout.HtmlComponent() constructor function
	Popup: Renamed option "installFocusContext" to "withFocusContext"

	Other Changes
	CSP report URL
	Reorganized *.html files due to strict CSP rules
	Renamed *.css files to *.less
	UiHttpSessionListener replaced by HttpSessionMutex
	Version check on startup
	Run Contexts & HttpServiceTunnel
	JMS connection failover

