
Eclipse Scout
Release Notes

Scout Team

Version 7.0

Table of Contents
About This Release . 2

Service Releases . 2

Obtaining the Latest Version . 3

Upgrade to jQuery 3 . 4

Scout JS . 5

Validators, Parser and Formatter (JS) . 5

Simplified API (JS) . 5

Logical Grid Validation (JS) . 5

New HTTP Abstraction Layer: Google HTTP Client for Java. 6

Support for REST Services . 7

Prevent Double Clicks on Buttons and Menus. 8

Minimized Mode for Split Box (since 7.0.100) . 9

Split Box Keystrokes . 9

New Smart Field: ISmartField2 (since 7.0.100) . 11

Time Picker for Date Field (since 7.0.100). 12

Clear Icon for Input Fields (since 7.0.100) . 13

Improved Touch Popups (since 7.0.100) . 14

Sorting of Filter Table (since 7.0.100). 15

Auto Optimize Column Width (since 7.0.100) . 16

New Property Auto Optimize Column Max Width (since 7.0.300) . 17

New Property for Request Timeout (since 7.0.100) . 18

Minor Changes for HTTP Abstraction Properties (since 7.0.100) . 19

Desktop Splitter Position Remembered Across Sessions (since 7.0.300) . 20

No Value in JS for String Fields With Masked Input (since 7.0.300) . 21

Menus in the Status Tooltip of a Form Field (since 7.0.300) . 22

This document is referring to a past Scout release. Please click here for the recent
version.
Looking for something else? Visit https://eclipsescout.github.io for all Scout related
documentation.

1

https://eclipsescout.github.io/stable/release-notes.html
https://eclipsescout.github.io

About This Release
Eclipse Scout 7.0 is part of the Eclipse Oxygen release. It was released in June 2017 (release
schedule), with the Service Release 3 released in March 2018. The latest version of this release is
7.0.300.005_Oxygen_3.

If you are upgrading from version 6.0, please also read the release notes for the 6.1
(Oxygen preview) release:
https://eclipsescout.github.io/6.1/release-notes.html

You can see the detailed change log on GitHub.

Service Releases
The following changes were made after the initial 7.0 release (Eclipse Oxygen release). The
following notes relate to a service release.

Oxygen.3 (7.0.300) Released on March 21, 2018

• New Property Auto Optimize Column Max Width (since 7.0.300)

• Desktop Splitter Position Remembered Across Sessions (since 7.0.300)

• No Value in JS for String Fields With Masked Input (since 7.0.300)

• Menus in the Status Tooltip of a Form Field (since 7.0.300)

Detailed change log: https://github.com/eclipse/scout.rt/compare/7.0.200.005_Oxygen_2…
7.0.300.005_Oxygen_3

Oxygen.2 (7.0.200) Released on December 20, 2017

Detailed change log: https://github.com/eclipse/scout.rt/compare/7.0.100.017_Oxygen_1…
7.0.200.005_Oxygen_2

Oxygen.1 (7.0.100) Released on September 27, 2017

• Minimized Mode for Split Box (since 7.0.100)

• New Smart Field: ISmartField2 (since 7.0.100)

• Time Picker for Date Field (since 7.0.100)

• Clear Icon for Input Fields (since 7.0.100)

• Improved Touch Popups (since 7.0.100)

• Sorting of Filter Table (since 7.0.100)

• Auto Optimize Column Width (since 7.0.100)

• New Property for Request Timeout (since 7.0.100)

• Minor Changes for HTTP Abstraction Properties (since 7.0.100)

2

https://wiki.eclipse.org/Simultaneous_Release
https://wiki.eclipse.org/Simultaneous_Release
https://eclipsescout.github.io/6.1/release-notes.html
https://github.com/eclipse/scout.rt/compare/releases/6.1.x%2E%2E%2Ereleases/7.0.x
https://github.com/eclipse/scout.rt/compare/7.0.200.005_Oxygen_2%2E%2E%2E7.0.300.005_Oxygen_3
https://github.com/eclipse/scout.rt/compare/7.0.200.005_Oxygen_2%2E%2E%2E7.0.300.005_Oxygen_3
https://github.com/eclipse/scout.rt/compare/7.0.100.017_Oxygen_1%2E%2E%2E7.0.200.005_Oxygen_2
https://github.com/eclipse/scout.rt/compare/7.0.100.017_Oxygen_1%2E%2E%2E7.0.200.005_Oxygen_2

Detailed change log: https://github.com/eclipse/scout.rt/compare/7.0.0.008_Oxygen…
7.0.100.017_Oxygen_1

Obtaining the Latest Version

Runtime (Scout RT)

Scout RT artifacts are distributed via Maven:

• 7.0.300.005_Oxygen_3 on Maven Central

• 7.0.300.005_Oxygen_3 on mvnrepository.com

Usage example in the parent POM of your Scout application:

<dependency>
 <groupId>org.eclipse.scout.rt</groupId>
 <artifactId>org.eclipse.scout.rt</artifactId>
 <version>7.0.300.005_Oxygen_3</version>
 <type>pom</type>
 <scope>import</scope>
</dependency>

Eclipse IDE Tooling (Scout SDK)

You can download the complete Eclipse IDE with Scout SDK included (EPP) here:
Eclipse for Scout Developers

To install the Scout SDK into your existing Eclipse IDE, use this update site:
http://download.eclipse.org/scout/releases/7.0/7.0.300/005_Oxygen_3/

Demo Applications

The demo applications for this version can be found on the features/version/7.0.300.005_Oxygen_3
branch of our docs repository on GitHub.

If you just want to play around with them without looking at the source code, you can always use
the deployed versions:

• https://scout.bsi-software.com/contacts/

• https://scout.bsi-software.com/widgets/

• https://scout.bsi-software.com/jswidgets/

3

https://github.com/eclipse/scout.rt/compare/7.0.0.008_Oxygen%2E%2E%2E7.0.100.017_Oxygen_1
https://github.com/eclipse/scout.rt/compare/7.0.0.008_Oxygen%2E%2E%2E7.0.100.017_Oxygen_1
http://search.maven.org/#search%7Cga%7C1%7Cg%3A%22org.eclipse.scout.rt%22%20AND%20v%3A%227.0.300.005_Oxygen_3%22
https://mvnrepository.com/artifact/org.eclipse.scout.rt/org.eclipse.scout.rt/7.0.300.005_Oxygen_3
https://www.eclipse.org/downloads/packages/eclipse-scout-developers/oxygen
http://download.eclipse.org/scout/releases/7.0/7.0.300/005_Oxygen_3/
https://github.com/bsi-software/org.eclipse.scout.docs/tree/features/version/7.0.300.005_Oxygen_3
https://scout.bsi-software.com/contacts/
https://scout.bsi-software.com/widgets/
https://scout.bsi-software.com/jswidgets/

Upgrade to jQuery 3
We upgraded from jQuery 2.1.4 to jQuery 3.2.1. The new version contains a lot of improvements,
including performance optimizations for animations and event handling. It also allowed us to
remove some code which is now included in jQuery directly (e.g. addClassSVG, removeClassSVG,
hasClassSVG).

Beside upgrading jQuery, we upgraded the Jasmine Maven Plugin to version 2.2 and the PhantomJS
Maven Plugin to version 2.1.1, too. The YUI compressor has also been upgraded from 2.4.8 to
version 2.4.9, but unfortunately it is not compatible with jQuery 3. To make it work again we had to
fork it and now use the version 2.4.9-BSI-1.

Along with the jQuery upgrade we decided to remove jQuery UI and jQuery Mobile completely.
Scout only included parts of these libraries and the usage was limited to 2 or 3 functions. Without
these dependencies it will be easier in the future to upgrade jQuery itself.

4

Scout JS
With release 6.1 first steps had been taken to allow creating Scout applications with JavaScript only
(see 6.1 Release Notes). The development has been continued so that the current release comes with
a cleaner API, more working widgets and even some documentation (Tech Doc) and sample code
(https://scout.bsi-software.com/jswidgets/). Still, it has not been finished yet and will be improved
with the upcoming service releases. Let us know what you think!

It is important to note that Scout JS is not a separate framework. It actually just names the
JavaScript part of the Scout framework. Classic Scout applications use it as well. This means effort
made in this area also improves the stability of the Scout framework itself and even makes the
development of custom widgets easier.

Validators, Parser and Formatter (JS)
The ValueField.js now provides an API to add custom parse, validate and format logic. This is
especially useful for the StringField, but you may also use it for the NumberField and the DateField.
See the technical guide for details.

Simplified API (JS)
The parameter $parent is now optional when calling widget.render(). The $parent may be resolved
using this.parent. No need to always write widget.render(this.$container) anymore, instead just
write widget.render() if the $container of the parent should be used as $parent.

The property change event has been simplified. Instead of newProperties, oldProperties and
changedProperties, the event now contains propertyName, oldValue and newValue. This makes
handling the event easier.

DateField, StringField and NumberField now use the value based API provided by ValueField. This
means you can write the value using field.setValue(value), and read it using field.value. The
validators and formatter will be called accordingly.

Logical Grid Validation (JS)
When writing a Scout Form with Java, you don’t have to care about the logical grid. You only have
to specify some grid hints like width and height of a cell. The positioning of the cell is calculated
automatically by the logical grid.

This is now also possible with JS based Scout applications. There is no need to manually create a
Logical Grid (e.g. VerticalSmartGroupBoxBodyGrid or HorizontalGroupBoxBodyGrid and validate it
anymore, this will be done automatically by the LogicalGridLayout itself.

5

https://eclipsescout.github.io/6.1/release-notes.html#preparations-for-scout-js
https://eclipsescout.github.io/7.0/technical-guide.html#scout-js
https://scout.bsi-software.com/jswidgets/

New HTTP Abstraction Layer: Google HTTP
Client for Java
The org.eclipse.scout.rt.shared.servicetunnel.http.HttpServiceTunnel class and other HTTP
usages were changed to use the Google HTTP Client Library for Java 1.22. This library adds a HTTP
abstraction layer and allows to use different low-level libraries like java.net.HttpURLConnection (one
and only layer used in previous versions) or Apache HTTP Client 4.5.3 (new default).

Different HTTP clients with different parameters (even with different low-level libraries) may be
used and kept using (custom) implementations of
org.eclipse.scout.rt.shared.http.IHttpTransportManager. Currently there are two internal
implementations of this interface: HttpServiceTunnelTransportManager (only used by the service
tunnel) and DefaultHttpTransportManager (used for all other HTTP connections).

The following new configuration properties (none of them is required to be set, defaults are
provided for all of them) were added:

• scout.http.transport_factory, possible values are
org.eclipse.scout.rt.shared.http.ApacheHttpTransportFactory (default, see above),
org.eclipse.scout.rt.shared.http.NetHttpTransportFactory (to use previous HttpURLConnection
layer) or any custom implementation of an
org.eclipse.scout.rt.shared.http.IHttpTransportFactory.

For the HttpServiceTunnelTransportManager:

• org.eclipse.scout.rt.servicetunnel.apache_max_connections_per_route, maximum number of
connections per route (default: 2048, only applicable for for Apache HTTP Client).

• org.eclipse.scout.rt.servicetunnel.apache_max_connections_total, maximum number of
connections in total (default: 2048, only applicable for for Apache HTTP Client).

For the all other org.eclipse.scout.rt.shared.http.AbstractHttpTransportManager (if not overriding
these settings):

• scout.http.apache_connection_time_to_live, time to live (milliseconds) for kept alive
connections (default: 1 hour, only applicable for Apache HTTP Client).

• scout.http.apache_max_connections_per_route, maximum number of connections per route
(default: 32, only applicable for Apache HTTP Client).

• scout.http.apache_max_connections_total, maximum number of connections in total (default:
128, only applicable for Apache HTTP Client).

For each Apache HTTP Client created using the
org.eclipse.scout.rt.shared.http.ApacheHttpTransportFactory (by default each
org.eclipse.scout.rt.shared.http.IHttpTransportManager using the Apache HTTP Client) their own
org.eclipse.scout.rt.shared.http.ApacheMultiSessionCookieStore and
org.eclipse.scout.rt.shared.http.proxy.ConfigurableProxySelector (see javadoc for detailed
description and configurability) are created. These instances are therefore not registered globally
for the java virtual machine anymore.

6

Support for REST Services
The following new Scout modules have been added to support REST services with Jackson as
marshaller:

• org.eclipse.scout.rt.rest

• org.eclipse.scout.rt.rest.test

• org.eclipse.scout.rt.jackson

• org.eclipse.scout.rt.jackson.test

The most important class is the org.eclipse.scout.rt.rest.RestApplication which searches for all
implementations of IRestResource and exposes them as REST services. It also registers
ExceptionMappers and setups Jackson to work with Jandex.

So if you want to use REST services, you could use the Jersey REST servlet
(org.glassfish.jersey.servlet.ServletContainer), pass the RestApplication as parameter and install
the org.eclipse.scout.rt.server.context.ServerRunContextFilter to have the proper run context for
every REST call. Creating the REST resource is straight forward using the annotations from
javax.ws.rs. Just make sure the resource implements the interface IRestResource so that it will be
registered by the RestApplication on startup.

7

Prevent Double Clicks on Buttons and Menus
If a button or a menu is clicked twice within a short period of time, the corresponding action is
executed twice. This can be convenient (e.g. when inserting new rows in a table) or unproblematic
(e.g. when closing a form - the second click will just be ignored). However, there are cases where
executing an action twice would break things. To instruct the UI to block double clicks, a new
property "preventDoubleClick" is provided on buttons and menus:

• AbstractButton.getConfiguredPreventDoubleClick()

• AbstractMenu.getConfiguredPreventDoubleClick()

The default value is false.

8

Minimized Mode for Split Box (since 7.0.100)
The SplitBox widget now supports a minimum splitter position according to the collapsible field.
The collapsible field size is limited between minimum splitter position and maximum available
size. The collapse buttons now toggles between three modes of the collapsible field: default,
minimized and collapsed. The default value for minimal splitter size is null, which means, no
minimal splitter size is set and no change in existing behavior.

New API methods on AbstractSplitBox:

• Double getMinSplitterPosition()

• void setMinSplitterPosition(Double minPosition)

• Double getConfiguredMinSplitterPosition()

• boolean isFieldMinimized()

• void setFieldMinimized(boolean minimized)

• boolean getConfiguredFieldMinimized()

Additional to the existing three splitbox position types a new
SPLITTER_POSITION_TYPE_RELATIVE_SECOND type was added. This new splitter position type allows to
specify the size of the second field relative to the full size of the splitbox.

Split Box Keystrokes
The former AbstractSplitBox.setCollapseKeyStroke() and AbstractSplitBox.getCollapseKeyStroke()
methods were deprecated and renamed, since the configured keystroke toggles between collapsed
and default size of the collapsible field.

Renamed methods:

• AbstractSplitBox.setToggleCollapseKeyStroke(String keyStroke)

• AbstractSplitBox.getToggleCollapseKeyStroke()

New API methods to define keystrokes allowing to toggle between default, minimized and collapsed
mode. The First keystroke corresponds to the left button for a vertical split boxe and the top button
for a horizontal splitbox. The Second keystroke corresponds to the right button for a vertical split
boxe and the bottom button for a horizontal splitbox.

New API methods:

• AbstractSplitBox.setFirstCollapseKeyStroke(String keyStroke)

• AbstractSplitBox.getFirstCollapseKeyStroke()

• AbstractSplitBox.setSecondCollapseKeyStroke(String keyStroke)

• AbstractSplitBox.getSecondCollapseKeyStroke()

• AbstractSplitBox.getConfiguredToogleCollapseKeyStroke()

9

• AbstractSplitBox.getConfiguredFirstCollapseKeyStroke()

10

New Smart Field: ISmartField2 (since
7.0.100)
This release introduces a new smart field: ISmartField2. It has almost the same interface as the old
smart field ISmartField, which still exists in this Scout release, but will be removed with 7.1. The
main differences to the old smart field:

• In "Scout classic" (with a Java UI server) there is no longer a model representation of the
proposal chooser. In the new smart field the whole state of the proposal chooser is kept on
client side in the browser. The Java UI server only sends lookup rows to the client. Depending
on the smart field configuration SmartField2.js will render either a proposal chooser with a
table or a tree (hierarchical). It’s still possible to replace the default proposal chooser, but now
you have to write a bit of JavaScript code to do that.

• The smart field can now be used with Scout JS. This means you’re no longer restricted to "Scout
classic" when you want to use a smart field and you can use the smart field with any static or
dynamic data source, for instance a REST service. Take a look at the jswidgets demo app to see
examples how to use the smart field with JavaScript.

Migrating from ISmartField to ISmartField2 should be simple in most cases, since the interfaces of
the old and the new smart field are almost identical. Differences are:

• There is no longer a IMixedSmartField with two generic types for VALUE and LOOKUP_TYPE,
since these two types are identical in 99.9% of all cases. When you migrate an old Scout
application that uses different types you could either provide a new LookupCall that has the
same lookup type as the smart field value, or you could simply cast the value of the smart field
where needed.

• The value of the proposal field is now always a String. The generic type you pass to the proposal
field is the lookup type. Use the methods setValueAsString and getValueAsString to read and
write the value of the proposal field. Additionally you can still access the selected lookup row of
the proposal field and get the key of the lookup row. When you have an existing LookupCall
which has a type other than String (for instance a Java bean), you should use Object as generic
type for the proposal field and cast where required. This may be the case when you have
overridden the validateValue() method, for instance. If you don’t do that, you may notice
ClassCastExceptions, because as mentioned above, the value of the proposal field is now always
a String. Also note that the value of the proposal field is not the selected lookup row or the key
of the selected lookup row. The value is simply the text of the selected lookup row. If you need a
property of the selected lookup row, usually the key property, you must check if there is a
lookup row selected by calling getLookupRow() and access the property from that object. Also
note that the proposal field does never select a lookup row when you set a value.

• When you migrate an old Scout application that has a custom proposal chooser, you should
probably create a custom JavaScript implementation for your smart field. There you can
override the behavior of the default implementation.

Note: With 7.1 the old smart field will be deleted and replaced by the new smart field ISmartField2,
additionally in 7.1 ISmartField2 will be renamed to ISmartField again. When you start a new Scout
project with this release you should use ISmartField2.

11

Time Picker for Date Field (since 7.0.100)
The date picker has been there for a long time and provides a convenient way to pick a date. To
enter a time however, you had to use the keyboard. These days are now gone because with this
service release a time picker has been added. It shows the hours from 0 to 23 and the commonly
used minutes. The resolution is configurable, so you could change to 00, 15, 30, 45 instead of 00, 30
if you want. You can still use your keyboard, though.

Figure 1. Time picker

12

Clear Icon for Input Fields (since 7.0.100)
Every input field now has a clear icon. It is active while the field has the focus. This makes it easy to
clear the input with one click.

Figure 2. Clear icon

13

Improved Touch Popups (since 7.0.100)
When using the smart field or date field on a mobile phone or tablet, the popup will be shown in a
different way to make it easier to pick a value with the finger. This existing behavior has been
improved so that it is now easier and more intuitive to clear the value and close the popup.

Figure 3. Date picker touch popup

14

Sorting of Filter Table (since 7.0.100)
The column header menu shows a list of all the different values which occur in the cells of that
column. If one of these values is selected the table will be filtered and will only show rows which
contain that value. These values are sorted alphabetically. Because sometimes it might be useful to
only display the rows which contain the most used values, a possibility was added to sort the values
by the number of occurrences. Just press the icon on the left of the 'All' button.

Figure 4. Column Filter Sorting

15

Auto Optimize Column Width (since 7.0.100)
The column has a property called autoOptimizeWidth. This property has been there for a while but
has not been interpreted yet. With 7.0.100 the support for this property has been implemented. If
you set it to true on a specific column, the column will always be as width as its content. If not set,
the user can still optimize the width manually by double clicking the separator between two
columns.

16

New Property Auto Optimize Column Max
Width (since 7.0.300)
The new property autoOptimizeMaxWidth determines the maximum width a column will grow to
when it is auto optimized when autoOptimizeWidth is set to true. The user may still manually make
columns wider by dragging or double-clicking the column separators.

17

New Property for Request Timeout (since
7.0.100)
Every UI request schedules a model job to process the user interaction and waits for this job and
other scheduled model jobs to complete. During that time the ui is blocked but the user may abort
the processing manually by clicking cancel. If the user does not cancel it and it takes too long to
complete the model jobs are now aborted automatically to free resources. The default is set to 1
hour but you may configure it by using the new property scout.ui.model.jobs.await.timeout (the
unit is seconds). After the abortion a message box is displayed to the user saying the request timed
out.

18

Minor Changes for HTTP Abstraction
Properties (since 7.0.100)

• Existing configuration property classes have been bundled in two
org.eclipse.scout.rt.shared.http.HttpConfigurationProperties and
org.eclipse.scout.rt.shared.servicetunnel.http.HttpServiceTunnelConfigurationProperties
classes.

• The configuration property org.eclipse.scout.rt.servicetunnel.apache_connection_time_to_live
has been removed (scout.http.apache_connection_time_to_live is used instead).

• New configuration properties have been added:

◦ scout.http.apache_keep_alive (possible values: true/false), whether to use keep-alive
connections. If property is not set the system property http.keepAlive is evaluated, if this
system property is also not set true will be used as a last resort.

◦ scout.http.apache_retry_post (possible values: true/false), whether to retry HTTP POST
requests. If not property is not set the system property sun.net.http.retryPost is evaluated,
if this system property is also not set true will be used as a last resort.

19

Desktop Splitter Position Remembered
Across Sessions (since 7.0.300)
The position of the desktop splitter position (between the navigation and the bench) is now
persisted across sessions, i.e. the previous setting will be restored even after you closed your
browser. The position is stored in the HTML 5 local storage provided by the local browser. It is
therefore a device-specific setting, which is especially useful when accessing the same application
through screens with different resolutions.

In case the splitter position should never be remembered, the feature can be disabled globally by
setting the property cacheSplitterPosition on the desktop to false.

20

No Value in JS for String Fields With Masked
Input (since 7.0.300)
A string field with masked input did send the value from the model to the UI layer allowing to read
possibly sensitive data via JS. The value is not sent to the UI layer anymore resulting in a slightly
different behavior. From the model perspective nothing changed.

• A value property change in the model will send an obfuscated display text instead of the real
display text to prevent data leakage.

• On focus of the input field, the obfuscated text is removed, showing an empty input field. On
blur, if nothing was typed, the obfuscated text is restored (model value is unchanged).

• When text is typed into the input field, the display text represents the real display text (but is
still masked).

21

Menus in the Status Tooltip of a Form Field
(since 7.0.300)
A form field can have menus which can be displayed by clicking the ellipsis icon on the right side of
the field. A form field can also have a tooltip which can be displayed by clicking the info icon on the
right side of the field. In fact, the ellipsis icon and the status icon are at the same position and called
status icon. It is called like this because it even has a third purpose: to display the error status.
Because this icon has multiple purposes it has to be defined what happens when the icon is clicked.
Until now, if an error status was shown, the menus were not available.

Until Scout 6.1. the problem was the same for tooltips. One had to decide which was more
important: tooltip or menus. With Scout 6.1 a combination has been introduced: the tooltip now
also shows the menus. But the problem still existed for error status. The reason is: not every menu
makes sense when displayed along with the error status message. But there are menus which make
sense and should be displayed. And this case is now supported.

It is now possible to define which menus should be displayed in an error status. It is also possible to
bind the menu to certain status codes or severities. Let’s say you want to display the menu if a
smart field does not find any results, then you can bind the menu to the
ISmartField.NO_RESULTS_ERROR_CODE. Or you can bind it to custom error codes for your custom status
messages. See the Java Doc of IStatusMenuMapping for details.

Figure 5. Menu in Field Status

 Do you want to improve this document? Have a look at the sources on GitHub.

22

https://github.com/bsi-software/org.eclipse.scout.docs/blob/releases/7.0.x/docs/build/scout_releasenotes/src/docs/release-notes.adoc

	Eclipse Scout: Release Notes
	Table of Contents
	About This Release
	Service Releases
	Obtaining the Latest Version

	Upgrade to jQuery 3
	Scout JS
	Validators, Parser and Formatter (JS)
	Simplified API (JS)
	Logical Grid Validation (JS)

	New HTTP Abstraction Layer: Google HTTP Client for Java
	Support for REST Services
	Prevent Double Clicks on Buttons and Menus
	Minimized Mode for Split Box (since 7.0.100)
	Split Box Keystrokes

	New Smart Field: ISmartField2 (since 7.0.100)
	Time Picker for Date Field (since 7.0.100)
	Clear Icon for Input Fields (since 7.0.100)
	Improved Touch Popups (since 7.0.100)
	Sorting of Filter Table (since 7.0.100)
	Auto Optimize Column Width (since 7.0.100)
	New Property Auto Optimize Column Max Width (since 7.0.300)
	New Property for Request Timeout (since 7.0.100)
	Minor Changes for HTTP Abstraction Properties (since 7.0.100)
	Desktop Splitter Position Remembered Across Sessions (since 7.0.300)
	No Value in JS for String Fields With Masked Input (since 7.0.300)
	Menus in the Status Tooltip of a Form Field (since 7.0.300)

